CXIS'441/541: Intro to Computer Graphics
Lecture 5: Transforms

January 24, 2019 Hank Childs, University of Oregon

No Class Tuesday, 1/29

* Will definitely be a YouTube lecture to replace
that one.

Office Hours: Weeks 4-10

* Monday: 1-2 (Roscoe)
 Tuesday: 1-2 (Roscoe)
 Wednesday: 1-3 (Roscoe)
 Thursday: 1130-1230 (Hank)
* Friday: 1130-1230 (Hank)

Office Hours: Week 3

 Thursday: 1130-1230 (Hank)
 Thursday: 1230-230 (Roscoe)
* Friday: 1030-1130 (Hank)

UNIVERSITY OF OREGON

O

Timeline
e J1C-dua\WedsJtan 23rd
e 1D: assigned-teday (LAST TUESDAY), due Thurs Jan 31%t

e 1E: assigned Thurs Jan 31%t, due Weds Feb 6t"
— > will be extra support with this. Tough project.

« 1F: assigned Feb 7%, due Feb 19t
— =2 not as tough as 1E

e 2A: will be assigned during week of Feb 11th

sun_[Mon [Tues Jweds Thurs [Fi s

Jan 20 Jan21 Jan 22 Jan 23 Lec 5 Jan 25 Jan 26
Lec4 1Cdue 1D assigned
Jan 27 Jan 28 Jan 29 Jan 30 Lec 6 Feb1l Feb?2

(YouTube) 1D due

b i R
Feb 3 Feb 4 Feb 5 Feb 6 Lec 8 Feb8 Feb9
Lec 7 1E due

1F assigned

1E assigned

e mon: BN Likely: pre-SuperBow! OH

Great news!!

* No project assighment today...

0 OOOOOOOOOOOOOOOOO PrOJeCt #1D (5%)’
Due Thurs Jan 31st

* Goal: interpolation of
color and zbuffer

e Extend your projectl1C
code

* File projld_geometry.vtk
available on web (1.4MB)

 File “readerld.cxx” has
code to read triangles
from file.

No Cmake, projectld.cxx

Color is now floating-point

 We will be interpolating colors, so please use
floating point (0 2 1)

e Keep colors in floating point until you assign
them to a pixel

* Fractional colors? = use ceil 441...
— ceil_441(value*255)

Changes to data structures

class Triangle
{
public:
double X[3], Y[3], Z[3];
double colors[3][3];
};

- readerld.cxx will not compile until you make
these changes

World space:

Our godl

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <=x,y,z <= +1

Triangle coordinates relative to camera frame

A
/ /
Screen space: Device space:
All viewable objects within All viewable objects within
-1 <= X,y <= +1 O<=x<=width, 0 <=y<=height

MATH!

Space O

0 A “space” is a set of points

0 Many types of spaces

We can pick an arbitrary point

in S and call it our “origin.

Consider two directions, D1 and D2.

Imagine you live at “O” and you want O
to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

®
>

<< >,
e |-

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

< >,
e |-

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

N / \/ / D1

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

®
>

<< >,
e |-

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X2.” Can you do it¢

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

\ ‘o -

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X2.” Can you do it¢

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

/

\ //X2 -
L)
O

.

\
g

Rules (this space): Y A2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X3.” Can you do it?

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

< -
\

g

Rules (this space): Y A2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X4.” Can you do it¢

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

®

X4 /
\ ' - N D1

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Imagine you live at “O” and you want O
to get to “X4.” Can you do it¢

Rules (chess):
- Bishop can only move diagonally

- Rooks can only move in straight lines

X4 /
N O . D]

g

I V' g
Rules (this space): Y D2

- You can only move in direction D1 or D2

Conventions! O

0 Let (a, b) mean:

O The number of steps ‘a’ in direction D1 /
O The number of steps ‘b’ in direction D2

Where is (-3, 2)¢

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

[

[

[

A basis O

Paraphrasing Wikipedia:
et B={D1,D2 } (a set of two vectors, D1 & D2)

Let S be our Shape

0 B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

0 The coefficients of this linear combination are

referred to as components or coordinates on B of

the vector.

