CXIS'441/541: Intro to Computer Graphics
_Lecture 6: Transforms, pt 2

January “29,” 2019 Hank Childs, University of Oregon

Office Hours: Weeks 4-10

* Monday: 1-2 (Roscoe)
 Tuesday: 1-2 (Roscoe)
 Wednesday: 1-3 (Roscoe)
 Thursday: 1130-1230 (Hank)
* Friday: 1130-1230 (Hank)

e All normal this week!!! ©

O

UNIVERSITY OF OREGON

Timeline
e J1C-dua\WedsJtan 23rd
e 1D: assigned-teday (LAST TUESDAY), due Thurs Jan 31%t

e 1E: assigned Thurs Jan 31%t, due Weds Feb 6t"
— > will be extra support with this. Tough project.

« 1F: assigned Feb 7%, due Feb 19t
— =2 not as tough as 1E

e 2A: will be assigned during week of Feb 11th

sun_[Mon [Tues Jweds Thurs [Fi s

Jan 20 Jan21 Jan 22 Jan 23 Lec 5 Jan 25 Jan 26
Lec4 1Cdue 1D assigned
Jan 27 Jan 28 Jan 29 Jan 30 Lec 6 Feb1l Feb?2

(YouTube) 1D due

v/'—- “-,ﬁ : n:r; 2] ;)“
Feb 5
Lec 7

1E assigned

Feb6 Feb7 Feb8 Feb9
1E due

1F assigned

EEEEEEEEE

World space:

Our godl

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <=x,y,z <= +1

Triangle coordinates relative to camera frame

A
/ /
Screen space: Device space:
All viewable objects within All viewable objects within
-1 <= X,y <= +1 O<=x<=width, 0 <=y<=height

Our godl

1
%k
17
___% _____
-
——/
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
y4 1
y
4 4
X
Image space: Screen space: Device space:
All viewable objects within All viewable objects within All viewable objects within

-1 <= x,y,z <= +1 -1 <=x,y<=+1 0<=x<=width, 0 <=y<=height

World Space O

0 World Space is the space defined by the user’s
coordinate system.

0 This space contains the portion of the scene that is
transformed into camera space by the camera

transform.

0 Many of the spaces have “bounds,” meaning limits
on where the space is valid

0 With world space 2 options:
O No bounds

O User specifies the bound

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Our godl

g ’

v
Cameralspace:

| Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame
/
v v
Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, 0 <=y<=height

Our godl

World space:

Triangles in native Cartesian coordinates
Camera located anywhere

4

X

L

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

v

Screen space: Device space:

Image space:
All viewable objects within

0<=x<=width, 0 <=y<=height

All viewable objects within
-] <= X, Y <= +]

All viewable objects within
-1 <= x,y,z <= +1

How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum
(plural: frusta or frustums) is the
portion of a solid (normally a cone
or pyramid) that lies between two
parallel planes cutting it.

class Camera

{
public:
double near, far;
double angle;
double position[3];
double focus[3];
double upl[3];

1

What is the up axis? O

0 Up axis is the direction from the base of your nose
to your forehead

What is the up axis? O

0 Up axis is the direction from the base of your nose
to your foreheag

What is the up axis®?

0 Up axis is the direction from the base of your nose
to your foreheag

0 (if you lie down while watching TV, the screen is
sideways)

Image Space Diagram

World space:

Our godl

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

=" Triangle coordinates relative to camera frame
/ View Transform
S

v v

Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, O

PN I

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

=

Our godl

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

v v

Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, O

PN I

Image Space O

0 Image Space is the three-dimensional coordinate
system that contains screen space.

O It is the space where the view transformation directs
its output.

0 The bounds of Image Space are 3-dimensional cube.
{(x,y,z) : —1<x<1,—1<y<1, —1<z<1}

(or —1<z<0)

Image Space Diagram

Our godl

Ol«*
——n ___:#{ _____
21
4 ;’ :
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame

y4
Y
—} —1
X

Image space: Screen space: Device space:

All viewable obijects within All viewable objects within All viewable objects within

-1 <= x,y,z <= +1 -1 <=x,y <= +1 0<=x<=width, 0 <=y<=height

177 L

Screen Space O

O Screen Space is the intersection of the xy-plane with
Image Space.

