
Hank Childs, University of Oregon January 31, 2019

CIS 441/541: Intro to Computer Graphics
Lecture 7: Math Basics, Lighting Introduction & Phong Lighting

Office	
 Hours:	
 Weeks	
 4-­‐10	

•  Monday:	
 1-­‐2	
 (Roscoe)	

•  Tuesday:	
 1-­‐2	
 (Roscoe)	

•  Wednesday:	
 1-­‐3	
 (Roscoe)	

•  Thursday:	
 1130-­‐1230	
 (Hank)	

•  Friday:	
 1130-­‐1230	
 (Hank)	

•  All	
 normal	
 this	
 week!!!	
 J	

Timeline	

•  1C:	
 due	
 Weds	
 Jan	
 23rd	

•  1D:	
 assigned	
 today	
 (LAST	
 TUESDAY),	
 due	
 Thurs	
 Jan	
 31st	

•  1E:	
 assigned	
 Thurs	
 Jan	
 31st,	
 due	
 Weds	
 Feb	
 6th	

–  à	
 will	
 be	
 extra	
 support	
 with	
 this.	
 	
 Tough	
 project.	

•  1F:	
 assigned	
 Feb	
 7th	
 (probably	
 before),	
 due	
 Feb	
 19th	

–  à	
 not	
 as	
 tough	
 as	
 1E	

•  2A:	
 will	
 be	
 assigned	
 during	
 week	
 of	
 Feb	
 11th	
 (maybe	
 before)	

Sun	
 Mon	
 Tues	
 Weds	
 Thurs	
 Fri	
 Sat	

Jan	
 20	
 Jan21	
 Jan	
 22	

Lec4	

Jan	
 23	

1C	
 due	

Lec	
 5	

1D	
 assigned	

Jan	
 25	
 Jan	
 26	

Jan	
 27	
 Jan	
 28	
 Jan	
 29	

(YouTube)	

Jan	
 30	
 Lec	
 6	
 	

1D	
 due	

1E	
 assigned	

Feb	
 1	
 Feb	
 2	

Feb	
 3	
 Feb	
 4	
 Feb	
 5	

Lec	
 7	

Feb	
 6	

1E	
 due	

Feb	
 7	

1F	
 assigned	

Feb	
 8	
 Feb	
 9	

Likely:	
 pre-­‐SuperBowl	
 OH	

Sunday	
 OH?	

•  Sunday	
 Feb	
 3rd:	
 1030-­‐1145	

•  ???	

Project #1E (6%),
Due Weds Feb 6th

¨  Goal: add arbitrary
camera positions

¨  Extend your project1D
code

¨  New: proj1e_geometry.vtk
available on web (9MB),
“reader1e.cxx”.

¨  New: Matrix.cxx,
Camera.cxx

¨  No Cmake, project1E.cxx

¨  QUESTIONS ON 1E?

New topic: Hank’s travel

From Lecture #1:
Planned Absences

¨  Schedule TBD for absences

How should we deal with
Hank’s travel?

¨  We are halfway through my travel commitments
¨  What should we do for the remainder?

¤ Guest lectures
¤ Video lectures + OH
¤ One of each?

¨  (Are video lectures working?)

Outline

¨  Math Basics
¨  Lighting Basics
¨  The Phong Model

Outline

¨  Math Basics
¨  Lighting Basics
¨  The Phong Model

What is the norm of a vector?

¨  The norm of a vector is its length
¤ Denoted with || . ||

¨  For a vector A = (A.x, A.y),
 ||A|| = sqrt(A.x*A.x+A.y*A.y)

¨  Physical interpretation:

¨  For 3D, ||A|| = sqrt(A.x*A.x+A.y*A.y+A.z*A.z)

(A.x,A.y)
||A||

y

x

What does it means for a
vector to be normalized?

¨  The vector A is normalized if ||A|| = 1.
¤ This is also called a unit vector.

¨  To obtain a normalized vector, take A/||A||

¨  Many of the operations we will discuss today will
only work correctly with normalized vectors.

¨  Example: A=(3,4,0). Then:
¤  ||A|| = 5
¤ A/||A|| = (0.6, 0.8, 0)

What is the normal of a triangle?