0 The elements of a basis are called basis vectors.

Why unique?

0 Let (a, b, ¢) mean:
O The number of steps ‘a’ in direction D1
O The number of steps ‘b’ in direction D2

O The number of steps ‘c’ in direction D3

0 Then there is more than one way to get to /
some point X in S, i.e., D1

o(al, bl,cl)=X and — D3

O(a2, b2, c2)=X
D2

What does it mean to form a O

basis?

0 For any vector v, there are unique coordinates (c1,
..., cn) such that

v=cl*v]l + c2*v2 + ... + cn®vn

0 Consider some point P.
O The basis has an origin O
O There is a vector v such that O+v =P
O We know we can construct v using a combination of vi’s

O Therefore we can represent P in our frame using the
coordinates (c1, c2, ..., ¢cn)

[

[

[

A basis O

Paraphrasing Wikipedia:
et B={D1,D2 } (a set of two vectors, D1 & D2)

Let S be our Shape

0 B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

0 The coefficients of this linear combination are

referred to as components 0|1 coordino’resl on B of
1

the vector.

0 The elements of a basis are called basis vectors.

Most common basis O

0 D1 = X-axis (i.e., (1,0,0)-(0,0,0))
0 D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
0 D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

0 Then the coordinate (2, -3, 5) means
O 2 units along X-axis
O -3 units along Y-axis

O 5 units along Z-axis

But we could have other bases O

O Instead of “basis 1”7 (B1)
oD1 = X-axis (i.e., (1,0,0)-(0,0,0))
oD2 = Y-axis (i.e., (0,1,0)-(0,0,0))
oD3 = Z-axis (i.e., (0,0,1)-(0,0,0))
0 Use “basis 2”7 (B2)
oD1 = Y-axis (i.e., (0,1,0)-(0,0,0))
oD2 = X-axis (i.e., (1,0,0)-(0,0,0))
oD3 = Z-axis (i.e., (0,0,1)-(0,0,0))

0 Then (q,b,c) in B1 is the same as (b,qa,c) in B2

Last vocab term for a few O
slides: frame
e

0O Frame:

O A way to place a coordinate system into a specific
location in a space

O Basis + reference coordinate (“the origin”)

0 Cartesian example: (3,4,6)

O It is assumed that we are speaking in reference to the
origin location (0,0,0).

Example of Frames O

0 Frame F = (v1, v2, O)

ovl = (0, -1)
ov2 =(1,0)
oO = (3, 4)

0 What are F’s coordinates for the point (6, 6)?

Example of Frames O

0 Frame F = (v1, v2, O)

ovl = (0, -1)
ov2 =(1,0)
oO = (3, 4)

0 What are F’s coordinates for the point (6, 6)?

0 Answer: (-2, 3)

Each box is a frame, and each

arrow converts to the next frame

9“.‘
-
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
y4 1
y
v —/
X
Image space: Screen space: Device space:
All viewable objects within All viewable objects within All viewable objects within

-1 <= x,y,z <= +1 -1 <=x,y<=+1 0<=x<=width, 0 <=y<=height

Context

0 Models stored in “world space” frame

O Pick an origin, store all points relative to that origin
0 We have been rasterizing in “device space” frame

0 Our goal: transform from world space to device
space
0 We will do this using matrix multiplications

O Multiply point by matrix to convert coordinates from
one frame into coordinates in another frame

But wait! There’s more-*-

0 And matrices also useful for more than frame-to-
frame conversions.

0 So let’s get comfy with matrices.

IR T«

T
irh .
‘ D

Matrix O

0 Defined: a rectangular array of numbers (usually)
arranged in rows and columns

0 Example
O 2D matrix

O “two by three” (two rows, three columns)
m[3 4 8]
m[-19.212]

Matrix: wikipedia picture O

m-by-n matrix

aj ncolumns NIENGESEY

m — r__

IOWS

Matrix O

0 What do you do with matrices?

O Lots of things

O Transpose, invert, add, subtract

0 But most of all: multiply!

Multiplying two 2x2 matrices O

(a b) (e f) (a*et+b*g a*f+b*h)

(c d) X (g h) - (c*e+d*g c*f+d*h)