0 Points in image space are mapped into screen
space by projecting via a parallel projection, onto
the planez = 0.

0 Example:

O a point (0, 0, z) in image space will project to the
center of the display screen

Screen Space Diagram O

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Our godl

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

Screen space:

All viewable objects within
-] <= X, Y <= +]

/ e

r—/

Device space:

All viewable objects within
0<=x<=width, 0 <=y<=height

Device Space O

0 Device Space is the lowest level coordinate

system and is the closest to the hardware
coordinate systems of the device itself.

0 Device space is usually defined to be the n X m
array of pixels that represent the area of the
screen.

0 A coordinate system is imposed on this space by
labeling the lower-left-hand corner of the array

as (0,0), with each pixel having unit length and
width.

Device Space Example O

—— pixel (15, 15)

pixel (3,7) —1——

Hlv

pixel (0, 0)

Device Space With Depth
Information

0 Extends Device Space to three dimensions by
adding z-coordinate of image space.

0 Coordinates are (x, y, z) with
O<x<n
O<y<m
z arbitrary (but typically -1 <z < +1 or
-1<z<0)

Start Part 2 of YouTube Video O

0 In Part 2:

O Device Space Transform

O More Math Primer

How do we transform?

0 For a camera C, class Camera
{

O Calculate Camera Frame Dublic:

O From Camera Frame, double hear, far;
double angle;

cdlculate Camera Transform double position[3]:

O Calculate View Transform {oUDLe focusL31;
double upl31]1;

O Calculate Device Transform 15

O Compose 3 Matrices into 1

Matrix (M)

0 For each triangle T, apply
M to each vertex of T, then
apply rasterization/

zbuffer

Easiest Transform

-8 Ot
ot
4 ,/ :
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
Z A
y T ——
/ v
Image space: Screen space: Device space:
All viewable obijects within All viewable objects within All viewable objects within

-1 <= x,y,z <= +1 -1 <=x,y <= +1 0<=x<=width, 0 <=y<=height

Image Space to Device Space O

o (x,y,z) 2 (x,Y,z), where
Ox =n*x+1)/2 =nx/2 +n/2
Oy =m*y+1)/2 =my/2 + m/2

Oz =z=2z

O (for an n x m image)

O Matrix:
(x y z 1) (n/2 o) O O
x (0 m/2 O 0
(O 0 1 0)
(h/2 m/2 0 1)

More Math Prep O

Note: Ken Joy’s graphics
notes are fantastic
http: //
www.idav.ucdavis.edu/
education/GraphicsNotes /
homepage.html

What is the norm of a vector? O

0 The norm of a vector is its length
O Denoted with | | - ||

0 For a vector A = (A.x, A.y),
| [A]]| = sgri(A.x*A.x+A.y*A.y)

0 Physical interpretation:
A

AL

0 For 3D, | |A] | = sgrt(A.x*A.x+A.y*A.y+A.z*A.z)

What does it means for a O
vector to be normalized?

0 The vector A is normalized if | |A|| = 1.

O This is also called a unit vector.

0 To obtain a normalized vector, take A/| |A] |

O Many of the operations we will discuss today will
only work correctly with normalized vectors.