¨  A triangle coincides with a flat plane.
¨  A triangle’s normal is the vector perpendicular to

that plane.
¨  If a triangle is on plane = Ax+By+Cz = D,

 then the triangle’s normal is (A, B, C)

Norm, Normal, Normalize, Oh My!

¨  Norm: the length of a vector (||A||)

¨  Normal: a perpendicular vector to a plane
coincident with geometry

¨  Normalize: the operation to create a vector with
length 1 (A/||A||)

¨  All 3 are important for today’s lecture

What is a dot product?

¨  A.B = A.x*B.x + A.y*B.y
¤  (or A.x*B.x + A.y*B.y + A.z*B.z)

¨  Physical interpretation:
¤ A.B = cos(α)*(||A||*||B||)

A = (A.x,A.y) B = (B.x, B.y)

α

What is the cross product?

¨  AxB = (A.y*B.z - A.z*B.y,
 B.x*A.z - A.x*B.z,
 A.x*B.y - A.y*B.x)

¨  What is the physical interpretation of a cross
product?
¤ Finds a vector perpendicular to both A and B.

Easy Way to Calculate Normal
For a Triangle

¨  Normal = (C-A)x(B-A)

A B

C

Important:
(C-A)x(B-A) != (B-A)x(C-A)

… we’ll worry about this later

Lighting and Normals

¨  Two ways to treat normals:
¤ Constant over a triangle
¤ Varying over a triangle

¨  Constant over a triangle ßà flat shading
¨  Varying over a triangle ßà smooth shading

Flat vs Smooth Shading

Lighting and Normals

¨  Two ways to treat normals:
¤ Constant over a triangle
¤ Varying over a triangle

¨  Constant over a triangle ßà flat shading
¤ Take (C-A)x(B-A) as normal over whole triangle

¨  Varying over a triangle ßà smooth shading
¤ Calculate normal at vertex, then calculate shading at

vertex, then LERP shading
n How do you calculate normal at a vertex?

Vertex Normals

¨  Algorithm:
¤  For vertex V,

n  Find all triangles Ti incident to V
n  Normal(V) = {0,0,0}
n  NumIncident = 0
n  For each Ti,

n  calculate Normal(Ti)
n  Normal(V) += Normal(Ti)
n  NumIncident++

n  Normal(V) /= NumIncident

¨  Note: our data structures don’t allow for “Find all triangles Ti
incident to V” very easily.
¨  Vertex normals are precalculated for 1F

V

N(V) = (N(T1)+N(T2)+N(T3)+N(T4)) / 4

Outline

¨  Math Basics
¨  Lighting Basics
¨  The Phong Model

23 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Scattering

¨  Light strikes A
¤ Some scattered
¤ Some absorbed

¨  Some of scattered light strikes B
¤ Some scattered
¤ Some absorbed

¨  Some of this scattered
light strikes A

 and so on

24 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Global Effects

translucent surface

shadow

multiple reflection

25

Local vs Global Rendering (1/2)

¨  Local rendering: when rendering one triangle,
ignore the effects of other triangles

¨  Global rendering: when rendering one triangle,
consider the effects of other triangles

26 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Local vs Global Rendering (2/2)

¨  Correct shading requires a global calculation
involving all objects and light sources
¤  Incompatible with model which shades each polygon

independently (local rendering)
¨  However, in computer graphics, especially real time

graphics, we are happy if things “look right”
¤ Many techniques exist for approximating global effects

n  I.e., do local rendering, but bring in other knowledge to
make it look like global rendering

27 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Light-Material Interaction

¨  Light that strikes an object is partially absorbed
and partially scattered (reflected)

¨  The amount reflected determines the color and
brightness of the object
¤ A surface appears red under white light because the

red component of the light is reflected and the rest is
absorbed

¨  The reflected light is scattered in a manner that
depends on the smoothness and orientation of
the surface

28 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Light Sources

General light sources are difficult to work with
because we must integrate light coming from all
points on the source

29 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Simple Light Sources

¨  Point source
¤ Model with position and color
¤ Distant source = infinite distance away (parallel)

¨  Spotlight
¤ Restrict light from ideal point source

¨  (We will do point sources for 1F … and this class)

30 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Surface Types

¨  The smoother a surface, the more reflected light is
concentrated in the direction that a perfect mirror would
reflect the light

¨  A very rough surface scatters light in all directions

smooth surface rough surface

Shading

¨  Our goal:
¤ For each pixel, calculate a shading factor
¤ Shading factor typically between 0 and 1, but

sometimes >1
n Shading >1 makes a surface more white

¨  3 types of lighting to consider:
¤ Ambient
¤ Diffuse
¤ Specular

smooth surface

rough surface

Light everwhere Our game plan:
Calculate all 3 and
combine them.