Multiplying two 2x2 matrices O

(a b) (e f) (a*et+b*g a*f+b*h)

g n

One usage for matrices:

Let (a, b) be the coordinates of a point

Then the 2x2 matrix can transform (a,b) to a
new location — (a™e+b*g, a*f+b*h)

Ildentity Matrix O

(a b) (1 0O) (a b)

X(O 1):

O

(@ b) (2 0 (2a b)

X(O 1):

Scale in X, notin Y

(a,b) (2a,b)

(a b) (s 0) (sa tb) (ab)
X — (saif)

Scale in both dimensions

(@ b) (0 -1) (b -a)

X(1 0):

Rotate 90 degrees counter-
clockwise

(a,b)

(b,-a)

(a b) (0 1) (-b a)

X (_] O) — (b,) (a,b)

Rotate 90 degrees counter-
clockwise

O

(a b) (cos(Q)) -sin(Q)) (cos(Q)*a + sin(Q)*b,
-sin(QQ)*a +cos(Q)*b)
R (sin(QQ) cos(Q)) - T

(x’ y')

Rotate “0)” degrees counter-clockwise

Combining transformations O

0 How do we rotate by 20 degrees clockwise and
then scale X by 2¢

O Answer: multiply by matrix that multiplies by 90

degrees clockwise, then multiple by matrix that scales X
by 2.

O But can we do this efficiently?

(0 -1) (2 0) 0 -1)

X
(1 0) 0 1) 2 0

Combining transformations O

0 How do we scale X by 2 and then rotate by 20
degrees clockwise?

O Answer: multiply by matrix that scales X by 2, then
multiply by matrix that rotates 90 degrees clockwise.

(2 0) (0 -1) (0 -2)
X —
(0 1) (1 0 (10
(0 -1) (2 0 (0 -1)
X p— Rotate then scale

(1 0) (0 1) (2 0) Order mattersl!

Translations O

O Translation is harder:

(a) (c) (a+c)
-+ —
(b) (d) (b+d)

But this doesn’t fit our nice matrix multiply model...
What to do??

Homogeneous Coordinates O

(1 0 0)
xy hX 01 0= x y 1

© 0 1)

Add an extra dimension.
A math trick ... don’t overthink it.

Homogeneous Coordinates O

(1 0 0)

x y 1) X (0O 1 0) (x+dx y+dy 1)
(dx dy 1)

Translation

We can now fit translation into
our matrix multiplication system.

Graphics O

0 Two really important operations:

O Transform from one frame to another

O Transform geometry (rotate, translate, etc)

0 Both can be done with matrix operations

0 In both cases, need homogeneous coordinates

0 Much of graphics is accomplished via 4x4 matrices

O And: you can compose the matrices and do bunches of
things at once (EFFICIENCY)

Silicon Graphics, Inc.

Sg1

Former type Public

Traded as NYSE: SGlI
OTC Pink: SGID.pk

NASDAQ: SGIC

Industry Computer hardware and
software

Fate Chapter 11 bankruptcy; assets
acquired by Rackable

Systems, which renamed itself
Silicon Graphics International
Corp.

Founded November 9, 1981; 37 years
ago
Mountain View, California,
u.s.ll

Defunct May 11, 2009

Headquarters Sunnyvale, California, U.S.

Key people Jim Clark,
Kurt Akeley,
Ed McCracken,
Thomas Jermoluk

Products High-performance computing,
visualization and storage

Website www.sgi.com/iF ¢

3dfx Voodoo

source: wikipedia

~(C) 1900 STB SYSTEMS,INC, 3 L84 RTL (88 Co4

R [I

L)
e

ui2

ety e, S0

e & R, SRR

EALRERE) T S
: g

a1

i

Early GPUs O

0 Special hardware to do 4x4 matrix operations

O A lot of them (in parallel)

GPUs now O

0 Many, many, many cores

0 Each code less powerful than typical CPU core

Our godl

1
1 ’
1 2
-8 Ot
ot
4 ;’ :
—
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
Z A
Y
v v
X
Image space: Screen space: Device space:
All viewable obijects within All viewable objects within All viewable objects within
-] <= X,Y,Z <= +] -] <= X, Y <= +] O<:X<:Wid1‘h, O

PN I

World Space O

0 World Space is the space defined by the user’s
coordinate system.

0 This space contains the portion of the scene that is
transformed into image space by the camera

transform.