0 Example: A=(3,4,0). Then:
o |[[A[] =5
oA/||A|| =(0.6, 0.8, 0)

What is a dot product? O

0 A'B = A.x*B.x + A.y*B.y
O (or A.x*B.x + A.y*B.y + A.z*B.z)

0 Physical interpretation:
OAB = cos(a)*([[Al[*][B]])

A

B = (B.x, B.y) A = (AxAy)

What is the cross product? O

0 AxB = (A.y*B.z - A.z*B.y,
B.x*A.z - A.x*B.z,
A.x*B.y - A.y*B.x)

0 What is the physical interpretation of a cross
product?
O Finds a vector perpendicular to both A and B.

Homogeneous Coordinates

0 Defined: a system of coordinates used in projective
geometry, as Cartesian coordinates are used in
Euclidean geometry

0 Primary uses:

O 4 X 4 matrices to represent general 3-dimensional
transformations

O it allows a simplified representation of mathematical
functions — the rational form — in which rational

polynomial functions can be simply represented
0 We only care about the first

O | don’t really even know what the second use means

Interpretation of O
Homogeneous Coordinates

0 4D points: (x, Y, z, w)

0 Qur typical frame: (x,y, z, 1)

Interpretation of O
Homogeneous Coordinates

0 4D points: (x, Y, z, w)

0 Qur typical frame: (x,y, z, 1)

—

w A

So how to treat
points not along
the w=1 line?

(:'U7 y”z? 1)

Our typical frame in the context of 4D points

Projecting back to w=1 line O

0 Let P = (x, y, z, w) be a 4D point with w I=1

0 Goal: find P’ = (x’, y’, Z’, 1) such P projects to P’

O (We have to define what it means to project)

0 ldea for projection:
O Draw line from P to origin.

o If Q is along that line (and Q.w == 1), then Q is @
projection of P

Projecting back to w==1 line O

W

(z,y,2,w)

(z',y",2',1)

0 ldea for projection:
O Draw line from P to origin.

O If Q is along that line (and Q.w == 1), then Q is @
projection of P

So what is Q¢

(VA
0 Similar triangles argument: (2,1, 2, w)
ox =x/w
oy =vy/w
oz =z/w
-- w=1
1)
>

Our godl

. G A
4 ;,, :
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame

0 Need to construct a Camera Frame

0 Need to construct a matrix to transform points from
Cartesian Frame to Camera Frame

O Transform triangle by transforming its three vertices

Basis pt 2

(more linear dlgebrc-z this ’rime!

0 Camera frame must be a basis:

O Spans space ... can get any point through a linear
combination of basis vectors

O Every member must be linearly independent
m 2> we didn’t talk about this much on Thursday.

m linearly independent means that no basis vector can be
represented via others

B Repeat slide (coming up) shows linearly *dependent™ vectors

(REPEAT) Why unique? O

0 Let (a, b, ¢) mean:

O The number of steps ‘a’ in direction D1
O The number of steps ‘b’ in direction D2

O The number of steps ‘c’ in direction D3

0 Then there is more than one way to get to /
some point X in S, i.e., D1

o(al, bl,cl)=X and — D3

O(a2, b2, c2)=X
D2

Camera frame construction

0 Must choose (u,v,w,0)

___:;le_’-_-. 7 class Camera
e {
public:
double near, far;
Camera space:

) e double angle;

<.:|merc ocoe. a orlgm,. ooking down - double position[3];

Triangle coordinates relative to camera frame
double focus[3];
double up[31];

1
0 O = camera position

O w = O-focus

O Not “focus-O”, since we want to look down -Z

Camera frame construction

0 Must choose (u,v,w,0)

sesspffece: .7 class Camera
e {
public:
double near, far;
Camera space:
) e double angle;
<.:1mercl ocoe. a 0”9'”:. ooking down - double position[3];
Triangle coordinates relative to camera frame
double focus[3];
double up[3];

1
0 O = camera position

O w = O-focus
Ov =up

up x (O-focus)

0 U

But wait ... what if dot(v2,v3) |I= 02 O

0 We can get around this with two cross products:
Ou = Up x (O-focus)
Ov = (O-focus) x u

Camera frame summarized

0 O = camera position

0 u = Up x (O-focus)

Oy = (O-fOCUS) X U class Camera

{
—) public:
0w O focus double hear, far;
double angle;
double position[3];
] double focus[3];
O Important note: double up[3];

u, v, and w need to be 1;
normalized!

