
Hank Childs, University of OregonApril 29, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 8: Finish Shading, Intro OpenGL

Class	Plan

• Abhishek	and	I	are	working	hard	on	preparing	
Project	2	(OpenGL)
– Quite	frankly	not	going	as	well	as	we	thought
– Things	are	going	better!
– Grading	has	slowed	down

• Projects	will	start	coming	faster
– Want	there	to	time	to	do	great	final	projects

• 1E,	1F:	simpler	coding,	harder	concepts

Class	Plan	(New	Slide)

• Option	A:
– Slow	class	down,	more	time	on	OpenGL,	less	time	
for	final	project

• Option	B:
– Keep	up	the	pace,	less	time	on	OpenGL	(but	make	
sure	we	do	OpenGL!),	more	time	for	final	project	

Current	Plan (1/2)

Week Sun Mon Tues Weds Thurs Fri Sat

5 Lec 7	(shading),	
1F assigned,	
1E	due

Lec 8	(finish
shading,	
GL),	2A	
assigned
1F assigned

6 1F	due Lec 9	(GL),	
2B assigned
2A	assigned

1F	due 2B	assigned
Discussion	
of	final	
projects	/	
Quiz 3

2A	due

7 2A	
due

Lec 11	– ray	
tracing

More	
discussion	
of	final	
projects	(?)

2B	
due

Current	Plan (2/2)

• Weeks	8-10	à you	work	on	final	projects
• Lectures	will	be	on	misc.	topics	in	graphics,	
esp.	in	support	of	final	projects

• Quiz	3	(Week	6):	likely	on	matrices
• Quiz	4	(Week	8):	likely	on	GL
• Quiz	5	(Week	10):	likely	on	topics	in	final	
weeks

Office	Hours

Lecture	Plan

• Today:
– Finish	shading,	2F
– Talk	some	about	OpenGL	V1
– Talk	about	shaders (conceptual)

• Tuesday:	get	into	actual	OpenGL	calls

• Summary:	today	is	about	concepts,	Tuesday	is	
about	practical	stuff

Shading

¨ Our goal:
¤ For each pixel, calculate a shading factor
¤ Shading factor typically between 0 and 1, but

sometimes >1
n Shading >1 makes a surface more white

¨ 3 types of lighting to consider:
¤ Ambient
¤ Diffuse
¤ Specular

smooth surface

rough surface

Light everwhere Our game plan:
Calculate all 3 and
combine them.

Phong Model

• Combine	three	lighting	effects:	ambient,	diffuse,	specular

Phong Model

• Simple	version:	1	light,	with	“full	intensity”	
(i.e.,	don’t	add	an	intensity	term)

• Phong model
– Shading_Amount =	Ka +	Kd*Diffuse	+	Ks*Specular

• Signature:	
– double	
CalculatePhongShading(LightingParameters &,	
double	*viewDirection,	double	*normal)

– Will	have	to	calculate	viewDirection for	each	pixel!

How to handle shading values
greater than 1?

¨ Color at pixel = (1.0, 0.4, 0.8)
¨ Shading value = 0.5

¤ Easy!
¤ Color = (0.5, 0.2, 0.4)à (128, 52, 103)

¨ Shading value = 2.0
¤ Color = (1.0, 0.8, 1.0) à (255, 204, 255)

¨ Color_R = 255*min(1, R*shading_value)
¨ This is how bright lights makes things whiter and

whiter.
¤ But it won’t put in colors that aren’t there.

Ambient Lighting

¨ Ambient light
¤ Same amount of light everywhere in scene
¤ Can model contribution of many sources and reflecting

surfaces

Surface lit with
ambient lighting only

Diffuse Lighting

¨ Diffuse light
¤ Light distributed evenly in all directions, but amount of

light depends on orientation of triangles with respect to
light source.

¤ Different for each triangle

Surface lit with diffuse
lighting only

Diffuse Lighting

Lambertian Surface

Surface Normal

You can calculate the diffuse contribution by taking the
dot product of L and N,

Since L.N = cos(α)
(assuming L and N are normalized)

N

L α

V1

V2

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

A: proportional to cos(α)

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

A: proportional to cos(α)
(Shininess strength) * cos(α) ^ (shininess coefficient)

α

18Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

γ: The Shininess Coefficient

¨ Values of γ between 100 and 200 correspond to
metals

¨ Values between 5 and 10 give surface that look like
plastic

cosγ α

f 90-90

γ=1

γ=2

γ=5

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

A: proportional to cos(α)
(Shininess strength) * cos(α) ^ (shininess coefficient)

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting
(R)

Great!
We know that cos(α) is V.R (provided V & R are normalized).

