
Hank Childs, University of OregonApril 20, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 5: Cameras & Matrices, Project 1E

Midway	Experience

Proposed	Change	to	
Syllabus/Quiz	Structure

Thursday’s	Lecture	– Asynchronous	
(sort	of)

• Links	are	posted	on	class	webpages	to	YouTube	
videos

• These	lectures	are	from	last	offering,	but	I	
rewatched them	and	they	are	still	applicable

• WARNING:	the	1E	overview	video	has	the	wrong	
due	date	– April	27th,	2021,	not	Feb	6th,	2019.

• IMPORTANT:	group	discussion	at	9am	on	Thursday

So	What	Do	We	Do	On	Thursday?

• Watch	YouTube	videos	before	Thursday’s	class
• Call	in	at	9am	on	Thursday
• Group	discussion	of	any	questions	on	cameras

Class	Plan

• Abhishek	and	I	are	working	hard	on	preparing	
Project	2	(OpenGL)

• Projects	will	start	coming	faster
– Want	there	to	time	to	do	great	final	projects

• 1E,	1F:	simpler	coding,	harder	concepts

Current	Plan (1/2)

Week Sun Mon Tues Weds Thurs Fri Sat

4 Lec5,
1E assigned

1D	due Lec 6	(async
/	group	
chat)

5 Lec 7	(shading),	
1F assigned,	
1E	due

Lec 8	(GL),	
2A	assigned

6 1F	due Lec 9	(GL),	
2B assigned

Discussion	
of	final	
projects	/	
Quiz 3

2A	due

7 Lec 11	– ray	
tracing

More	
discussion	
of	final	
projects	(?)

2B	
due

Current	Plan (2/2)

• Weeks	8-10	à you	work	on	final	projects
• Lectures	will	be	on	misc.	topics	in	graphics,	
esp.	in	support	of	final	projects

• Quiz	3	(Week	6):	likely	on	matrices
• Quiz	4	(Week	8):	likely	on	GL
• Quiz	5	(Week	10):	likely	on	topics	in	final	
weeks

Week	4 Office	Hours

Cameras	and	Matrices

• Note:	I	will	be am	repeating	some	of	this	
content	next this	week.

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height

MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices

MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices

Space

¨ A “space” is a set of points
¨ Many types of spaces

Here is a space ‘S’:
the points in the blue shape

We can pick an arbitrary point
in S and call it our “origin.”

O

Consider two directions, D1 and D2.

O
D1

D2

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X2.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X2

Imagine you live at “O” and you want
to get to “X2.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X2

Imagine you live at “O” and you want
to get to “X3.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X3

Imagine you live at “O” and you want
to get to “X4.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X4

Imagine you live at “O” and you want
to get to “X4.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X4

Conventions!

¨ Let (a, b) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2

Where is (-3, 2)?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices

A basis

¨ Paraphrasing Wikipedia:
¨ Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨ Let S be our Shape
¨ B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

¨ The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

¨ The elements of a basis are called basis vectors.

Why unique?

D1

D2

D3

¨ Let (a, b, c) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2
¤ The number of steps ‘c’ in direction D3

¨ Then there is more than one way to get to
some point X in S, i.e.,
¤ (a1, b1, c1) = X and
¤ (a2, b2, c2) = X

What does it mean to form a
basis?

¨ For any vector v, there are unique coordinates (c1,
…, cn) such that
v = c1*v1 + c2*v2 + … + cn*vn

¨ Consider some point P.
¤ This point is relative to some origin O
¤ There is a vector v such that O+v = P
¤ We know we can construct v using a combination of vi’s
¤ Therefore we can represent P using the coordinates (c1,

c2, …, cn)

A basis

¨ Paraphrasing Wikipedia:
¨ Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨ Let S be our Shape
¨ B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

¨ The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

¨ The elements of a basis are called basis vectors.