Our godl

. G A
4 ;,, :
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame

0 Need to construct a Camera Frame € v/

0 Need to construct a matrix to transform points from
Cartesian Frame to Camera Frame

O Transform triangle by transforming its three vertices

This Will Come Up Later O

0 Consider the meaning of Cartesian coordinates (x,y,z):
[x v z 1][<1,0,0>]
<0,1,0>] = (x,y,2)
<0,0,1>]
(0,0,0)]

The Two Frames of the Camera O

Transform

0 Qur two frames:

0 Cartesian: 0 Camera:
o <1,0,0> 0 u = up x (O-focus)
o <0,1,0> O v = (O-focus) x u
0 <0,0,1> O w = (O-focus)

1 (0,0,0) 1 O

The Two Frames of the Camera O

Transform

0 Qur two frames:

0 Cartesian: 0 Camera:
o <1,0,0> 0 u = up x (O-focus)
o <0,1,0> O v = (O-focus) x u
0 <0,0,1> O w = (O-focus)
o (0,0,0) o O

The “Camera Frame” is a Frame, so we can express any
Cartesian vector as a combination of u, v, w.

Converting From Cartesian O

Frame To gomera Frame

0 The Cartesian vector <1,0,0> can be represented as
some combination of the Camera Frame’s basis functions
U, v, W:
0<1,00>=el,]1 *u+tel2*v+el,3*w

0 So can the Cartesian vector <0,1,0>
0<0,1,0>=e2,1 ¥*u+e2,2*v+e2,3*%w

0 So can the Cartesian vector <0,0,1>
0<0,0,1>=e3,1 *u+e3,2*v+e33*w

0 So can the vector: Cartesian Frame origin — Camera Frame origin
0(0,00)-0O=e4,1 *u+ed42*v+e4,3*w—>
0(0,00)=e4,1 *ute4,2*v+ed4,3*w+0O

Putting Our Equations Into O
Md’rrix Form
0<1,00>=el,l1 *ut+tel2*v+el,3*w
0<0,1,0>=e2,1 *ut+te2,2*v+e2,3*w
0<0,0,1>=e3,1 *u+e3,2*v+e33*w
0 (0,0,0) =e4,1 *ut+ed4,2*v+e4,3*w+0O
O 2>

0 [<1,0,0> [e1,1 el,2 el1,3 O0]][v]
o [<0,1,0> [e2,1 e2,2 e2,3 O0]][v]
0 [<0,0,1>] = [e3,1 e3,2 3,3 O0][w]

o (0,0,0) [ed4,1 ed,2 e4,3 1][O]

But:
<1,0,0>]

<0,1,0>]

(0,0,0)

<0,0,1>]

Here Comes The Trick... O

0 Consider the meaning of Cartesian coordinates (x,y,z):
[x y z 1][<1,0,0>]
<0,1,0>
<0,0,1>

(0,0,0)]

el,]
[e2,]
= [e3,]
[e4,]

= (x,y,2)

el, 3 O
e2,3 O
e3,3 0]
ed4,3 1]

[u]
[v]

el,2
e2,2
e3,2
e4,2

W]

[
[O]

Here Comes The Trick... O

But:
[<1,0,0>] [e1,1 el,2 1,3 O0]|[uv]
[x y z 1][40,1,0>] [xyzl1][e2,1 e2,2 e2,3 O0]|[v]
[£0,0,1>] F [e3,1 e3,2 3,3 0][w]
[(0,0,0)] [ed4,1 ed,2 e4,3 1][O]

Coordinates of (x,y,z) with respect
to Cartesian frame.

Coordinates of (x,y,z) with respect
to Camera frame.
So this matrix is the camera transform!!

And Cramer’s Rule Can Solve O

This, For Example...

