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CIS 441/541: Intro to Computer Graphics 
Lecture 5: Transforms 



No	  Class	  Tuesday,	  1/29	  

•  Will	  definitely	  be	  a	  YouTube	  lecture	  to	  replace	  
that	  one.	  



Office	  Hours:	  Weeks	  4-‐10	  

•  Monday:	  1-‐2	  (Roscoe)	  
•  Tuesday:	  1-‐2	  (Roscoe)	  
•  Wednesday:	  1-‐3	  (Roscoe)	  
•  Thursday:	  1130-‐1230	  (Hank)	  
•  Friday:	  1130-‐1230	  (Hank)	  



Office	  Hours:	  Week	  3	  

•  Monday:	  415-‐530	  (Hank)	  
•  Tuesday:	  1-‐2,	  2-‐3	  (Roscoe)	  
•  Wednesday:	  1-‐3	  (Roscoe)	  
•  Thursday:	  1130-‐1230	  (Hank)	  
•  Thursday:	  1230-‐230	  (Roscoe)	  
•  Friday:	  1030-‐1130	  (Hank)	  



Timeline	  
•  1C:	  due	  Weds	  Jan	  23rd	  
•  1D:	  assigned	  today	  (LAST	  TUESDAY),	  due	  Thurs	  Jan	  31st	  
•  1E:	  assigned	  Thurs	  Jan	  31st,	  due	  Weds	  Feb	  6th	  

–  à	  will	  be	  extra	  support	  with	  this.	  	  Tough	  project.	  
•  1F:	  assigned	  Feb	  7th,	  due	  Feb	  19th	  

–  à	  not	  as	  tough	  as	  1E	  
•  2A:	  will	  be	  assigned	  during	  week	  of	  Feb	  11th	  

Sun	   Mon	   Tues	   Weds	   Thurs	   Fri	   Sat	  

Jan	  20	   Jan21	   Jan	  22	  
Lec4	  

Jan	  23	  
1C	  due	  

Lec	  5	  
1D	  assigned	  

Jan	  25	   Jan	  26	  

Jan	  27	   Jan	  28	   Jan	  29	  
(YouTube)	  

Jan	  30	   Lec	  6	  	  
1D	  due	  
1E	  assigned	  

Feb	  1	   Feb	  2	  

Feb	  3	   Feb	  4	   Feb	  5	  
Lec	  7	  

Feb	  6	   Lec	  8	  
1E	  due	  
1F	  assigned	  

Feb	  8	   Feb	  9	  

Likely:	  pre-‐SuperBowl	  OH	  



Great	  news!!	  

•  No	  project	  assignment	  today…	  



Project	  #1D	  (5%),	  	  
Due	  Thurs	  Jan	  31st	  

•  Goal:	  interpolacon	  of	  
color	  and	  zbuffer	  	  

•  Extend	  your	  project1C	  
code	  

•  File	  proj1d_geometry.vtk	  
available	  on	  web	  (1.4MB)	  

•  File	  “reader1d.cxx”	  has	  
code	  to	  read	  triangles	  
from	  file.	  

•  No	  Cmake,	  project1d.cxx	  



Color	  is	  now	  floacng-‐point	  

•  We	  will	  be	  interpolacng	  colors,	  so	  please	  use	  
floacng	  point	  (0	  à	  1)	  

•  Keep	  colors	  in	  floacng	  point	  uncl	  you	  assign	  
them	  to	  a	  pixel	  

•  Fracconal	  colors?	  à	  use	  ceil_441…	  
– ceil_441(value*255)	  



Changes	  to	  data	  structures	  

class	  Triangle	  
{	  
	  	  public:	  
	  	  	  	  	  	  double	  X[3],	  Y[3],	  Z[3];	  
	  	  	  	  	  	  double	  colors[3][3];	  
};	  
	  
à	  reader1d.cxx	  will	  not	  compile	  uncl	  you	  make	  
these	  changes	  



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



MATH! 



Space 

¨  A “space” is a set of points 
¨  Many types of spaces 



Here is a space ‘S’: 
the points in the blue shape 



We can pick an arbitrary point 
in S and call it our “origin.” 

O 



Consider two directions, D1 and D2.    