V

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting
(R)

Great!
We know that cos(α) is V.R (provided V & R are normalized).

But what is R?
It is a formula: R = 2*(L.N)*N - L

V

α

Phong Model

¨ Combine three lighting effects: ambient, diffuse, specular

Phong Model

¨ Simple version: 1 light, with “full intensity” (i.e., don’t
add an intensity term)

¨ Phong model
¤ Shading_Amount = Ka + Kd*Diffuse + Ks*Specular

¨ Signature:
¤ double CalculatePhongShading(LightingParameters &,

double *viewDirection, double *normal)
¤ Will have to calculate viewDirection for each pixel!

Specular Term of Phong Model

¨ Specular part of Phong: Ks*Specular

¨ and Specular is: (Shininess strength) * cos(α) ^
(shininess coefficient)

¨ Putting it all together would be:
¤ Ks * (Shininess strength) * cos(α) ^ (shininess coefficient)

¨ But now we have two multipliers, Ks and (Shininess
Strength). Not needed.

¨ So: just use one. Drop Shininess Strength and only
use Ks

¨ Ks * cos(α) ^ (shininess coefficient)

Lighting parameters

Project #1F (8%), Wed May 5th

¨ Goal: add shading, movie
¨ Extend your project1E code
¨ Important:
¨ add #define NORMALS
¨ Download new file, update

to new file

Project #1F (8%), Wed May 5th

¨ Goal: add shading, movie
¨ Extend your project1E code
¨ Important:
¨ add #define NORMALS
¨ Download new file, update

to new file

Changes to data structures

class Triangle
{
public:

double X[3], Y[3], Z[3];
double colors[3][3];
double normals[3][3];

};
àreader1e.cxx will not compile (with #define
NORMALS) until you make these changes
àreader1e.cxx will initialize normals at each vertex

More comments (1/3)

¨ This project in a nutshell:
¤ Add method called “CalculateShading”

n My version of CalculateShading is about ten lines of code.

¤ Call CalculateShading for each vertex
¤ This is a new field, which you will LERP
¤ Modify RGB calculation to use shading

More comments (2/3)

¨ New: more data to help debug
¤ I will make the shading value for each pixel available
¤ I will also make it available for ambient, diffuse,

specular

¨ Don’t forget to do two-sided lighting
¨ REVERSAL: do one-sided lighting

(v_x,	v_y,	v_z)
=	(0,0,0)

(c_x,	c_y,	c_z)	/	camera	=	(0,1,0)

(l_x,	l_y ,	l_z)	/	light	source	=	(1,0,0)

(0.707,0.707,0)	/	view	normal

viewDir =	normalize(c_x-v_x,				c_y-v_y,					c_z-v_z)	=	(0,	1,	0)

lightDir
=	normalize(l_x-v_x,				l_y-v_y,				l_z-v_z)
=	(1,	0,	0)

This	example	has	a	
triangle	vertex,	v,	at	the	
origin,	the	camera	one	
unit	along	the	Y-axis	and	
the	light	source	one	unit	
along	the	X-axis.

The	lightDir and	viewDir
formulas	show	the	
conventions	we	should	
use	for	direction	for	
general	positions.

More comments (3/3)

¨ I haven’t said anything about movie encoders

Project #1F (8%),
Due Weds May 5th

¨ Goal: add shading, movie

Lecture Plan

¨ Today:
¤ Finish shading, 2F
¤ Talk some about OpenGL V1
¤ Talk about shaders (conceptual)

¨ Tuesday: get into actual OpenGL calls

¨ Summary: today is about concepts, Tuesday is about
practical stuff

Some notes about OpenGL

¨ OpenGL has evolved a lot over 25+ years
¨ The slides that follow and the homeworks will detail

an early version of OpenGL (OpenGL V1.0)
¨ This is the easiest version to understand and

implement
¤ It is also inefficient

¨ Since efficiency is important, newer versions are
more complex and also faster
¤ Lecture will conclude with conceptual overview of newer

OpenGL. Tuesday’s lecture will have specific details.

36Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Models and Architectures

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

37Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Objectives

•Learn the basic design of a graphics
system

• Introduce pipeline architecture
•Examine software components for an
interactive graphics system

38Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Image Formation Revisited

•Can we mimic the synthetic camera
model to design graphics hardware
software?