Most common basis

¨ D1 = X-axis (i.e., (1,0,0)-(0,0,0))
¨ D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
¨ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨ Then the coordinate (2, -3, 5) means
¤ 2 units along X-axis
¤ -3 units along Y-axis
¤ 5 units along Z-axis

But we could have other bases

¨ Instead of “basis 1” (B1)
¤ D1 = X-axis (i.e., (1,0,0)-(0,0,0))
¤ D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
¤ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨ Use “basis 2” (B2)
¤ D1 = Y-axis (i.e., (0,1,0)-(0,0,0))
¤ D2 = X-axis (i.e., (1,0,0)-(0,0,0))
¤ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨ Then (a,b,c) in B1 is the same as (b,a,c) in B2

MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices

Frames

¨ Frame:
¤ A way to place a coordinate system into a specific

location in a space
¤ Basis + reference coordinate (“the origin”)

¨ Cartesian example: (3,4,6)
¤ It is assumed that we are speaking in reference to the

origin location (0,0,0).

Example of Frames

¨ Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨ What are F’s coordinates for the point (6, 6)?

Example of Frames

¨ Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨ What are F’s coordinates for the point (6, 6)?

¨ Answer: (-2, 3)

Each box is a frame, and each
arrow converts to the next frame

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height

Context

¨ Models stored in “world space” frame
¤ Pick an origin, store all points relative to that origin

¨ We have been rasterizing in “device space” frame
¨ Our goal: transform from world space to device

space
¨ We will do this using matrix multiplications

¤ Multiply point by matrix to convert coordinates from
one frame into coordinates in another frame

(x1,y1,z1) à P1

(x2,y2,z2) à P2 (x3,y3,z3) à P3

(1 0 0)

(x1 y1 z1) X (0 1 0) = (x+dx y+dy 1)

(dx dy 1)

But wait! There’s more…

¨ And matrices also useful for more than frame-to-
frame conversions.

¨ So let’s get comfy with matrices (next time).

THIS IS WHERE WE
STOPPED LAST TIME

Matrix

¨ Defined: a rectangular array of numbers (usually)
arranged in rows and columns

¨ Example
¤ 2D matrix
¤ “two by three” (two rows, three columns)

n [3 4 8]
n [-1 9.2 12]

Matrix: wikipedia picture

Matrix

¨ What do you do with matrices?
¨ Lots of things

¤ Transpose, invert, add, subtract

¨ But most of all: multiply!

Multiplying two 2x2 matrices

(a b) (e f) (a*e+b*g a*f+b*h)

(c d) X (g h)
=

(c*e+d*g c*f+d*h)

(a b) (e f) (a*e+b*g a*f+b*h)

X (g h)
=

One usage for matrices:
Let (a, b) be the coordinates of a point
Then the 2x2 matrix can transform (a,b) to a
new location – (a*e+b*g, a*f+b*h)

Multiplying two 2x2 matrices

Identity Matrix

(a b) (1 0) (a b)

X (0 1)
=

(a b) (2 0) (2a b)

X (0 1)
=

(a,b) (2a,b)

Scale in X, not in Y

(a b) (s 0) (sa tb)

X (0 t)
=

Scale in both dimensions

(a,b)

(sa,tb)

(a b) (0 -1) (b -a)

X (1 0)
=

Rotate 90 degrees clockwise

(a,b)

(b,-a)

(a b) (0 1) (-b a)

X (-1 0)
=

Rotate 90 degrees counter-
clockwise

(a,b)
(-b, a)

(a b) (cos(Ω) -sin(Ω)) (cos(Ω)*a + sin(Ω)*b,
-sin(Ω)*a +cos(Ω)*b)

X (sin(Ω) cos(Ω))
=

Rotate “Ω” degrees counter-clockwise

(x,y)(x’, y’)

Ω

Combining transformations

¨ How do we rotate by 90 degrees clockwise and
then scale X by 2?
¤ Answer: multiply by matrix that multiplies by 90

degrees clockwise, then multiple by matrix that scales X
by 2.

¤ But can we do this efficiently?

(0 -1) (2 0) (0 -1)

(1 0)
X

(0 1)
=

(2 0)

Combining transformations

¨ How do we scale X by 2 and then rotate by 90
degrees clockwise?
¤ Answer: multiply by matrix that scales X by 2, then

multiply by matrix that rotates 90 degrees clockwise.