O 
D1 

D2 



Imagine you live at “O” and you want 
to get to “X.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X 



Imagine you live at “O” and you want 
to get to “X.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X 



Imagine you live at “O” and you want 
to get to “X.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X 



Imagine you live at “O” and you want 
to get to “X.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X 



Imagine you live at “O” and you want 
to get to “X2.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X2 



Imagine you live at “O” and you want 
to get to “X2.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X2 



Imagine you live at “O” and you want 
to get to “X3.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X3 



Imagine you live at “O” and you want 
to get to “X4.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X4 



Imagine you live at “O” and you want 
to get to “X4.”  Can you do it? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 

X4 



Conventions! 

¨  Let (a, b) mean: 
¤ The number of steps ‘a’ in direction D1 
¤ The number of steps ‘b’ in direction D2 



Where is (-3, 2)? 

O 
D1 

D2 

Rules (chess): 
-  Bishop can only move diagonally 
-  Rooks can only move in straight lines 

Rules (this space): 
-  You can only move in direction D1 or D2 



A basis 

¨  Paraphrasing Wikipedia:  
¨  Let B = { D1, D2 } (a set of two vectors, D1 & D2) 
¨  Let S be our Shape 
¨  B is a basis for S if every element of S can be 

written as a unique linear combination of elements 
of B. 

¨  The coefficients of this linear combination are 
referred to as components or coordinates on B of 
the vector.  

¨  The elements of a basis are called basis vectors. 



Why unique? 

D1 

D2 

D3 

¨  Let (a, b, c) mean: 
¤ The number of steps ‘a’ in direction D1 
¤ The number of steps ‘b’ in direction D2 
¤ The number of steps ‘c’ in direction D3 

¨  Then there is more than one way to get to 
some point X in S, i.e., 
¤  (a1, b1, c1) = X    and 
¤  (a2, b2, c2) = X 



What does it mean to form a 
basis? 

¨  For any vector v, there are unique coordinates (c1, 
…, cn) such that 
v = c1*v1 + c2*v2 + … + cn*vn 

¨  Consider some point P. 
¤ The basis has an origin O 
¤ There is a vector v such that O+v = P 
¤ We know we can construct v using a combination of vi’s 
¤ Therefore we can represent P in our frame using the 

coordinates (c1, c2, …, cn) 
 
 



A basis 

¨  Paraphrasing Wikipedia:  
¨  Let B = { D1, D2 } (a set of two vectors, D1 & D2) 
¨  Let S be our Shape 
¨  B is a basis for S if every element of S can be 

written as a unique linear combination of elements 
of B. 

¨  The coefficients of this linear combination are 
referred to as components or coordinates on B of 
the vector.  

¨  The elements of a basis are called basis vectors. 



Most common basis 

¨  D1 = X-axis   (i.e., (1,0,0)-(0,0,0)) 
¨  D2 = Y-axis   (i.e., (0,1,0)-(0,0,0)) 
¨  D3 = Z-axis   (i.e., (0,0,1)-(0,0,0)) 

¨  Then the coordinate (2, -3, 5) means 
¤ 2 units along X-axis 
¤  -3 units along Y-axis 
¤ 5 units along Z-axis 



But we could have other bases 

¨  Instead of “basis 1” (B1) 
¤ D1 = X-axis   (i.e., (1,0,0)-(0,0,0)) 
¤ D2 = Y-axis   (i.e., (0,1,0)-(0,0,0)) 
¤ D3 = Z-axis   (i.e., (0,0,1)-(0,0,0)) 

¨  Use “basis 2” (B2) 
¤ D1 = Y-axis   (i.e., (0,1,0)-(0,0,0)) 
¤ D2 = X-axis   (i.e., (1,0,0)-(0,0,0)) 
¤ D3 = Z-axis   (i.e., (0,0,1)-(0,0,0)) 

¨  Then (a,b,c) in B1 is the same as (b,a,c) in B2 



Last vocab term for a few 
slides: frame 

¨  Frame: 
¤ A way to place a coordinate system into a specific 

location in a space 
¤ Basis + reference coordinate (“the origin”) 

¨  Cartesian example: (3,4,6) 
¤  It is assumed that we are speaking in reference to the 

origin location (0,0,0). 



Example of Frames 

¨  Frame F = (v1, v2, O) 
¤ v1 = (0, -1) 
¤ v2 = (1, 0) 
¤ O = (3, 4) 

¨  What are F’s coordinates for the point (6, 6)? 



