
Hank Childs, University of Oregon January “29,” 2019 

CIS 441/541: Intro to Computer Graphics 
Lecture 6: Transforms, pt 2 



Office	
  Hours:	
  Weeks	
  4-­‐10	
  

•  Monday:	
  1-­‐2	
  (Roscoe)	
  
•  Tuesday:	
  1-­‐2	
  (Roscoe)	
  
•  Wednesday:	
  1-­‐3	
  (Roscoe)	
  
•  Thursday:	
  1130-­‐1230	
  (Hank)	
  
•  Friday:	
  1130-­‐1230	
  (Hank)	
  

•  All	
  normal	
  this	
  week!!!	
  J	
  



Timeline	
  
•  1C:	
  due	
  Weds	
  Jan	
  23rd	
  
•  1D:	
  assigned	
  today	
  (LAST	
  TUESDAY),	
  due	
  Thurs	
  Jan	
  31st	
  
•  1E:	
  assigned	
  Thurs	
  Jan	
  31st,	
  due	
  Weds	
  Feb	
  6th	
  

–  à	
  will	
  be	
  extra	
  support	
  with	
  this.	
  	
  Tough	
  project.	
  
•  1F:	
  assigned	
  Feb	
  7th,	
  due	
  Feb	
  19th	
  

–  à	
  not	
  as	
  tough	
  as	
  1E	
  
•  2A:	
  will	
  be	
  assigned	
  during	
  week	
  of	
  Feb	
  11th	
  

Sun	
   Mon	
   Tues	
   Weds	
   Thurs	
   Fri	
   Sat	
  

Jan	
  20	
   Jan21	
   Jan	
  22	
  
Lec4	
  

Jan	
  23	
  
1C	
  due	
  

Lec	
  5	
  
1D	
  assigned	
  

Jan	
  25	
   Jan	
  26	
  

Jan	
  27	
   Jan	
  28	
   Jan	
  29	
  
(YouTube)	
  

Jan	
  30	
   Lec	
  6	
  	
  
1D	
  due	
  
1E	
  assigned	
  

Feb	
  1	
   Feb	
  2	
  

Feb	
  3	
   Feb	
  4	
   Feb	
  5	
  
Lec	
  7	
  

Feb	
  6	
  
1E	
  due	
  

Feb	
  7	
  
1F	
  assigned	
  

Feb	
  8	
   Feb	
  9	
  

Likely:	
  pre-­‐SuperBowl	
  OH	
  



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



World Space 

¨  World Space is the space defined by the user’s 
coordinate system. 

¨  This space contains the portion of the scene that is 
transformed into camera space by the camera 
transform.  

¨  Many of the spaces have “bounds,” meaning limits 
on where the space is valid 

¨  With world space 2 options: 
¤ No bounds 
¤ User specifies the bound 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 

Camera Transform 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



How do we specify a camera? 

The “viewing pyramid” or 
“view frustum”. 
 
Frustum: In geometry, a frustum 
(plural: frusta or frustums) is the 
portion of a solid (normally a cone 
or pyramid) that lies between two 
parallel planes cutting it. 



What is the up axis? 

¨  Up axis is the direction from the base of your nose 
to your forehead 

Up 



What is the up axis? 

¨  Up axis is the direction from the base of your nose 
to your forehead 

+ = 



What is the up axis? 

¨  Up axis is the direction from the base of your nose 
to your forehead 

 
¨  (if you lie down while watching TV, the screen is 

sideways) 

+ = 



Image Space Diagram 

Up 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 

View Transform 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



Image Space 

¨  Image Space is the three-dimensional coordinate 
system that contains screen space.  

¨  It is the space where the view transformation directs 
its output. 

¨  The bounds of Image Space are 3-dimensional cube.  
{(x,y,z) : −1≤x≤1,−1≤y≤1, −1≤z≤1}  
 
(or −1≤z≤0) 



Image Space Diagram 

Up 

X=1 

X = -1 

Y=1 

Y = -1 

Z=1 

Z = -1 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



Screen Space 

¨  Screen Space is the intersection of the xy-plane with 
Image Space.  

