
Hank Childs, University of Oregon January 24, 2019

CIS 441/541: Intro to Computer Graphics
Lecture 5: Transforms

No	 Class	 Tuesday,	 1/29	

•  Will	 definitely	 be	 a	 YouTube	 lecture	 to	 replace	
that	 one.	

Office	 Hours:	 Weeks	 4-‐10	

•  Monday:	 1-‐2	 (Roscoe)	
•  Tuesday:	 1-‐2	 (Roscoe)	
•  Wednesday:	 1-‐3	 (Roscoe)	
•  Thursday:	 1130-‐1230	 (Hank)	
•  Friday:	 1130-‐1230	 (Hank)	

Office	 Hours:	 Week	 3	

•  Monday:	 415-‐530	 (Hank)	
•  Tuesday:	 1-‐2,	 2-‐3	 (Roscoe)	
•  Wednesday:	 1-‐3	 (Roscoe)	
•  Thursday:	 1130-‐1230	 (Hank)	
•  Thursday:	 1230-‐230	 (Roscoe)	
•  Friday:	 1030-‐1130	 (Hank)	

Timeline	
•  1C:	 due	 Weds	 Jan	 23rd	
•  1D:	 assigned	 today	 (LAST	 TUESDAY),	 due	 Thurs	 Jan	 31st	
•  1E:	 assigned	 Thurs	 Jan	 31st,	 due	 Weds	 Feb	 6th	

–  à	 will	 be	 extra	 support	 with	 this.	 	 Tough	 project.	
•  1F:	 assigned	 Feb	 7th,	 due	 Feb	 19th	

–  à	 not	 as	 tough	 as	 1E	
•  2A:	 will	 be	 assigned	 during	 week	 of	 Feb	 11th	

Sun	 Mon	 Tues	 Weds	 Thurs	 Fri	 Sat	

Jan	 20	 Jan21	 Jan	 22	
Lec4	

Jan	 23	
1C	 due	

Lec	 5	
1D	 assigned	

Jan	 25	 Jan	 26	

Jan	 27	 Jan	 28	 Jan	 29	
(YouTube)	

Jan	 30	 Lec	 6	 	
1D	 due	
1E	 assigned	

Feb	 1	 Feb	 2	

Feb	 3	 Feb	 4	 Feb	 5	
Lec	 7	

Feb	 6	 Lec	 8	
1E	 due	
1F	 assigned	

Feb	 8	 Feb	 9	

Likely:	 pre-‐SuperBowl	 OH	

Great	 news!!	

•  No	 project	 assignment	 today…	

Project	 #1D	 (5%),	 	
Due	 Thurs	 Jan	 31st	

•  Goal:	 interpolacon	 of	
color	 and	 zbuffer	 	

•  Extend	 your	 project1C	
code	

•  File	 proj1d_geometry.vtk	
available	 on	 web	 (1.4MB)	

•  File	 “reader1d.cxx”	 has	
code	 to	 read	 triangles	
from	 file.	

•  No	 Cmake,	 project1d.cxx	

Color	 is	 now	 floacng-‐point	

•  We	 will	 be	 interpolacng	 colors,	 so	 please	 use	
floacng	 point	 (0	 à	 1)	

•  Keep	 colors	 in	 floacng	 point	 uncl	 you	 assign	
them	 to	 a	 pixel	

•  Fracconal	 colors?	 à	 use	 ceil_441…	
– ceil_441(value*255)	

Changes	 to	 data	 structures	

class	 Triangle	
{	
	 	 public:	
	 	 	 	 	 	 double	 X[3],	 Y[3],	 Z[3];	
	 	 	 	 	 	 double	 colors[3][3];	
};	
	
à	 reader1d.cxx	 will	 not	 compile	 uncl	 you	 make	
these	 changes	

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0 <=y<=height

MATH!

Space

¨  A “space” is a set of points
¨  Many types of spaces

Here is a space ‘S’:
the points in the blue shape

We can pick an arbitrary point
in S and call it our “origin.”

O

Consider two directions, D1 and D2.

O
D1

D2

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X2.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X2

Imagine you live at “O” and you want
to get to “X2.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X2

Imagine you live at “O” and you want
to get to “X3.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X3

Imagine you live at “O” and you want
to get to “X4.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X4

Imagine you live at “O” and you want
to get to “X4.” Can you do it?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

X4

Conventions!

¨  Let (a, b) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2

Where is (-3, 2)?

O
D1

D2

Rules (chess):
-  Bishop can only move diagonally
-  Rooks can only move in straight lines

Rules (this space):
-  You can only move in direction D1 or D2

A basis

¨  Paraphrasing Wikipedia:
¨  Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨  Let S be our Shape
¨  B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

¨  The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

¨  The elements of a basis are called basis vectors.