Example of Frames 

¨  Frame F = (v1, v2, O) 
¤ v1 = (0, -1) 
¤ v2 = (1, 0) 
¤ O = (3, 4) 

¨  What are F’s coordinates for the point (6, 6)? 

¨  Answer: (-2, 3) 



Each box is a frame, and each 
arrow converts to the next frame 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 <=y<=height 



Context 

¨  Models stored in “world space” frame 
¤ Pick an origin, store all points relative to that origin 

¨  We have been rasterizing in “device space” frame 
¨  Our goal: transform from world space to device 

space 
¨  We will do this using matrix multiplications 

¤ Multiply point by matrix to convert coordinates from 
one frame into coordinates in another frame 



But wait! There’s more… 

¨  And matrices also useful for more than frame-to-
frame conversions. 

¨  So let’s get comfy with matrices. 



Matrix 

¨  Defined: a rectangular array of numbers (usually) 
arranged in rows and columns 

¨  Example 
¤ 2D matrix 
¤ “two by three” (two rows, three columns) 

n  [3    4    8] 
n  [-1 9.2 12] 



Matrix: wikipedia picture 



Matrix 

¨  What do you do with matrices? 
¨  Lots of things 

¤ Transpose, invert, add, subtract 

¨  But most of all: multiply! 



Multiplying two 2x2 matrices 

(a   b)        (e    f)          (a*e+b*g     a*f+b*h) 

(c   d)  X  (g    h)   
=   (c*e+d*g      c*f+d*h) 



(a   b)        (e    f)          (a*e+b*g     a*f+b*h) 

           X  (g    h)   
=

 

One usage for matrices: 
Let (a, b) be the coordinates of a point 
Then the 2x2 matrix can transform (a,b) to a   
new location – (a*e+b*g, a*f+b*h) 

Multiplying two 2x2 matrices 



Identity Matrix 

(a   b)        (1    0)          (a    b) 

           X  (0    1)   
=

 



(a   b)        (2    0)          (2a    b) 

           X  (0    1)   
=

 

(a,b) (2a,b) 

Scale in X, not in Y 



(a   b)        (s    0)          (sa    tb) 

           X  (0    t)   
=

 

Scale in both dimensions 

(a,b) 

(sa,t) 



(a   b)        (0   -1)          (b    -a) 

           X  (1    0)   
=

 

Rotate 90 degrees counter-
clockwise 

(a,b) 

(b,-a) 



(a   b)        (0     1)          (-b    a) 

           X  (-1    0)   
=

 

Rotate 90 degrees counter-
clockwise 

(a,b) 
(-b, a) 



(a   b)        (cos(Ω)  -sin(Ω))          (cos(Ω)*a + sin(Ω)*b, 
                                                   -sin(Ω)*a +cos(Ω)*b) 

           X  (sin(Ω)    cos(Ω))   
=

 

Rotate “Ω” degrees counter-clockwise 

(x,y) (x’, y’) 

Ω 



Combining transformations 

¨  How do we rotate by 90 degrees clockwise and 
then scale X by 2? 
¤ Answer: multiply by matrix that multiplies by 90 

degrees clockwise, then multiple by matrix that scales X 
by 2. 

¤ But can we do this efficiently? 

(0   -1)           (2    0)          (0     -1) 

(1   0)  X  (0    1)   
=

     (2      0) 



Combining transformations 

¨  How do we scale X by 2 and then rotate by 90 
degrees clockwise? 
¤ Answer: multiply by matrix that scales X by 2, then 

multiply by matrix that rotates 90 degrees clockwise. 

(2   0)          (0   -1)          (0     -2) 

(0   1)  X  (1    0)   
=

   (1      0) 

Rotate then scale 
Order matters!! 

(0   -1)           (2    0)          (0     -1) 

(1   0)  X  (0    1)   
=

     (2      0) 



Translations 

¨  Translation is harder: 

(a)           (c)          (a+c) 

(b)  +   (d)   
=   (b+d) 

But this doesn’t fit our nice matrix multiply model… 
What to do?? 



Homogeneous Coordinates 

                                (1   0    0) 

(x    y     1)   X   (0   1    0)   =    (x       y      1) 
 
                                (0   0    1)            

Add an extra dimension. 
A math trick … don’t overthink it. 