¨  Points in image space are mapped into screen 
space by projecting via a parallel projection, onto 
the plane z = 0 . 

¨  Example: 
¤ a point (0, 0, z) in image space will project to the 

center of the display screen  



Screen Space Diagram 

X -1    +1 

Y 

-1 

   +1 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



Device Space 

¨  Device Space is the lowest level coordinate 
system and is the closest to the hardware 
coordinate systems of the device itself. 

¨  Device space is usually defined to be the n × m 
array of pixels that represent the area of the 
screen.  

¨  A coordinate system is imposed on this space by 
labeling the lower-left-hand corner of the array 
as (0,0), with each pixel having unit length and 
width.  



Device Space Example 



Device Space With Depth 
Information 

¨  Extends Device Space to three dimensions by 
adding z-coordinate of image space. 

¨  Coordinates are (x, y, z) with  
  0 ≤ x ≤ n 
  0 ≤ y ≤ m  
  z arbitrary (but typically -1 ≤ z ≤ +1 or 
       -1 ≤ z ≤ 0 )  

 



Start Part 2 of YouTube Video 

¨  In Part 2: 
¤ Device Space Transform 
¤ More Math Primer 



How do we transform? 

¨  For a camera C, 
¤ Calculate Camera Frame 
¤  From Camera Frame, 

calculate Camera Transform 
¤ Calculate View Transform 
¤ Calculate Device Transform 
¤ Compose 3 Matrices into 1 

Matrix (M) 

¨  For each triangle T, apply 
M to each vertex of T, then 
apply rasterization/
zbuffer 

A 

B C 



Easiest Transform 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



Image Space to Device Space 

¨  (x, y, z) à ( x’, y’, z’), where 
¤ x’ = n*(x+1)/2 = nx/2 + n/2 
¤ y’ = m*(y+1)/2 = my/2 + m/2 
¤ z’ = z = z 
¤  (for an n x m image) 

¨  Matrix: 
(x    y    z    1)          (n/2      0       0     0) 
                          x   (0      m/2       0     0)  
                               (0        0      1      0) 
                               (n/2  m/2   0     1) 



More Math Prep 

Note: Ken Joy’s graphics 
notes are fantastic 

http://
www.idav.ucdavis.edu/

education/GraphicsNotes/
homepage.html 



What is the norm of a vector? 

¨  The norm of a vector is its length 
¤ Denoted with || . || 

¨  For a vector A = (A.x, A.y),  
  ||A|| = sqrt(A.x*A.x+A.y*A.y) 

¨  Physical interpretation: 

¨  For 3D, ||A|| = sqrt(A.x*A.x+A.y*A.y+A.z*A.z) 
 
 

(A.x,A.y) 
||A|| 

y 

x 



What does it means for a 
vector to be normalized? 

¨  The vector A is normalized if ||A|| = 1. 
¤ This is also called a unit vector. 

¨  To obtain a normalized vector, take A/||A|| 

¨  Many of the operations we will discuss today will 
only work correctly with normalized vectors. 

¨  Example: A=(3,4,0).  Then: 
¤   ||A|| = 5 
¤ A/||A|| = (0.6, 0.8, 0) 



What is a dot product? 

¨  A.B = A.x*B.x + A.y*B.y 
¤  (or A.x*B.x + A.y*B.y + A.z*B.z) 

¨  Physical interpretation: 
¤ A.B = cos(α)*(||A||*||B||) 

A = (A.x,A.y) B = (B.x, B.y) 

α 



What is the cross product? 

¨  AxB = (A.y*B.z - A.z*B.y,  
              B.x*A.z - A.x*B.z,  
              A.x*B.y - A.y*B.x) 

¨  What is the physical interpretation of a cross 
product? 
¤ Finds a vector perpendicular to both A and B.  