•Application Programmer Interface (API)
- Need only specify

• Objects
• Materials
• Viewer
• Lights

•But how is the API implemented?

39Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Physical Approaches

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

- Can handle global effects
• Multiple reflections
• Translucent objects

- Slow
- Must have whole data base
available at all times

• Radiosity: Energy based approach
- Very slow

40Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Practical Approach

•Process objects one at a time in the order
they are generated by the application

- Can consider only local lighting
•Pipeline architecture

•All steps can be implemented in hardware
on the graphics card

application
program

display

41Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Vertex Processing

• Much of the work in the pipeline is in converting
object representations from one coordinate
system to another

- Object coordinates
- Camera (eye) coordinates
- Screen coordinates

• Every change of coordinates is equivalent to a
matrix transformation

• Vertex processor also computes vertex colors

42Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Projection

•Projection is the process that combines
the 3D viewer with the 3D objects to
produce the 2D image

- Perspective projections: all projectors meet at
the center of projection

- Parallel projection: projectors are parallel,
center of projection is replaced by a direction of
projection

43Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Primitive Assembly

Vertices must be collected into geometric
objects before clipping and rasterization
can take place

- Line segments
- Polygons
- Curves and surfaces

44Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Clipping

Just as a real camera cannot “see” the
whole world, the virtual camera can only
see part of the world or object space

- Objects that are not within this volume are said
to be clipped out of the scene

45Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Rasterization

• If an object is not clipped out, the appropriate
pixels in the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each
object

• Fragments are “potential pixels”
- Have a location in frame bufffer
- Color and depth attributes

• Vertex attributes are interpolated over objects by
the rasterizer

46Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Fragment Processing

•Fragments are processed to determine
the color of the corresponding pixel in the
frame buffer

•Colors can be determined by texture
mapping or interpolation of vertex colors

•Fragments may be blocked by other
fragments closer to the camera

- Hidden-surface removal

47Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

The Programmer’s Interface

•Programmer sees the graphics system
through a software interface: the
Application Programmer Interface (API)

48Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

API Contents

•Functions that specify what we need to
form an image

- Objects
- Viewer
- Light Source(s)
- Materials

•Other information
- Input from devices such as mouse and keyboard
- Capabilities of system

49Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Object Specification

•Most APIs support a limited set of
primitives including

- Points (0D object)
- Line segments (1D objects)
- Polygons (2D objects)
- Some curves and surfaces

• Quadrics
• Parametric polynomials

•All are defined through locations in space
or vertices

50Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Example (OLD!!)

glBegin(GL_POLYGON);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(0.0, 0.0, 1.0);

glEnd();

type of object
location of vertex

end of object definition

51Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Lights and Materials
(OLD!!)

•Types of lights
- Point sources vs distributed sources
- Spot lights
- Near and far sources
- Color properties

•Material properties
- Absorption: color properties
- Scattering

• Diffuse
• Specular

52Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

OpenGL Architecture (OLD!!)

Immediate Mode

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

geometry
pipeline

Lecture	Plan

• Today:
– Finish	shading,	2F
– Talk	some	about	OpenGL	V1
– Talk	about	shaders (conceptual)

• Tuesday:	get	into	actual	OpenGL	calls

• Summary:	today	is	about	concepts,	Tuesday	is	
about	practical	stuff

Shaders

Shaders

¨ Shader: computer program used to do “shading”
¨ “Shading”: general term that covers more than just

shading/lighting
¤ Used for many special effects

¨ Increased control over:
¤ position, hue, saturation, brightness, contrast

¨ For:
¤ pixels, vertices, textures

Motivation: Bump Mapping

¨ Idea:
¤ typical rasterization, calculate fragments
¤ fragments have normals (as per usual)
¤ also interpolate “texture” on geometry & fragments

n use texture for “bumps”
n take normal for fragment and displace it by “bump” from texture

image from wikipedia

Bump Mapping Example

credit: http://www.fabiensanglard.net/bumpMapping/

Bump Mapping Example

How to do Bump Mapping?

¨ Answer: easy to imagine doing it in your Project 1A-
1F infrastructure
¤ You have total control

¨ But what OpenGL commands would do this?
¤ Not easy in V1 of the GL interface

¨ Much more possible with shaders

Shading Languages

¨ shading language: programming language for
graphics, specifically “shader” effects

¨ Benefits: increased flexibility with rendering
¨ OpenGL V1: fixed transformations for color,

position, of pixels, vertices, and textures.
¨ Shader languages: custom programs, custom effects

for color, position of pixels, vertices, and textures.