(2 0) (0 -1) (0 -2)

(0 1)
X

(1 0)
=

(1 0)

Rotate then scale
Order matters!!

(0 -1) (2 0) (0 -1)

(1 0)
X

(0 1)
=

(2 0)

Translations

¨ Translation is harder:

(a) (c) (a+c)

(b) + (d)
=

(b+d)

But this doesn’t fit our nice matrix multiply model…
What to do??

Homogeneous Coordinates

(1 0 0)

(x y 1) X (0 1 0) = (x y 1)

(0 0 1)

Add an extra dimension.
A math trick … don’t overthink it.

Homogeneous Coordinates

Translation

We can now fit translation into
our matrix multiplication system.

(1 0 0)

(x y 1) X (0 1 0) = (x+dx y+dy 1)

(dx dy 1)

Graphics

¨ Two really important operations:
¤ Transform from one frame to another
¤ Transform geometry (rotate, translate, etc)

¨ Both can be done with matrix operations
¨ In both cases, need homogeneous coordinates

¨ Much of graphics is accomplished via 4x4 matrices
¤ And: you can compose the matrices and do bunches of

things at once (EFFICIENCY)

3dfx Voodoo
(source: wikipedia)

Early GPUs

¨ Special hardware to do 4x4 matrix operations
¨ A lot of them (in parallel)

GPUs now

¨ Many, many, many cores
¨ Each code less powerful than typical CPU core

STOP HERE – rest on YouTube

¨ Look as a class

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

World Space

¨ World Space is the space defined by the user’s
coordinate system.

¨ This space contains the portion of the scene that is
transformed into image space by the camera
transform.

¨ Many of the spaces have “bounds”, meaning limits
on where the space is valid

¨ With world space 2 options:
¤ No bounds
¤ User specifies the bound

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Camera Transform

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum
(plural: frusta or frustums) is the
portion of a solid (normally a cone
or pyramid) that lies between two
parallel planes cutting it.

What is the up axis?

¨ Up axis is the direction from the base of your nose
to your forehead

Up

What is the up axis?

¨ Up axis is the direction from the base of your nose
to your forehead

+ =

What is the up axis?

¨ Up axis is the direction from the base of your nose
to your forehead

¨ (if you lie down while watching TV, the screen is
sideways)

+ =

Image Space Diagram

Up

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

View Transform

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Image Space

¨ Image Space is the three-dimensional coordinate
system that contains screen space.

¨ It is the space where the camera transformation
directs its output.

¨ The bounds of Image Space are 3-dimensional cube.
{(x,y,z) : −1≤x≤1,−1≤y≤1, −1≤z≤1}

(or −1≤z≤0)

Image Space Diagram

Up

X=1

X = -1

Y=1

Y = -1

Z=1

Z = -1

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Screen Space

¨ Screen Space is the intersection of the xy-plane
with Image Space.

¨ Points in image space are mapped into screen
space by projecting via a parallel projection, onto
the plane z = 0 .

¨ Example:
¤ a point (0, 0, z) in image space will project to the

center of the display screen

Screen Space Diagram

X-1 +1

Y

-1

+1

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Device Space

¨ Device Space is the lowest level coordinate
system and is the closest to the hardware
coordinate systems of the device itself.

¨ Device space is usually defined to be the n × m
array of pixels that represent the area of the
screen.

¨ A coordinate system is imposed on this space by
labeling the lower-left-hand corner of the array
as (0,0), with each pixel having unit length and
width.

Device Space Example

Device Space With Depth
Information

¨ Extends Device Space to three dimensions by
adding z-coordinate of image space.

¨ Coordinates are (x, y, z) with
0 ≤ x ≤ n
0 ≤ y ≤ m
z arbitrary (but typically -1 ≤ z ≤ +1 or

-1 ≤ z ≤ 0)

How do we transform?