(< 1,0,0 > xv)-w

e -t — ?
Wl (€ X 0) - W
(ix < 1,0,0 >) -w
€12 = - — , and
’ (4 X 0) - w
(i x v)-< 1,0,0 >
61,3— — —
(U X U) - W

(u==vl1,v==v2, w==v3 from previous slide)

Solving the Camera Transform O

el,1 el,2 el,3 O]

e2,1 e2,2 e23 0] [uy vy wy O
O]
1]

[lux v.x w.x O

e3,1 e3,2 e3,3
e4,1 e4,2 e4,3
Where t = (0,0,0)-O

How do we know?: Cramer’s Rule + simplifications

= [uz v.z w.z O]

[ut vt wit 1]

Want to derives:

http:/ /www.idav.ucdavis.edu/education/
GraphicsNotes/Camera-Transform /Camera-
Transform.html

World space:

Our godl

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

=" Triangle coordinates relative to camera frame
/ View Transform
S

v v
Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, 0 <=y<=height

View Transformation

w = +1] w = -1

The viewing transformation is not a combination of simple translations,
rotations, scales or shears: it is more complex.

Derivation of Viewing O
Transformation
0 | personally don’t think it is a good use of class time
to derive this matrix.

0 Well derived at:
O

The View Transformation O

O Input parameters: (&, n, f)

0 Transforms view frustum to image space cube

O View frustum: bounded by viewing pyramid and planes
z=-n and z=-f

O Image space cube: -1 <=uy,v,w <=1

cot(@/2) O 0 0]
0 cot(a /2) O 0]
0 0 (f+n)/(f-n) -1]
0 0 2fn/(f-n) 0]

O Cotangent = 1 /tangent

Let’'s do an example O

O Input parameters: (&, n, f) = (20, 5, 10)

f=10 -~
cot(a /2) O 0 O]
0 cotf(a /2) O 0]
0 0 (fF+n)/(f-n) -1]
0 0 2fn/(f-n) 0]

Let’'s do an example O

O Input parameters: (&, n, f) = (20, 5, 10)

f=10 ~
n=5
:ﬂ\ 0 1 0 O
! - 0O O 3 -1]
0 O 20 O

Let’'s do an example O

O Input parameters: (&, n, f) = (20, 5, 10)

f=10 ~
n=5
e 10 0 O
= 0 1 0 O
7 | :O O 3 -] :
Let’s multiply some points: O O 20 O]
(0,7,-6,1)

(0171'81 1)

Let’'s do an example O

O Input parameters: (&, n, f) = (20, 5, 10)

f=10 -~
n=5
L 100 0
:E\ 0 1 0 O
! - 0O O 3 -1]
0 O 20 O

Let’s multiply some points:
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) =(0,7,-4,8) = (0, 0.88, -0.5)

Let’'s do an example

O Input parameters: (&, n, f) = (20, 5, 10)

f=10 —
n=5
=70\ .
g 5
>\
f |

More points:

(0,7,-4,1) =(0,7,8,4) = (0, 1.75, 2)
(0,7,-5,1) =(0,7,5,5) = (0, 1.4, 1)
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)
(0,7,-10,1) =(0,7,-10,10) = (0O, 0.7, -1)
(0,7,-11,1)=(0,7,-13,11) = (O, .63, -1.18)

o O o —

0 O
0 O
3 -1
20 O]

View Transformation

w = +1] w = -1

The viewing transformation is not a combination of simple translations,
rotations, scales or shears: it is more complex.

(0,1.75, 2)
. (0,1.4,1)
View Transfomnation

(0,1.16, 0.33)

=y
>
<

I

(0,0.88,-0.5)
P —a 0 (0,0.7,-1)

0
/ : (0,0.63,-1.18)

f TN

aueyd ey

=
r 3
aueyd meou

More points: w = +1] w
(0,7,-4,1) =(0,7,8,4) = (0, 1.75, 2)
(0,7,-5,1) =(0,7,5,5) = (0, 1.4, 1)
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)
(0,7/,-10,1) =(0,7,-10,10) = (0O, 0.7, -1)
(0,7,-11,1)=(0,7,-13,11) = (O, .63, -1.18)

1
—

Note there is a non-linear
relationship in W (“Z”).

