CIS^{**}44^{*}1^{**}541: Intro to Computer Graphics Lecture 5: Transforms

January 24, 2019

Hank Childs, University of Oregon

No Class Tuesday, 1/29

• Will definitely be a YouTube lecture to replace that one.

Office Hours: Weeks 4-10

- Monday: 1-2 (Roscoe)
- Tuesday: 1-2 (Roscoe)
- Wednesday: 1-3 (Roscoe)
- Thursday: 1130-1230 (Hank)
- Friday: 1130-1230 (Hank)

Office Hours: Week 3

- Monday: 415-530 (Hank)
- Tuesday: 1-2, 2-3 (Roscoe)
- Wednesday: 1-3 (Roscoe)
- Thursday: 1130-1230 (Hank)
- Thursday: 1230-230 (Roscoe)
- Friday: 1030-1130 (Hank)

Timeline

- 1C: due Weds Jan 23rd
- 1D: assigned today (LAST TUESDAY), due Thurs Jan 31st
- 1E: assigned Thurs Jan 31st, due Weds Feb 6th
 - \rightarrow will be extra support with this. Tough project.
- 1F: assigned Feb 7th, due Feb 19th
 - \rightarrow not as tough as 1E
- 2A: will be assigned during week of Feb 11th

Sun	Mon	Tues	Weds	Thurs	Fri	Sat
Jan 20	Jan21	Jan 22 Lec4	Jan 23 1C due	Lec 5 1D assigned	Jan 25	Jan 26
Jan 27	Jan 28	Jan 29 (YouTube)	Jan 30	Lec 6 1D due 1E assigned	Feb 1	Feb 2
Feb 3	Feb 4	Feb 5 Lec 7	Feb 6	Lec 8 1E due 1F assigned	Feb 8	Feb 9
SUPER BOWL	Likely: pre-SuperBowl OH					

Great news!!

• No project assignment today...

Project #1D (5%), Due Thurs Jan 31st

- Goal: interpolation of color and zbuffer
- Extend your project1C code
- File proj1d_geometry.vtk available on web (1.4MB)
- File "reader1d.cxx" has code to read triangles from file.
- No Cmake, project1d.cxx

Color is now floating-point

- We will be interpolating colors, so please use floating point (0 \rightarrow 1)
- Keep colors in floating point until you assign them to a pixel
- Fractional colors? \rightarrow use ceil_441...

- ceil_441(value*255)

Changes to data structures

```
class Triangle
{
  public:
    double X[3], Y[3], Z[3];
    double colors[3][3];
};
```

→ reader1d.cxx will not compile until you make these changes

Our goal

Space

- □ A "space" is a set of points
- Many types of spaces

We can pick an arbitrary point in S and call it our "origin."

Consider two directions, D1 and D2.

• X

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

,• X

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

Х

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

• X

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

X2

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

X2

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):

- You can only move in direction D1 or D2

X3

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines
X4

Rules (this space):

Conventions!

- \Box Let (a, b) mean:
 - The number of steps 'a' in direction D1
 - The number of steps 'b' in direction D2

Where is (-3, 2)?

A basis

- Paraphrasing Wikipedia:
- \Box Let B = { D1, D2 } (a set of two vectors, D1 & D2)
- 🗆 Let S be our Shape 🚽
- B is a <u>basis</u> for S if every element of S can be written as a **unique** linear combination of elements of B.
- The coefficients of this linear combination are referred to as <u>components</u> or <u>coordinates</u> on B of the vector.
- \Box The elements of a basis are called <u>basis vectors</u>.

Why unique?

- \Box Let (a, b, c) mean:
 - The number of steps 'a' in direction D1
 - The number of steps 'b' in direction D2
 - The number of steps 'c' in direction D3
- Then there is more than one way to get to some point X in S, i.e.,
 (a1, b1, c1) = X and → D3
 (a2, b2, c2) = X

What does it mean to form a basis?