 
 



Homogeneous Coordinates 

¨  Defined: a system of coordinates used in projective 
geometry, as Cartesian coordinates are used in 
Euclidean geometry 

¨  Primary uses: 
¤ 4 × 4 matrices to represent general 3-dimensional 

transformations 
¤  it allows a simplified representation of mathematical 

functions – the rational form – in which rational 
polynomial functions can be simply represented 

¨  We only care about the first 
¤  I don’t really even know what the second use means 



Interpretation of 
Homogeneous Coordinates 

¨  4D points: (x, y, z, w) 
¨  Our typical frame: (x, y, z, 1) 



¨  4D points: (x, y, z, w) 
¨  Our typical frame: (x, y, z, 1) 

Our typical frame in the context of 4D points 

So how to treat 
points not along 
the w=1 line? 

Interpretation of 
Homogeneous Coordinates 



Projecting back to w=1 line 

¨  Let P = (x, y, z, w) be a 4D point with w != 1 
¨  Goal: find P’ = (x’, y’, z’, 1) such P projects to P’ 

¤  (We have to define what it means to project) 

¨  Idea for projection: 
¤ Draw line from P to origin. 
¤  If Q is along that line (and Q.w == 1), then Q is a 

projection of P 



Projecting back to w==1 line 

¨  Idea for projection: 
¤ Draw line from P to origin. 
¤  If Q is along that line (and Q.w == 1), then Q is a 

projection of P 



So what is Q? 

¨  Similar triangles argument: 
¤ x’ = x/w 
¤ y’ = y/w 
¤ z’ = z/w 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O -Z 

¨  Need to construct a Camera Frame 
¨  Need to construct a matrix to transform points from 

Cartesian Frame to Camera Frame 
¤ Transform triangle by transforming its three vertices 



Basis pt 2  
(more linear algebra-y this time) 

¨  Camera frame must be a basis: 
¤ Spans space … can get any point through a linear 

combination of basis vectors 
¤ Every member must be linearly independent 

n à we didn’t talk about this much on Thursday. 
n  linearly independent means that no basis vector can be 

represented via others 
n Repeat slide (coming up) shows linearly *dependent* vectors 



(REPEAT) Why unique? 

D1 

D2 

D3 

¨  Let (a, b, c) mean: 
¤ The number of steps ‘a’ in direction D1 
¤ The number of steps ‘b’ in direction D2 
¤ The number of steps ‘c’ in direction D3 

¨  Then there is more than one way to get to 
some point X in S, i.e., 
¤  (a1, b1, c1) = X    and 
¤  (a2, b2, c2) = X 



Camera frame construction 

¨  Must choose (u,v,w,O) 

¨  O = camera position 
¨  w = O-focus 

¤ Not “focus-O”, since we want to look down -Z 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 
-Z 



Camera frame construction 

¨  Must choose (u,v,w,O) 

¨  O = camera position 
¨  w = O-focus 
¨  v = up  
¨  u = up x (O-focus) 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 
-Z 



But wait … what if dot(v2,v3) != 0? 

¨  We can get around this with two cross products: 
¤ u = Up x (O-focus) 
¤ v = (O-focus) x u 

O-focus 

Up 



Camera frame summarized 

¨  O = camera position 
¨  u = Up x (O-focus) 
¨  v = (O-focus) x u 
¨  w = O-focus 

¨  Important note:          
u, v, and w need to be 
normalized! 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O -Z 

¨  Need to construct a Camera Frame ß ✔ 
¨  Need to construct a matrix to transform points from 

Cartesian Frame to Camera Frame 
¤ Transform triangle by transforming its three vertices 



This Will Come Up Later 

¨  Consider the meaning of Cartesian coordinates (x,y,z): 
[x  y  z 1][<1,0,0>] 
              [<0,1,0>]   = (x,y,z) 
              [<0,0,1>] 
              [(0,0,0)] 
 



The Two Frames of the Camera 
Transform 

¨  Our two frames: 

¨  Cartesian: 
¨  <1,0,0> 
¨  <0,1,0> 
¨  <0,0,1> 
¨  (0,0,0) 

¨  Camera: 
¨  u = up x (O-focus) 
¨  v = (O-focus) x u 
¨  w = (O-focus) 
¨  O 



The Two Frames of the Camera 
Transform 

¨  Our two frames: 

¨  Cartesian: 
¨  <1,0,0> 
¨  <0,1,0> 
¨  <0,0,1> 
¨  (0,0,0) 

¨  Camera: 
¨  u = up x (O-focus) 
¨  v = (O-focus) x u 
¨  w = (O-focus) 
¨  O 

The “Camera Frame” is a Frame, so we can express any 
Cartesian vector as a combination of u, v, w. 