¨ For a camera C,
¤ Calculate Camera Frame
¤ From Camera Frame,

calculate Camera Transform
¤ Calculate View Transform
¤ Calculate Device Transform
¤ Compose 3 Matrices into 1

Matrix (M)

¨ For each triangle T, apply
M to each vertex of T, then
apply
rasterization/zbuffer

A

BC

Easiest Transform

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Image Space to Device Space

¨ (x, y, z) à (x’, y’, z’), where
¤ x’ = n*(x+1)/2 = nx/2 + n/2
¤ y’ = m*(y+1)/2 = my/2 + m/2
¤ z’ = z = z
¤ (for an n x m image)

¨ Matrix:
(x y z 1) (n/2 0 0 0)

x (0 m/2 0 0)
(0 0 1 0)
(n/2 m/2 0 1)

More Math Prep

Note: Ken Joy’s graphics
notes are fantastic

http://www.idav.ucdavis.ed
u/education/GraphicsNote

s/homepage.html

What is the norm of a vector?

¨ The norm of a vector is its length
¤ Denoted with || . ||

¨ For a vector A = (A.x, A.y),
||A|| = sqrt(A.x*A.x+A.y*A.y)

¨ Physical interpretation:

¨ For 3D, ||A|| = sqrt(A.x*A.x+A.y*A.y+A.z*A.z)

(A.x,A.y)
||A||

y

x

What does it means for a
vector to be normalized?

¨ The vector A is normalized if ||A|| = 1.
¤ This is also called a unit vector.

¨ To obtain a normalized vector, take A/||A||

¨ Many of the operations we will discuss today will
only work correctly with normalized vectors.

¨ Example: A=(3,4,0). Then:
¤ ||A|| = 5
¤ A/||A|| = (0.6, 0.8, 0)

What is a dot product?

¨ A.B = A.x*B.x + A.y*B.y
¤ (or A.x*B.x + A.y*B.y + A.z*B.z)

¨ Physical interpretation:
¤ A.B = cos(α)*(||A||*||B||)

A = (A.x,A.y)B = (B.x, B.y)

α

What is the cross product?

¨ AxB = (A.y*B.z - A.z*B.y,
B.x*A.z - A.x*B.z,
A.x*B.y - A.y*B.x)

¨ What is the physical interpretation of a cross
product?
¤ Finds a vector perpendicular to both A and B.

Homogeneous Coordinates

¨ Defined: a system of coordinates used in projective
geometry, as Cartesian coordinates are used in
Euclidean geometry

¨ Primary uses:
¤ 4 × 4 matrices to represent general 3-dimensional

transformations
¤ it allows a simplified representation of mathematical

functions – the rational form – in which rational
polynomial functions can be simply represented

¨ We only care about the first
¤ I don’t really even know what the second use means

Interpretation of
Homogeneous Coordinates

¨ 4D points: (x, y, z, w)
¨ Our typical frame: (x, y, z, 1)

¨ 4D points: (x, y, z, w)
¨ Our typical frame: (x, y, z, 1)

Our typical frame in the context of 4D points

So how to treat
points not along
the w=1 line?

Interpretation of
Homogeneous Coordinates

Projecting back to w=1 line

¨ Let P = (x, y, z, w) be a 4D point with w != 1
¨ Goal: find P’ = (x’, y’, z’, 1) such P projects to P’

¤ (We have to define what it means to project)

¨ Idea for projection:
¤ Draw line from P to origin.
¤ If Q is along that line (and Q.w == 1), then Q is a

projection of P

Projecting back to w==1 line

¨ Idea for projection:
¤ Draw line from P to origin.
¤ If Q is along that line (and Q.w == 1), then Q is a

projection of P

So what is Q?

¨ Similar triangles argument:
¤ x’ = x/w
¤ y’ = y/w
¤ z’ = z/w

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O -Z

¨ Need to construct a Camera Frame
¨ Need to construct a matrix to transform points from

Cartesian Frame to Camera Frame
¤ Transform triangle by transforming its three vertices

Basis pt 2
(more linear algebra-y this time)

¨ Camera frame must be a basis:
¤ Spans space … can get any point through a linear

combination of basis vectors
¤ Every member must be linearly independent

n à we didn’t talk about this much on Thursday.
n linearly independent means that no basis vector can be

represented via others
n Repeat slide (coming up) shows linearly *dependent* vectors

(REPEAT) Why unique?