Homogeneous Coordinates 

Translation 
 
We can now fit translation into  
our matrix multiplication system. 

                                (1    0    0)             

(x    y     1)   X   (0    1    0)   =    (x+dx    y+dy    1) 
 
                                (dx  dy   1)           



Graphics 

¨  Two really important operations: 
¤ Transform from one frame to another 
¤ Transform geometry (rotate, translate, etc) 

¨  Both can be done with matrix operations 
¨  In both cases, need homogeneous coordinates 

¨  Much of graphics is accomplished via 4x4 matrices 
¤ And: you can compose the matrices and do bunches of 

things at once (EFFICIENCY)  





3dfx Voodoo  
(source: wikipedia) 



Early GPUs 

¨  Special hardware to do 4x4 matrix operations 
¨  A lot of them (in parallel) 



GPUs now 

¨  Many, many, many cores 
¨  Each code less powerful than typical CPU core 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



World Space 

¨  World Space is the space defined by the user’s 
coordinate system. 

¨  This space contains the portion of the scene that is 
transformed into image space by the camera 
transform.  

¨  Many of the spaces have “bounds”, meaning limits 
on where the space is valid 

¨  With world space 2 options: 
¤ No bounds 
¤ User specifies the bound 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 

Camera Transform 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



How do we specify a camera? 

The “viewing pyramid” or 
“view frustum”. 
 
Frustum: In geometry, a frustum 
(plural: frusta or frustums) is the 
portion of a solid (normally a cone 
or pyramid) that lies between two 
parallel planes cutting it. 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 

View Transform 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



Image Space 

¨  Image Space is the three-dimensional coordinate 
system that contains screen space.  

¨  It is the space where the camera transformation 
directs its output. 

¨  The bounds of Image Space are 3-dimensional cube.  
{(x,y,z) : −1≤x≤1,−1≤y≤1, −1≤z≤1}  
 
(or −1≤z≤0) 



Image Space Diagram 

Up 

X=1 

X = -1 

Y=1 

Y = -1 

Z=1 

Z = -1 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



Screen Space 

¨  Screen Space is the intersection of the xy-plane with 
Image Space.  

¨  Points in image space are mapped into screen 
space by projecting via a parallel projection, onto 
the plane z = 0 . 

¨  Example: 
¤ a point (0, 0, z) in image space will project to the 

center of the display screen  



Screen Space Diagram 

X -1    +1 

Y 

-1 

   +1 



Our goal 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



Device Space 

¨  Device Space is the lowest level coordinate 
system and is the closest to the hardware 
coordinate systems of the device itself. 

¨  Device space is usually defined to be the n × m 
array of pixels that represent the area of the 
screen.  

¨  A coordinate system is imposed on this space by 
labeling the lower-left-hand corner of the array 
as (0,0), with each pixel having unit length and 
width.  



Device Space Example 



Device Space With Depth 
Information 

¨  Extends Device Space to three dimensions by 
adding z-coordinate of image space. 

¨  Coordinates are (x, y, z) with  
  0 ≤ x ≤ n 
  0 ≤ y ≤ m  
  z arbitrary (but typically -1 ≤ z ≤ +1 or 
       -1 ≤ z ≤ 0 )  

 



Easiest Transform 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O 

Image space: 
 All viewable objects within  
 -1 <= x,y,z <= +1 

x 

y 

z 

Screen space: 
 All viewable objects within 
 -1 <= x, y <= +1 

  Device space: 
 All viewable objects within 
 0<=x<=width, 0 

<=y<=height 



Image Space to Device Space 

¨  (x, y, z) à ( x’, y’, z’), where 
¤ x’ = n*(x+1)/2 
¤ y’ = m*(y+1)/2 
¤ z’ = z 
¤  (for an n x m image) 

¨  Matrix: 
(x’ 0 0 0) 
(0 y’ 0 0) 
(0 0 z’ 0) 
(0 0 0 1) 



Coming Up on YouTube Lecture 

World space: 
 Triangles in native Cartesian coordinates 
 Camera located anywhere 

O 

Camera space: 
 Camera located at origin, looking down -Z 
 Triangle coordinates relative to camera frame 

O -Z 

¨  Need to construct a Camera Frame 
¨  Need to construct a matrix to transform points from 

Cartesian Frame to Camera Frame 
¤ Transform triangle by transforming its three vertices 