Converting From Cartesian 
Frame To Camera Frame 

¨  The Cartesian vector <1,0,0> can be represented as 
some combination of the Camera Frame’s basis functions 
u, v, w: 
¤ <1,0,0> = e1,1 * u + e1,2 * v + e1,3 * w 

¨  So can the Cartesian vector <0,1,0> 
¤ <0,1,0> = e2,1 * u + e2,2 * v + e2,3 * w 

¨  So can the Cartesian vector <0,0,1> 
¤ <0,0,1> = e3,1 * u + e3,2 * v + e3,3 * w 

¨  So can the vector: Cartesian Frame origin – Camera Frame origin 

¤  (0,0,0) - O = e4,1 * u + e4,2 * v + e4,3 * w à 
¤  (0,0,0) = e4,1 * u + e4,2 * v + e4,3 * w + O 



Putting Our Equations Into 
Matrix Form 

¨  <1,0,0> = e1,1 * u + e1,2 * v + e1,3 * w 
¨  <0,1,0> = e2,1 * u + e2,2 * v + e2,3 * w 
¨  <0,0,1> = e3,1 * u + e3,2 * v + e3,3 * w 
¨  (0,0,0) = e4,1 * u + e4,2 * v + e4,3 * w + O 
¨  à 
¨  [<1,0,0>]        [e1,1    e1,2    e1,3   0] [u] 
¨  [<0,1,0>]        [e2,1    e2,2    e2,3   0] [v] 
¨  [<0,0,1>]    =  [e3,1    e3,2    e3,3   0] [w] 
¨  (0,0,0)             [e4,1    e4,2    e4,3   1] [O] 



Here Comes The Trick… 

¨  Consider the meaning of Cartesian coordinates (x,y,z): 
[x  y  z 1][<1,0,0>] 
              [<0,1,0>]   = (x,y,z) 
              [<0,0,1>] 
              [(0,0,0)] 
But: 
[<1,0,0>]        [e1,1    e1,2    e1,3   0] [u] 
[<0,1,0>]        [e2,1    e2,2    e2,3   0] [v] 
[<0,0,1>]    =  [e3,1    e3,2    e3,3   0] [w] 
(0,0,0)             [e4,1    e4,2    e4,3   1] [O] 



Here Comes The Trick… 

But: 
             [<1,0,0>]                     [e1,1    e1,2    e1,3   0] [u] 

[x y z 1][<0,1,0>]        [x y z 1] [e2,1    e2,2    e2,3   0] [v] 

             [<0,0,1>]    =               [e3,1    e3,2    e3,3   0] [w] 

             [(0,0,0)]                        [e4,1    e4,2    e4,3   1] [O] 

Coordinates of (x,y,z) with respect 
to Cartesian frame. 

Coordinates of (x,y,z) with respect 
to Camera frame. 
So this matrix is the camera transform!! 



And Cramer’s Rule Can Solve 
This, For Example… 

(u == v1, v == v2, w == v3 from previous slide) 



Solving the Camera Transform 

[e1,1    e1,2    e1,3   0]     [u.x  v.x  w.x  0] 
[e2,1    e2,2    e2,3   0]     [u.y  v.y  w.y  0] 
[e3,1    e3,2    e3,3   0] = [u.z   v.z  w.z  0] 
[e4,1    e4,2    e4,3   1]     [u.t   v.t   w.t   1] 
Where t = (0,0,0)-O 

How do we know?: Cramer’s Rule + simplifications 
Want to derive?: 

 http://www.idav.ucdavis.edu/education/
 GraphicsNotes/Camera-Transform/Camera-
 Transform.html 

 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 

View Transform 





View Transformation 

w = +1 w = -1 
v = -1 

v = +1 

The viewing transformation is not a combination of simple translations, 
rotations, scales or shears: it is more complex. 