ARB assembly language

¨ ARB: low-level shading language
¤ at same level as assembly language

¨ Created by OpenGL Architecture Review Board
(ARB)

¨ Goal: standardize instructions for controlling GPU
¨ Implemented as a series of extensions to OpenGL
¨ You don’t want to work at this level, but it was an

important development in terms of establishing
foundation for today’s technology

GLSL:
OpenGL Shading Language

¨ GLSL: high-level shading language
¤ also called GLSLang
¤ syntax similar to C

¨ Purpose: increased control of graphics pipeline for
developers, but easier than assembly
¤ This is layer where developers do things like “bump

mapping”

¨ Benefits:
¤ Benefits of GL (cross platform: Windows, Mac, Linux)
¤ Support over GPUs (NVIDIA, ATI)
¤ HW vendors support GLSL very well

Other high-level shading
languages

¨ Cg (C for Graphics)
¤ based on C programming language
¤ outputs DirectX or OpenGL shader programs
¤ deprecated in 2012

¨ HLSL (high-level shading language)
¤ used with MicroSoft Direct3D
¤ analogous to GLSL
¤ similar to CG

¨ RSL (Renderman Shading Language)
¤ C-like syntax
¤ for use with Renderman: Pixar’s rendering engine

Relationship between GLSL
and OpenGL

Source: wikipedia

4 Types of Shaders

¨ Vertex Shaders
¨ Fragment Shaders
¨ Geometry Shaders
¨ Tessellation Shaders

¨ It is common to use multiple types of shaders in a
program and have them interact.

How Shaders Fit Into the
Graphics Pipeline

Transform Vertices
from World Space
to Device Space

Rasterize
Contribute

Fragments to
Buffers

vertex shaders:
custom

implementation

fragment
shaders: custom
implementation

geometry & tessellation
shaders: create new

geometry before
rasterized

¨ You can have 0
or 1 of each
shader type

¨ Vertex &
fragment: very
common

¨ Geometry &
tessellation:
less common
¤ adaptive

meshing

Vertex Shader

¨ Run once for each vertex
¨ Can: manipulate position, color, texture
¨ Cannot: create new vertices
¨ Primary purpose: transform from world-space to

device-space (+ depth for z-buffer).
¤ However: A vertex shader replaces the transformation,

texture coordinate generation and lighting parts of
OpenGL, and it also adds texture access at the vertex
level

¨ Output goes to geometry shader or rasterizer

Geometry Shader

¨ Run once for each geometry primitive
¨ Purpose: create new geometry from existing

geometry.
¨ Output goes to rasterizer
¨ Examples: glyphing, mesh complexity modification
¨ Formally available in GL 3.2, but previously

available in 2.0+ with extensions

¨ Tessellation Shader: doing some of the same things
¨ Available in GL 4.0

Fragment Shader

¨ Run once for each fragment
¨ Purpose: replaces the fixed capabilities in

OpenGLV1 (texturing, color sum and fog)
¨ Output goes to buffers
¨ Example usages: bump mapping, shadows, specular

highlights
¨ Can be very complicated: can sample surrounding

pixels and use their values (blur, edge detection)
¨ Also called pixel shaders

How to Use Shaders

¨ You write a shader program: a tiny C-like program
¨ You write C/C++ code for your application
¨ Your application loads the shader program from a

text file
¨ Your application sends the shader program to the

OpenGL library and directs the OpenGL library to
compile the shader program

¨ If successful, the resulting GPU code can be
attached to your (running) application and used

¨ It will then supplant the built-in GL operations

OpenGL
library

How to Use Shaders:
Visual Version

Project2A’
C++ code

Project2A’
binary

g++

shader
program

reads
text
file

when
running

sends “char *”
version of
program to GL via
function call

shader
program is a

binary

OpenGL
compiles program,
binary made just for
the current
execution

Program is used
on GPU to support
Project2A’ binary

Compiling Shader

Compiling Shader: inspect if it
works

Compiling Multiple Shaders

Attaching Shaders to a
Program

Inspecting if program link
worked…

Simplest Vertex Shader

Many built-in variables.
Some are input.
Some are required output (gl_Position).

Bump-mapping with GLSL

bump map texture

output

Will need to load a texture…

Need to put 2D textures on our
triangles…

Need to set up shaders and
textures…

So what is the vertex shader
program?...

And what is the fragment
shader program?...