Why unique?

D1

D2

D3

¨  Let (a, b, c) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2
¤ The number of steps ‘c’ in direction D3

¨  Then there is more than one way to get to
some point X in S, i.e.,
¤  (a1, b1, c1) = X and
¤  (a2, b2, c2) = X

What does it mean to form a
basis?

¨  For any vector v, there are unique coordinates (c1,
…, cn) such that
v = c1*v1 + c2*v2 + … + cn*vn

¨  Consider some point P.
¤ The basis has an origin O
¤ There is a vector v such that O+v = P
¤ We know we can construct v using a combination of vi’s
¤ Therefore we can represent P in our frame using the

coordinates (c1, c2, …, cn)

A basis

¨  Paraphrasing Wikipedia:
¨  Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨  Let S be our Shape
¨  B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

¨  The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

¨  The elements of a basis are called basis vectors.

Most common basis

¨  D1 = X-axis (i.e., (1,0,0)-(0,0,0))
¨  D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
¨  D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨  Then the coordinate (2, -3, 5) means
¤ 2 units along X-axis
¤  -3 units along Y-axis
¤ 5 units along Z-axis

But we could have other bases

¨  Instead of “basis 1” (B1)
¤ D1 = X-axis (i.e., (1,0,0)-(0,0,0))
¤ D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
¤ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨  Use “basis 2” (B2)
¤ D1 = Y-axis (i.e., (0,1,0)-(0,0,0))
¤ D2 = X-axis (i.e., (1,0,0)-(0,0,0))
¤ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨  Then (a,b,c) in B1 is the same as (b,a,c) in B2

Last vocab term for a few
slides: frame

¨  Frame:
¤ A way to place a coordinate system into a specific

location in a space
¤ Basis + reference coordinate (“the origin”)

¨  Cartesian example: (3,4,6)
¤  It is assumed that we are speaking in reference to the

origin location (0,0,0).

Example of Frames

¨  Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨  What are F’s coordinates for the point (6, 6)?

Example of Frames

¨  Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨  What are F’s coordinates for the point (6, 6)?

¨  Answer: (-2, 3)

Each box is a frame, and each
arrow converts to the next frame

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0 <=y<=height

Context

¨  Models stored in “world space” frame
¤ Pick an origin, store all points relative to that origin

¨  We have been rasterizing in “device space” frame
¨  Our goal: transform from world space to device

space
¨  We will do this using matrix multiplications

¤ Multiply point by matrix to convert coordinates from
one frame into coordinates in another frame

But wait! There’s more…

¨  And matrices also useful for more than frame-to-
frame conversions.

¨  So let’s get comfy with matrices.

Matrix

¨  Defined: a rectangular array of numbers (usually)
arranged in rows and columns

¨  Example
¤ 2D matrix
¤ “two by three” (two rows, three columns)

n  [3 4 8]
n  [-1 9.2 12]

Matrix: wikipedia picture

Matrix

¨  What do you do with matrices?
¨  Lots of things

¤ Transpose, invert, add, subtract

¨  But most of all: multiply!

Multiplying two 2x2 matrices

(a b) (e f) (a*e+b*g a*f+b*h)

(c d) X (g h)
= (c*e+d*g c*f+d*h)

(a b) (e f) (a*e+b*g a*f+b*h)

 X (g h)
=

One usage for matrices:
Let (a, b) be the coordinates of a point
Then the 2x2 matrix can transform (a,b) to a
new location – (a*e+b*g, a*f+b*h)

Multiplying two 2x2 matrices

Identity Matrix

(a b) (1 0) (a b)

 X (0 1)
=

(a b) (2 0) (2a b)

 X (0 1)
=

(a,b) (2a,b)

Scale in X, not in Y

(a b) (s 0) (sa tb)

 X (0 t)
=

Scale in both dimensions

(a,b)

(sa,t)

(a b) (0 -1) (b -a)

 X (1 0)
=

Rotate 90 degrees counter-
clockwise

(a,b)

(b,-a)

(a b) (0 1) (-b a)

 X (-1 0)
=

Rotate 90 degrees counter-
clockwise

(a,b)
(-b, a)

(a b) (cos(Ω) -sin(Ω)) (cos(Ω)*a + sin(Ω)*b,
 -sin(Ω)*a +cos(Ω)*b)

 X (sin(Ω) cos(Ω))
=

Rotate “Ω” degrees counter-clockwise

(x,y) (x’, y’)

Ω

Combining transformations

¨  How do we rotate by 90 degrees clockwise and
then scale X by 2?
¤ Answer: multiply by matrix that multiplies by 90

degrees clockwise, then multiple by matrix that scales X
by 2.

¤ But can we do this efficiently?