Derivation of Viewing 
Transformation 

¨  I personally don’t think it is a good use of class time 
to derive this matrix. 

¨  Well derived at: 
¤ http://www.idav.ucdavis.edu/education/

GraphicsNotes/Viewing-Transformation/Viewing-
Transformation.html 



The View Transformation 

¨  Input parameters: (α, n, f) 
¨  Transforms view frustum to image space cube 

¤ View frustum: bounded by viewing pyramid and planes 
z=-n and z=-f 

¤  Image space cube: -1 <= u,v,w <= 1 

¤ Cotangent = 1/tangent 

[cot(α/2)    0             0         0] 
[0             cot(α/2)    0         0] 
[0                0      (f+n)/(f-n)  -1] 
[0                0        2fn/(f-n)   0] 
 



Let’s do an example 

α=90 

¨  Input parameters: (α, n, f) = (90, 5, 10) 

[cot(α/2)    0             0         0] 
[0             cot(α/2)    0         0] 
[0                0      (f+n)/(f-n)  -1] 
[0                0        2fn/(f-n)   0] 
 

n=5 

f=10 



Let’s do an example 

α=90 

¨  Input parameters: (α, n, f) = (90, 5, 10) 

[1    0    0     0] 
[0    1    0     0] 
[0    0    3    -1] 
[0    0   20   0] 
 

n=5 

f=10 



Let’s do an example 

α=90 

¨  Input parameters: (α, n, f) = (90, 5, 10) 

[1    0    0     0] 
[0    1    0     0] 
[0    0    3    -1] 
[0    0   20   0] 
 

n=5 

f=10 

Let’s multiply some points: 
(0,7,-6,1) 
(0,7,-8,1) 



Let’s do an example 

α=90 

¨  Input parameters: (α, n, f) = (90, 5, 10) 

[1    0    0     0] 
[0    1    0     0] 
[0    0    3    -1] 
[0    0   20   0] 
 

n=5 

f=10 

Let’s multiply some points: 
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33) 
(0,7,-8,1) = (0,7,-4,8) =  (0, 0.88, -0.5) 



Let’s do an example 

α=90 

¨  Input parameters: (α, n, f) = (90, 5, 10) 

[1    0    0     0] 
[0    1    0     0] 
[0    0    3    -1] 
[0    0   20   0] 
 

n=5 

f=10 

More points: 
(0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2) 
(0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1) 
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33) 
(0,7,-8,1) = (0,7,-4,8) =  (0, 0.88, -0.5) 
(0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1) 
(0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18) 



View Transformation 

w = +1 w = -1 
v = -1 

v = +1 

The viewing transformation is not a combination of simple translations, 
rotations, scales or shears: it is more complex. 



View Transformation 

w = +1 w = -1 

v = +1 

v = -1 

(0,1.75, 2) 

(0,0.88,-0.5) 

 (0,0.7,-1) 

 (0,0.63,-1.18) 

(0,1.4, 1) 

(0,1.16, 0.33) 

Note there is a non-linear 
relationship in W (“Z”). 

More points: 
(0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2) 
(0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1) 
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33) 
(0,7,-8,1) = (0,7,-4,8) =  (0, 0.88, -0.5) 
(0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1) 
(0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18) 



Putting It All Together 



How do we transform? 

¨  For a camera C, 
¤ Calculate Camera Frame 
¤  From Camera Frame, 

calculate Camera Transform 
¤ Calculate View Transform 
¤ Calculate Device Transform 
¤ Compose 3 Matrices into 1 

Matrix (M) 

¨  For each triangle T, apply 
M to each vertex of T, then 
apply rasterization/
zbuffer 



Project 1E 



Project #1E (6%),  
Due Weds Feb 6th 

¨  Goal: add arbitrary 
camera positions 

¨  Extend your project1D 
code 

¨  New: proj1e_geometry.vtk 
available on web (9MB), 
“reader1e.cxx”. 