How to handle shading values
greater than 1?

¨  Color at pixel = (1.0, 0.4, 0.8)
¨  Shading value = 0.5

¤ Easy!
¤ Color = (0.5, 0.2, 0.4)à (128, 52, 103)

¨  Shading value = 2.0
¤ Color = (1.0, 0.8, 1.0) à (255, 204, 255)

¨  Color_R = 255*min(1, R*shading_value)
¨  This is how bright lights makes things whiter and

whiter.
¤ But it won’t put in colors that aren’t there.

Ambient Lighting

¨  Ambient light
¤ Same amount of light everywhere in scene
¤ Can model contribution of many sources and reflecting

surfaces

Surface lit with
ambient lighting only

Lambertian Surface

¨  Perfectly diffuse reflector
¨  Light scattered equally in all directions

Slide inspired by Ed Angel Computer Graphics Book

Extreme zoom-in of part of a diffuse surface … light is
scattered in all directions

(this image shows 5 of the directions)

Diffuse Lighting

Lambertian Surface

Surface Normal

Diffuse Lighting

Lambertian Surface

Surface Normal

No light reflects off the (top) surface
(Light direction and surface normal are perpendicular)

Diffuse Lighting

Lambertian Surface

Surface Normal

When the light squarely hits the surface, then that’s
when the most light is reflected

Diffuse Lighting

Lambertian Surface

How much light should be reflected in this case?

A: cos(α)
And note that:

cos(0) = 1
cos(90) = 0

N

L α

Surface Normal

Diffuse Lighting

Lambertian Surface

Surface Normal

How much light makes it to viewer V1? Viewer V2?

A: cos(α) for both
Lambertian surfaces reflect light equally in all directions

N

L α

V1

V2

Diffuse Lighting

¨  Diffuse light
¤ Light distributed evenly in all directions, but amount of

light depends on orientation of triangles with respect to
light source.

¤ Different for each triangle

Surface lit with diffuse
lighting only

SLIDE REPEAT: Diffuse Lighting

Lambertian Surface

Surface Normal

How much light makes it to viewer V1? Viewer V2?

A: cos(α) for both
Lambertian surfaces reflect light equally in all directions

N

L α

V1

V2

What is a dot product?

¨  A.B = A.x*B.x + A.y*B.y
¨  Physical interpretation:

¤ A.B = cos(α)/(||A||*||B||)

(A.x,B.y) (B.x, B.y)

α

Diffuse Lighting

Lambertian Surface

Surface Normal

You can calculate the diffuse contribution by taking the
dot product of L and N,

Since L.N = cos(α)
(assuming L and N are normalized)

N

L α

V1

V2

What about cases where L.N < 0?

What about cases where L.N < 0?

L.N = -1
Non-sensical … takes away light?
Common solution:
Diffuse light = max(0, L.N)

But wait…

If you have an open surface, then
there is a “back face”.
The back face has the opposite
normal.

But wait…

If you have an open surface, then
there is a “back face”.
The back face has the opposite
normal.

How can we deal with this case?

But wait…

If you have an open surface, then
there is a “back face”.
The back face has the opposite
normal.

How can we deal with this case?

Idea #1: encode all triangles
twice, with different normals
Idea #2: modify diffuse lighting
model

But wait…

If you have an open surface, then
there is a “back face”.
The back face has the opposite
normal.

How can we deal with this case?