(0 -1) (2 0) (0 -1)

(1 0) X (0 1)
=

 (2 0)

Combining transformations

¨  How do we scale X by 2 and then rotate by 90
degrees clockwise?
¤ Answer: multiply by matrix that scales X by 2, then

multiply by matrix that rotates 90 degrees clockwise.

(2 0) (0 -1) (0 -2)

(0 1) X (1 0)
=

 (1 0)

Rotate then scale
Order matters!!

(0 -1) (2 0) (0 -1)

(1 0) X (0 1)
=

 (2 0)

Translations

¨  Translation is harder:

(a) (c) (a+c)

(b) + (d)
= (b+d)

But this doesn’t fit our nice matrix multiply model…
What to do??

Homogeneous Coordinates

 (1 0 0)

(x y 1) X (0 1 0) = (x y 1)

 (0 0 1)

Add an extra dimension.
A math trick … don’t overthink it.

Homogeneous Coordinates

Translation

We can now fit translation into
our matrix multiplication system.

 (1 0 0)

(x y 1) X (0 1 0) = (x+dx y+dy 1)

 (dx dy 1)

Graphics

¨  Two really important operations:
¤ Transform from one frame to another
¤ Transform geometry (rotate, translate, etc)

¨  Both can be done with matrix operations
¨  In both cases, need homogeneous coordinates

¨  Much of graphics is accomplished via 4x4 matrices
¤ And: you can compose the matrices and do bunches of

things at once (EFFICIENCY)

3dfx Voodoo
(source: wikipedia)

Early GPUs

¨  Special hardware to do 4x4 matrix operations
¨  A lot of them (in parallel)

GPUs now

¨  Many, many, many cores
¨  Each code less powerful than typical CPU core

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

World Space

¨  World Space is the space defined by the user’s
coordinate system.

¨  This space contains the portion of the scene that is
transformed into image space by the camera
transform.

¨  Many of the spaces have “bounds”, meaning limits
on where the space is valid

¨  With world space 2 options:
¤ No bounds
¤ User specifies the bound

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

Camera Transform

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum
(plural: frusta or frustums) is the
portion of a solid (normally a cone
or pyramid) that lies between two
parallel planes cutting it.

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

View Transform

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

Image Space

¨  Image Space is the three-dimensional coordinate
system that contains screen space.

¨  It is the space where the camera transformation
directs its output.

¨  The bounds of Image Space are 3-dimensional cube.
{(x,y,z) : −1≤x≤1,−1≤y≤1, −1≤z≤1}

(or −1≤z≤0)

Image Space Diagram

Up

X=1

X = -1

Y=1

Y = -1

Z=1

Z = -1

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

Screen Space

¨  Screen Space is the intersection of the xy-plane with
Image Space.

¨  Points in image space are mapped into screen
space by projecting via a parallel projection, onto
the plane z = 0 .

¨  Example:
¤ a point (0, 0, z) in image space will project to the

center of the display screen

Screen Space Diagram

X -1 +1

Y

-1

 +1

Our goal

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

Device Space

¨  Device Space is the lowest level coordinate
system and is the closest to the hardware
coordinate systems of the device itself.

¨  Device space is usually defined to be the n × m
array of pixels that represent the area of the
screen.

¨  A coordinate system is imposed on this space by
labeling the lower-left-hand corner of the array
as (0,0), with each pixel having unit length and
width.

Device Space Example

Device Space With Depth
Information

¨  Extends Device Space to three dimensions by
adding z-coordinate of image space.

¨  Coordinates are (x, y, z) with
 0 ≤ x ≤ n
 0 ≤ y ≤ m
 z arbitrary (but typically -1 ≤ z ≤ +1 or
 -1 ≤ z ≤ 0)

Easiest Transform

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O

Image space:
 All viewable objects within
 -1 <= x,y,z <= +1

x

y

z

Screen space:
 All viewable objects within
 -1 <= x, y <= +1

 Device space:
 All viewable objects within
 0<=x<=width, 0

<=y<=height

Image Space to Device Space

¨  (x, y, z) à (x’, y’, z’), where
¤ x’ = n*(x+1)/2
¤ y’ = m*(y+1)/2
¤ z’ = z
¤  (for an n x m image)

¨  Matrix:
(x’ 0 0 0)
(0 y’ 0 0)
(0 0 z’ 0)
(0 0 0 1)

Coming Up on YouTube Lecture

World space:
 Triangles in native Cartesian coordinates
 Camera located anywhere

O

Camera space:
 Camera located at origin, looking down -Z
 Triangle coordinates relative to camera frame

O -Z

¨  Need to construct a Camera Frame
¨  Need to construct a matrix to transform points from

Cartesian Frame to Camera Frame
¤ Transform triangle by transforming its three vertices