0 Many of the spaces have “bounds”, meaning limits
on where the space is valid

0 With world space 2 options:
O No bounds

O User specifies the bound

Our godl

Camera Transfogm

——n | -":"f _____
4 ;’ :
v
World space: Camerd|space:
Triangles in native Cartesian coordinates Y Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
Z A
Y
v v
X
Image space: Screen space: Device space:
All viewable objects within All viewable obiecfs within All viewable objects within
-1 <= xy,z <= +1 -1 <=x,y <= +1 O<=x<=width, 0

PN I

Our godl

World space:

Triangles in native Cartesian coordinates
Camera located anywhere

4

X

L

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

v

Screen space: Device space:

Image space:
All viewable objects within

0<=x<=width, O

PN I

All viewable objects within
-] <= X, Y <= +]

All viewable objects within
-1 <= x,y,z <= +1

How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum
(plural: frusta or frustums) is the
portion of a solid (normally a cone
or pyramid) that lies between two
parallel planes cutting it.

class Camera

{
public:
double near, far;
double angle;
double position[3];
double focus[3];
double upl[3];

1

World space:

Our godl

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

=" Triangle coordinates relative to camera frame
/ View Transform
S

v v

Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, O

PN I

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

=

Our godl

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

v v

Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, O

PN I

Image Space O

0 Image Space is the three-dimensional coordinate
system that contains screen space.

O It is the space where the camera transformation
directs its output.

0 The bounds of Image Space are 3-dimensional cube.
{(x,y,z) : —1<x<1,—1<y<1, —1<z<1}

(or —1<z<0)

Image Space Diagram

Our godl

"::’f _____
4 ;’ :
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame

y4
Y
—} —1
X

Image space: Screen space: Device space:

All viewable obijects within All viewable objects within All viewable objects within

-1 <= x Y,z <= 4] -1 <= X, Y <= +] O<:X<:Wid1‘h, O

7 & L% L

Screen Space O

O Screen Space is the intersection of the xy-plane with
Image Space.

0 Points in image space are mapped into screen
space by projecting via a parallel projection, onto
the planez = 0.

0 Example:

O a point (0, 0, z) in image space will project to the
center of the display screen

Screen Space Diagram O

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Our godl

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

A
/ —
Screen space:
All viewable objects within
-] <= X, Y <= +]

=
—/
Device space:
All viewable objects within
0<=x<=width, O
-

L e e e o L

Device Space O

0 Device Space is the lowest level coordinate

system and is the closest to the hardware
coordinate systems of the device itself.

0 Device space is usually defined to be the n X m
array of pixels that represent the area of the
screen.

0 A coordinate system is imposed on this space by
labeling the lower-left-hand corner of the array

as (0,0), with each pixel having unit length and
width.

Device Space Example O

—— pixel (15, 15)

pixel (3,7) —1——

Hlv

pixel (0, 0)

Device Space With Depth
Information

0 Extends Device Space to three dimensions by
adding z-coordinate of image space.

0 Coordinates are (x, y, z) with
O<x<n
O<y<m
z arbitrary (but typically -1 <z < +1 or
-1<z<0)

Easiest Transform

-8 Ot
ot
4 ,/ :
v
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
Z A
v v
Image space: Screen space: Device space:
All viewable objects within All viewable obiecfs within All viewable objects within
-1 <= xy,z <= +1 -1 <=x,y <= +1 O<=x<=width, 0

PN I

Image Space to Device Space O

o (x,y,z) 2 (x,Y,z), where
ox =n*x+1)/2
Oy =m*y+1)/2

0z =z

O (for an n x m image)

O Matrix:
(x' 00 0)
(0 y"00)
(002 0)
(000 1)

Coming Up on YouTube Lectur

A i Sl
. -
—
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame

0 Need to construct a Camera Frame

0 Need to construct a matrix to transform points from
Cartesian Frame to Camera Frame

O Transform triangle by transforming its three vertices