D1

D2

D3

¨ Let (a, b, c) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2
¤ The number of steps ‘c’ in direction D3

¨ Then there is more than one way to get to
some point X in S, i.e.,
¤ (a1, b1, c1) = X and
¤ (a2, b2, c2) = X

Camera frame construction

¨ Must choose (u,v,w,O)

¨ O = camera position
¨ w = O-focus

¤ Not “focus-O”, since we want to look down -Z

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O
-Z

Camera frame construction

¨ Must choose (u,v,w,O)

¨ O = camera position
¨ w = O-focus
¨ v = up
¨ u = up x (O-focus)

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O
-Z

But wait … what if dot(v2,v3) != 0?

¨ We can get around this with two cross products:
¤ u = Up x (O-focus)
¤ v = (O-focus) x u

O-focus

Up

Camera frame summarized

¨ O = camera position
¨ u = Up x (O-focus)
¨ v = (O-focus) x u
¨ w = O-focus

¨ Important note:
u, v, and w need to be
normalized!

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O -Z

¨ Need to construct a Camera Frame ß ✔

¨ Need to construct a matrix to transform points from
Cartesian Frame to Camera Frame
¤ Transform triangle by transforming its three vertices

This Will Come Up Later

¨ Consider the meaning of Cartesian coordinates
(x,y,z):

[x y z 1][<1,0,0>]
[<0,1,0>] = (x,y,z)
[<0,0,1>]
[(0,0,0)]

The Two Frames of the Camera
Transform

¨ Our two frames:

¨ Cartesian:
¨ <1,0,0>
¨ <0,1,0>
¨ <0,0,1>
¨ (0,0,0)

¨ Camera:
¨ u = up x (O-focus)
¨ v = (O-focus) x u
¨ w = (O-focus)
¨ O

The Two Frames of the Camera
Transform

¨ Our two frames:

¨ Cartesian:
¨ <1,0,0>
¨ <0,1,0>
¨ <0,0,1>
¨ (0,0,0)

¨ Camera:
¨ u = up x (O-focus)
¨ v = (O-focus) x u
¨ w = (O-focus)
¨ O

The “Camera Frame” is a Frame, so we can express any
Cartesian vector as a combination of u, v, w.

Converting From Cartesian
Frame To Camera Frame

¨ The Cartesian vector <1,0,0> can be represented as
some combination of the Camera Frame’s basis
functions u, v, w:
¤ <1,0,0> = e1,1 * u + e1,2 * v + e1,3 * w

¨ So can the Cartesian vector <0,1,0>
¤ <0,1,0> = e2,1 * u + e2,2 * v + e2,3 * w

¨ So can the Cartesian vector <0,0,1>
¤ <0,0,1> = e3,1 * u + e3,2 * v + e3,3 * w

¨ So can the vector: Cartesian Frame origin – Camera Frame origin

¤ (0,0,0) - O = e4,1 * u + e4,2 * v + e4,3 * w à
¤ (0,0,0) = e4,1 * u + e4,2 * v + e4,3 * w + O

Putting Our Equations Into
Matrix Form

¨ <1,0,0> = e1,1 * u + e1,2 * v + e1,3 * w
¨ <0,1,0> = e2,1 * u + e2,2 * v + e2,3 * w
¨ <0,0,1> = e3,1 * u + e3,2 * v + e3,3 * w
¨ (0,0,0) = e4,1 * u + e4,2 * v + e4,3 * w + O
¨ à

¨ [<1,0,0>] [e1,1 e1,2 e1,3 0] [u]
¨ [<0,1,0>] [e2,1 e2,2 e2,3 0] [v]
¨ [<0,0,1>] = [e3,1 e3,2 e3,3 0] [w]
¨ (0,0,0) [e4,1 e4,2 e4,3 1] [O]