¨  New: Matrix.cxx, 
Camera.cxx 

¨  No Cmake, project1E.cxx 



Project #1E, expanded 

¨  Matrix.cxx: complete 
¨  Methods: 

class Matrix 
{ 
  public: 
    double          A[4][4]; 
 
    void            TransformPoint(const double *ptIn, double *ptOut); 
    static Matrix   ComposeMatrices(const Matrix &, const Matrix &); 
    void            Print(ostream &o); 
}; 
 



Project #1E, expanded 

¨  Camera.cxx: you work on this 
class Camera 
{ 
  public: 
    double          near, far; 
    double          angle; 
    double          position[3]; 
    double          focus[3]; 
    double          up[3]; 
 
    Matrix          ViewTransform(void) {;}; 
    Matrix          CameraTransform(void) {;}; 
    Matrix          DeviceTransform(void) {;}; 
    // Will probably need something for calculating Camera Frame as well 
}; 
 
Also: GetCamera(int frame, int nFrames) 



Project #1E, deliverables 

¨  Same as usual, but times 4 
¤ 4 images, corresponding to 

n GetCamera(0, 1000) 
n GetCamera(250,1000) 
n GetCamera(500,1000) 
n GetCamera(750,1000) 

¨  If you want: 
¤ Generate all thousand images, make a movie 

n Then you should wait for 1F.  Then we will have shading too. 



Project #1E, game plan 

vector<Triangle> t = GetTriangles(); 
AllocateScreen(); 
for (int i = 0 ; i < 4 ; i++) 
{   int f = 250*i; 
    InitializeScreen(); 
    Camera c = GetCamera(f, 1000); 
    TransformTrianglesToDeviceSpace(); // involves setting up and applying matrices  
                                                                //… if you modify vector<Triangle> t, 
                                                                // remember to undo it later 
    RenderTriangles(); 
    SaveImage(); 
} 
 



Correct answers given for 
GetCamera(0, 1000) 

Camera Frame: U = 0, 0.707107, -0.707107 
Camera Frame: V = -0.816497, 0.408248, 0.408248 
Camera Frame: W = 0.57735, 0.57735, 0.57735 
Camera Frame: O = 40, 40, 40 
Camera Transform 
(0.0000000 -0.8164966 0.5773503 0.0000000) 
(0.7071068 0.4082483 0.5773503 0.0000000) 
(-0.7071068 0.4082483 0.5773503 0.0000000) 
(0.0000000 0.0000000 -69.2820323 1.0000000) 
View Transform 
(3.7320508 0.0000000 0.0000000 0.0000000) 
(0.0000000 3.7320508 0.0000000 0.0000000) 
(0.0000000 0.0000000 1.0512821 -1.0000000) 
(0.0000000 0.0000000 10.2564103 0.0000000) 
Transformed 37.1132, 37.1132,37.1132, 1 to 0, 0,1 
Transformed -75.4701, -75.4701,-75.4701, 1 to 0, 0,-1 
 



Project #1E pitfalls 

¨  All vertex multiplications use 4D points.  Make 
sure you send in 4D points for input and output, 
or you will get weird memory errors. 
¤ Make sure you divide by w. 



Project #1E, pitfalls 

¨  People often get a matrix confused with its 
transpose.  Use the method Matrix::Print() to 
make sure the matrix you are setting up is what 
you think it should be.  Also, remember the 
points are left multiplied, not right multiplied. 

¨  Regarding multiple renderings: 
¤ Don’t forget to initialize the screen between each 

render 
¤ If you modify the triangle in place to render, don’t 

forget to switch it back at the end of the render 



Project #1F (8%), Due Feb 19th 

¨  Goal: add shading, movie 