- v = c1*v1 + c2*v2 + ... + cn*vn
- □ Consider some point P.
 - The basis has an origin O
 - **D** There is a vector v such that O+v = P
 - We know we can construct v using a combination of vi's
 - Therefore we can represent P in our frame using the coordinates (c1, c2, ..., cn)

A basis

- Paraphrasing Wikipedia:
- \Box Let B = { D1, D2 } (a set of two vectors, D1 & D2)
- Let S be our Shape
- B is a <u>basis</u> for S if every element of S can be written as a **unique** linear combination of elements of B.
- The coefficients of this linear combination are referred to as <u>components</u> or <u>coordinates</u> on B of the vector.
- \Box The elements of a basis are called <u>basis vectors</u>.

D1 = X-axis (i.e., (1,0,0)-(0,0,0))
 D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
 D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

- \Box Then the coordinate (2, -3, 5) means
 - 2 units along X-axis
 - -3 units along Y-axis
 - 5 units along Z-axis

But we could have other bases

□ Then (a,b,c) in B1 is the same as (b,a,c) in B2

Last vocab term for a few slides: frame

□ Frame:

- A way to place a coordinate system into a specific location in a space
- Basis + reference coordinate ("the origin")
- \Box Cartesian example: (3,4,6)
 - It is assumed that we are speaking in reference to the origin location (0,0,0).

- $\Box \text{ Frame F} = (v1, v2, O)$
 - **□** v1 = (0, -1)
 - $\Box v2 = (1, 0)$
 - **O** = (3, 4)
- \Box What are F's coordinates for the point (6, 6)?

 \Box What are F's coordinates for the point (6, 6)?

□ Answer: (-2, 3)

Each box is a frame, and each arrow converts to the next frame

Context

- □ Models stored in "world space" frame
 - Pick an origin, store all points relative to that origin
- □ We have been rasterizing in "device space" frame
- Our goal: transform from world space to device space
- We will do this using matrix multiplications
 Multiply point by matrix to convert coordinates from one frame into coordinates in another frame

 And matrices also useful for more than frame-toframe conversions.

 $\hfill\square$ So let's get comfy with matrices.

Matrix

- Defined: a rectangular array of numbers (usually) arranged in rows and columns
- Example
 - **D** 2D matrix
 - "two by three" (two rows, three columns)
 - **[**3 4 8]
 - **[**-1 9.2 12]

Matrix: wikipedia picture

Matrix

- □ What do you do with matrices?
- □ Lots of things
 - Transpose, invert, add, subtract
- □ But most of all: multiply!

Multiplying two 2x2 matrices

(a b) (e f) $(a^*e+b^*g a^*f+b^*h)$ $X = (c^*e+d^*g c^*f+d^*h)$

(a b) (e f) (a*e+b*g a*f+b*h)

$$\chi = (g h)$$

One usage for matrices: Let (a, b) be the coordinates of a point Then the 2x2 matrix can transform (a,b) to a new location – (a*e+b*g, a*f+b*h)

Identity Matrix

(a b) (1 0) (a b) X (0 1) = (a b)

$$(a b)$$
 (2 0) (2a b)
X (0 1) (2a,b)

Rotate 90 degrees counterclockwise

(a b)
$$(\cos(\Omega) - \sin(\Omega))$$
 $(\cos(\Omega)^*a + \sin(\Omega)^*b, -\sin(\Omega)^*a + \cos(\Omega)^*b)$
X $(\sin(\Omega) \cos(\Omega))$ = $\bigwedge_{(x', y')} \bigwedge_{\Omega} (x, y)$

Combining transformations

- How do we rotate by 90 degrees clockwise and then scale X by 2?
 - Answer: multiply by matrix that multiplies by 90 degrees clockwise, then multiple by matrix that scales X by 2.
 - But can we do this efficiently?