Here Comes The Trick…

¨ Consider the meaning of Cartesian coordinates
(x,y,z):

[x y z 1][<1,0,0>]
[<0,1,0>] = (x,y,z)
[<0,0,1>]
[(0,0,0)]

But:
[<1,0,0>] [e1,1 e1,2 e1,3 0] [u]
[<0,1,0>] [e2,1 e2,2 e2,3 0] [v]
[<0,0,1>] = [e3,1 e3,2 e3,3 0] [w]
(0,0,0) [e4,1 e4,2 e4,3 1] [O]

Here Comes The Trick…

But:
[<1,0,0>] [e1,1 e1,2 e1,3 0] [u]

[x y z 1][<0,1,0>] [x y z 1] [e2,1 e2,2 e2,3 0] [v]
[<0,0,1>] = [e3,1 e3,2 e3,3 0] [w]

[(0,0,0)] [e4,1 e4,2 e4,3 1] [O]

Coordinates of (x,y,z) with respect
to Cartesian frame.

Coordinates of (x,y,z) with respect
to Camera frame.
So this matrix is the camera transform!!

And Cramer’s Rule Can Solve
This, For Example…

(u == v1, v == v2, w == v3 from previous slide)

Solving the Camera Transform

[e1,1 e1,2 e1,3 0] [u.x v.x w.x 0]
[e2,1 e2,2 e2,3 0] [u.y v.y w.y 0]
[e3,1 e3,2 e3,3 0] = [u.z v.z w.z 0]
[e4,1 e4,2 e4,3 1] [u.t v.t w.t 1]
Where t = (0,0,0)-O
How do we know?: Cramer’s Rule + simplifications
Want to derive?:

http://www.idav.ucdavis.edu/education/
GraphicsNotes/Camera-Transform/Camera-
Transform.html

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height

View Transform

View Transformation

w = +1 w = -1
v = -1

v = +1

The viewing transformation is not a combination of simple translations,
rotations, scales or shears: it is more complex.

Derivation of Viewing
Transformation

¨ I personally don’t think it is a good use of class time
to derive this matrix.

¨ Well derived at:
¤ http://www.idav.ucdavis.edu/education/GraphicsNotes

/Viewing-Transformation/Viewing-Transformation.html

The View Transformation

¨ Input parameters: (α, n, f)
¨ Transforms view frustum to image space cube

¤ View frustum: bounded by viewing pyramid and planes
z=-n and z=-f

¤ Image space cube: -1 <= u,v,w <= 1

¤ Cotangent = 1/tangent

[cot(α/2) 0 0 0]
[0 cot(α/2) 0 0]
[0 0 (f+n)/(f-n) -1]
[0 0 2fn/(f-n) 0]

Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[cot(α/2) 0 0 0]
[0 cot(α/2) 0 0]
[0 0 (f+n)/(f-n) -1]
[0 0 2fn/(f-n) 0]

n=5

f=10

Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1 0 0 0]
[0 1 0 0]
[0 0 3 -1]
[0 0 20 0]

n=5

f=10

Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1 0 0 0]
[0 1 0 0]
[0 0 3 -1]
[0 0 20 0]

n=5

f=10

Let’s multiply some points:
(0,7,-6,1)
(0,7,-8,1)

Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1 0 0 0]
[0 1 0 0]
[0 0 3 -1]
[0 0 20 0]

n=5

f=10

Let’s multiply some points:
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)

Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1 0 0 0]
[0 1 0 0]
[0 0 3 -1]
[0 0 20 0]

n=5

f=10

More points:
(0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2)
(0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1)
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)
(0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1)
(0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18)

View Transformation

w = +1 w = -1
v = -1

v = +1

The viewing transformation is not a combination of simple translations,
rotations, scales or shears: it is more complex.

View Transformation

w = +1 w = -1

v = +1

v = -1

(0,1.75, 2)

(0,0.88,-0.5)

(0,0.7,-1)

(0,0.63,-1.18)

(0,1.4, 1)

(0,1.16, 0.33)

Note there is a non-linear
relationship in W (“Z”).