Idea #1: encode all triangles
twice, with different normals
Idea #2: modify diffuse lighting
model

Diffuse light = abs(L.N)
 This is called two-sided lighting

Two-sided lighting

¨  We will use two-sided lighting for project 1F, since
we have open surfaces

¨  Note that Ed Angel book assumes closed surfaces
and recommends one-sided lighting

One-sided lighting with open
surfaces is disappointing

The most valuable thing I
learned in Freshman Physics

¨  “angle in = angle out”

α

The most valuable thing I
learned in Freshman Physics

¨  “angle in = angle out”

α α

Specular Lighting

Smooth Surface

Highest
proportion of
light reflecting

Light reflects in all directions.
But the surface is smooth, not Lambertian, so amount of reflected light

varies.
So how much light??

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

Consider V located along reflection ray.
Answer: most possible

Call this “1”

V

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

Consider V located along perpendicular ray.
Answer: none of it

Call this “0”

V

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

A: proportional to cos(α)

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

A: proportional to cos(α)
(Shininess strength) * cos(α) ^ (shininess coefficient)

α

60 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

γ: The Shininess Coefficient

¨  Values of γ between 100 and 200 correspond to
metals

¨  Values between 5 and 10 give surface that look like
plastic

cosγ α

φ	

 90 -90

γ=1

γ=2

γ=5

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting

How much light gets to point V?

V

A: proportional to cos(α)
(Shininess strength) * cos(α) ^ (shininess coefficient)

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting
(R)

Great!
We know that cos(α) is V.R (provided V & R are normalized).

V

α

How much light reflects with
specular lighting?

Smooth Surface

Highest
proportion of
light reflecting
(R)

Great!
We know that cos(α) is V.R (provided V & R are normalized).

But what is R?
It is a formula: R = 2*(L.N)*N - L

V

α

Two-sided lighting

¨  For specular lighting, we will use one-sided lighting
for project 1F
¤  It just looks better

¤ Diffuse: abs(L.N)
¤ Specular: max(0, S*(R.V)γ)

Outline

¨  Math Basics
¨  Lighting Basics
¨  The Phong Model

Phong Model

¨  Combine three lighting effects: ambient, diffuse, specular

Phong Model

¨  Simple version: 1 light, with “full intensity” (i.e., don’t
add an intensity term)

¨  Phong model
¤ Shading_Amount = Ka + Kd*Diffuse + Ks*Specular

¨  Signature:
¤ double CalculatePhongShading(LightingParameters &,

double *viewDirection, double *normal)
¤ Will have to calculate viewDirection for each pixel!

Specular Term of Phong Model

¨  Specular part of Phong: Ks*Specular

¨  and Specular is: (Shininess strength) * cos(α) ^
(shininess coefficient)

¨  Putting it all together would be:
¤ Ks * (Shininess strength) * cos(α) ^ (shininess coefficient)

¨  But now we have two multipliers, Ks and (Shininess
Strength). Not needed.

¨  So: just use one. Drop Shininess Strength and only
use Ks
¨  Ks * cos(α) ^ (shininess coefficient)

Lighting parameters

Project #1F (8%), Due Feb 19th

¨  Goal: add shading, movie
¨  Extend your project1E code
¨  Important:
¨  add #define NORMALS

Changes to data structures

class Triangle
{
 public:
 double X[3], Y[3], Z[3];
 double colors[3][3];
 double normals[3][3];
};
à reader1e.cxx will not compile (with #define
NORMALS) until you make these changes
à reader1e.cxx will initialize normals at each vertex

More comments (1/3)

¨  This project in a nutshell:
¤ Add method called “CalculateShading”.

n My version of CalculateShading is about ten lines of code.

¤ Call CalculateShading for each vertex
¤ This is a new field, which you will LERP.
¤ Modify RGB calculation to use shading.

More comments (2/3)

¨  New: more data to help debug
¤  I will make the shading value for each pixel available.
¤  I will also make it available for ambient, diffuse,

specular.

¨  Don’t forget to do two-sided lighting (for diffuse,
not specular)

More comments (3/3)

¨  I haven’t said anything about movie encoders

Where Hank spent his
debugging time…

Convex surface

Lighting
direction

Concave surface

Lighting
direction

Where Hank spent his
debugging time…

Project #1F (8%), Due Feb 19th

¨  Goal: add shading, movie