Putting It All Together O

How do we transform?

0 For a camera C, class Camera
{

O Calculate Camera Frame Dublic:

O From Camera Frame, double hear, far;
double angle;

cdlculate Camera Transform double position[3]:

O Calculate View Transform {oUDLe focusL31;
double upl31]1;

O Calculate Device Transform 15

O Compose 3 Matrices into 1

Matrix (M)

0 For each triangle T, apply
M to each vertex of T, then
apply rasterization/

zbuffer

Project 1E O

Project #1E (6%),
Due Weds Feb 6th

Goal: add arbitrary
camera positions

Extend your project1D
code

New: projle_geometry.vtk
available on web (2MB),
“readerle.cxx”.

New: Matrix.cxx,
Camera.cxx

No Cmake, project1E.cxx

Project #1E, expanded O

0 Matrix.cxx: complete
0 Methods:

class Matrix

{
public:
double Al4][4];
void TransformPoint(const double *ptln, double *ptOut);

static Matrix ComposeMatrices(const Matrix &, const Matrix &);
void Print(ostream &o);

}i

Project #1E, expanded O

0 Camera.cxx: you work on this

class Camera

{

public:
double near, far;
double angle;
double position[3];
double focus[3];
double up[3];
Matrix ViewTransform(void) {;};
Matrix CameraTransform(void) {;};
Matrix DeviceTransform(void) {;};

// Will probably need something for calculating Camera Frame as well

}i

Also: GetCamera(int frame, int nFrames)

Project #1E, deliverables O

0 Same as usual, but times 4

O 4 images, corresponding to
m GetCamera(0, 1000)
m GetCamera(250,1000)
m GetCamera(500,1000)
m GetCamera(750,1000)

0 If you want:

O Generate all thousand images, make a movie

® Then you should wait for 1F. Then we will have shading too.

Project #1E, game plan

vector<Triangle> t = GetTriangles();
AllocateScreen();
for(inti=0;i<4;i++)
{ intf=250%;
InitializeScreen();
Camera ¢ = GetCamera(f, 1000);
TransformTrianglesToDeviceSpace(); // involves setting up and applying matrices
//... if you modify vector<Triangle> t,
// remember to undo it later
RenderTriangles();
Savelmage();

Correct answers given for

Ge’rCc::merc:‘Oi] OOO!

Camera Frame: U = 0, 0.707107, -0.707107

Camera Frame: V = -0.816497, 0.408248, 0.408248
Camera Frame: W = 0.57735, 0.57735, 0.57735
Camera Frame: O = 40, 40, 40

Camera Transform

(0.0000000 -0.8164966 0.5773503 0.0000000)
(0.7071068 0.4082483 0.5773503 0.0000000)
(-0.7071068 0.4082483 0.5773503 0.0000000)
(0.0000000 0.0000000 -69.2820323 1.0000000)
View Transform

(3.7320508 0.0000000 0.0000000 0.0000000)
(0.0000000 3.7320508 0.0000000 0.0000000)
(0.0000000 0.0000000 1.0512821 -1.0000000)
(0.0000000 0.0000000 10.2564103 0.0000000)
Transformed 37.1132, 37.1132,37.1132, 1 t0 O, 0,1
Transformed -75.4701, -75.4701,-75.4701, 1 t0 O, O,-1

Project #1E pitfalls O

0 All vertex multiplications use 4D points. Make

sure you send in 4D points for input and output,
or you will get weird memory errors.
O Make sure you divide by w.

Project #1E, pitfalls O

0 People often get a matrix confused with its
transpose. Use the method Matrix::Print() to
make sure the matrix you are setting up is what
you think it should be. Also, remember the
points are left multiplied, not right multiplied.

0 Regarding multiple renderings:

O Don’t forget to initialize the screen between each
render

O If you modify the triangle in place to render, don’t
forget to switch it back at the end of the render

Project #1F (8%), Due Feb 19%th O

0 Goal: add shading, movie