More points:
(0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2)
(0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1)
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) = (0, 0.88, -0.5)
(0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1)
(0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18)

Putting It All Together

How do we transform?

¨ For a camera C,
¤ Calculate Camera Frame
¤ From Camera Frame,

calculate Camera Transform
¤ Calculate View Transform
¤ Calculate Device Transform
¤ Compose 3 Matrices into 1

Matrix (M)

¨ For each triangle T, apply
M to each vertex of T, then
apply
rasterization/zbuffer

Project 1E

Project #1E (6%),
Due Tues April 27th

¨ Goal: add arbitrary
camera positions

¨ Extend your project1D
code

¨ New: proj1e_geometry.vtk
available on web (9MB),
“reader1e.cxx”.

¨ New: Matrix.cxx,
Camera.cxx

¨ No Cmake, project1E.cxx

Project #1E, expanded

¨ Matrix.cxx: complete
¨ Methods:

class Matrix
{

public:
double A[4][4];

void TransformPoint(const double *ptIn, double *ptOut);
static Matrix ComposeMatrices(const Matrix &, const Matrix &);
void Print(ostream &o);

};

Project #1E, expanded

¨ Camera.cxx: you work on this
class Camera
{

public:
double near, far;
double angle;
double position[3];
double focus[3];
double up[3];

Matrix ViewTransform(void) {;};
Matrix CameraTransform(void) {;};
Matrix DeviceTransform(void) {;};
// Will probably need something for calculating Camera Frame as well

};

Also: GetCamera(int frame, int nFrames)

Project #1E, deliverables

¨ Same as usual, but times 4
¤ 4 images, corresponding to

n GetCamera(0, 1000)
n GetCamera(250,1000)
n GetCamera(500,1000)
n GetCamera(750,1000)

¨ If you want:
¤ Generate all thousand images, make a movie

n Then you should wait for 1F. Then we will have shading too.

Project #1E, game plan

vector<Triangle> t = GetTriangles();
AllocateScreen();
for (int i = 0 ; i < 4 ; i++)
{ int f = 250*i;

InitializeScreen();
Camera c = GetCamera(f, 1000);
TransformTrianglesToDeviceSpace(); // involves setting up and applying matrices

//… if you modify vector<Triangle> t,
// remember to undo it later

RenderTriangles();
SaveImage();

}

Correct answers given for
GetCamera(0, 1000)

Camera Frame: U = 0, 0.707107, -0.707107
Camera Frame: V = -0.816497, 0.408248, 0.408248
Camera Frame: W = 0.57735, 0.57735, 0.57735
Camera Frame: O = 40, 40, 40
Camera Transform
(0.0000000 -0.8164966 0.5773503 0.0000000)
(0.7071068 0.4082483 0.5773503 0.0000000)
(-0.7071068 0.4082483 0.5773503 0.0000000)
(0.0000000 0.0000000 -69.2820323 1.0000000)
View Transform
(3.7320508 0.0000000 0.0000000 0.0000000)
(0.0000000 3.7320508 0.0000000 0.0000000)
(0.0000000 0.0000000 1.0512821 -1.0000000)
(0.0000000 0.0000000 10.2564103 0.0000000)
Transformed 37.1132, 37.1132,37.1132, 1 to 0, 0,1
Transformed -75.4701, -75.4701,-75.4701, 1 to 0, 0,-1

Project #1E pitfalls

¨ All vertex multiplications use 4D points. Make
sure you send in 4D points for input and output,
or you will get weird memory errors.
¤ Make sure you divide by w.

Project #1E, pitfalls

¨ People often get a matrix confused with its
transpose. Use the method Matrix::Print() to
make sure the matrix you are setting up is what
you think it should be. Also, remember the
points are left multiplied, not right multiplied.

¨ Regarding multiple renderings:
¤Don’t forget to initialize the screen between each

render
¤ If you modify the triangle in place to render, don’t

forget to switch it back at the end of the render

Project #1F (8%),
Due Monday May 3rd

¨ Goal: add shading, movie