Combining transformations

- How do we scale X by 2 and then rotate by 90 degrees clockwise?
 - Answer: multiply by matrix that scales X by 2, then multiply by matrix that rotates 90 degrees clockwise.

Rotate then scale Order matters!!

Translations

Translation is harder:

(a) (c)
$$(a+c)$$

+ $=$
(b) (d) $(b+d)$

But this doesn't fit our nice matrix multiply model... What to do??

Add an extra dimension. A math trick ... don't overthink it.

$$(1 \ 0 \ 0)$$
(x y 1) X (0 1 0) = (x+dx y+dy 1)
(dx dy 1)

Translation

We can now fit translation into our matrix multiplication system.

Graphics

- Two really important operations:
 Transform from one frame to another
 Transform geometry (rotate, translate, etc)
- □ Both can be done with matrix operations
- □ In both cases, need homogeneous coordinates

Much of graphics is accomplished via 4x4 matrices
 And: you can compose the matrices and do bunches of things at once (EFFICIENCY)

Silicon Graphics, Inc.

3dfx Voodoo (source: wikipedia)

- $\hfill\square$ Special hardware to do 4x4 matrix operations
- \Box A lot of them (in parallel)

GPUs now

- □ Many, many, many cores
- Each code less powerful than typical CPU core

Our goal

World Space

- World Space is the space defined by the user's coordinate system.
- This space contains the portion of the scene that is transformed into image space by the <u>camera</u> <u>transform</u>.
- Many of the spaces have "bounds", meaning limits on where the space is valid
- □ With world space 2 options:
 - No bounds
 - User specifies the bound

Our goal

How do we specify a camera?

The "viewing pyramid" or "view frustum".

Frustum: In geometry, a frustum (plural: frusta or frustums) is the portion of a solid (normally a cone or pyramid) that lies between two parallel planes cutting it.

class Camera
{
 public:
 double
 double
 double
 double
 double
 double
 double
};

near, far; angle; position[3]; focus[3]; up[3];

Our goal

Our goal

Image Space

- Image Space is the three-dimensional coordinate system that contains screen space.
- □ It is the space where the camera transformation directs its output.
- □ The bounds of *Im*age Space are 3-dimensional cube.

$$\{(x,y,z): -1 \le x \le 1, -1 \le y \le 1, -1 \le z \le 1\}$$

(or $-1 \le z \le 0$)

Image Space Diagram

Our goal

Screen Space

- Screen Space is the intersection of the xy-plane with Image Space.
- Points in image space are mapped into screen
 space by projecting via a parallel projection, onto
 the plane z = 0.
- □ Example:
 - a point (0, 0, z) in image space will project to the center of the display screen

Screen Space Diagram

Our goal

Device Space

- Device Space is the lowest level coordinate system and is the closest to the hardware coordinate systems of the device itself.
- Device space is usually defined to be the n × m array of pixels that represent the area of the screen.
- A coordinate system is imposed on this space by labeling the lower-left-hand corner of the array as (0,0), with each pixel having unit length and width.

Device Space With Depth Information

- Extends Device Space to three dimensions by adding z-coordinate of image space.
- \Box Coordinates are (x, y, z) with
 - $\begin{array}{l} 0 \leq x \leq n \\ 0 \leq y \leq m \\ z \ arbitrary (but typically -1 \leq z \leq +1 \ or \\ -1 \leq z \leq 0 \end{array}$

Easiest Transform

□
$$(x, y, z) \rightarrow (x', y', z')$$
, where
□ $x' = n^*(x+1)/2$
□ $y' = m^*(y+1)/2$
□ $z' = z$
□ (for an n x m image)

Matrix:

(x' 0 0 0) (0 y' 0 0) (0 0 z' 0) (0 0 0 1)

Coming Up on YouTube Lecture

Need to construct a Camera Frame

- Need to construct a matrix to transform <u>points</u> from Cartesian Frame to Camera Frame
 - Transform triangle by transforming its three vertices