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CIS 441/541: Intro to Computer Graphics
Lecture 5: Cameras & Matrices, Project 1E



Midway	Experience



Proposed	Change	to	
Syllabus/Quiz	Structure



Thursday’s	Lecture	– Asynchronous	
(sort	of)

• Links	are	posted	on	class	webpages	to	YouTube	
videos

• These	lectures	are	from	last	offering,	but	I	
rewatched them	and	they	are	still	applicable

• WARNING:	the	1E	overview	video	has	the	wrong	
due	date	– April	27th,	2021,	not	Feb	6th,	2019.

• IMPORTANT:	group	discussion	at	9am	on	Thursday



So	What	Do	We	Do	On	Thursday?

• Watch	YouTube	videos	before	Thursday’s	class
• Call	in	at	9am	on	Thursday
• Group	discussion	of	any	questions	on	cameras



Class	Plan

• Abhishek	and	I	are	working	hard	on	preparing	
Project	2	(OpenGL)

• Projects	will	start	coming	faster
– Want	there	to	time	to	do	great	final	projects

• 1E,	1F:	simpler	coding,	harder	concepts



Current	Plan (1/2)

Week Sun Mon Tues Weds Thurs Fri Sat

4 Lec5,
1E assigned

1D	due Lec 6	(async
/	group	
chat)

5 Lec 7	(shading),	
1F assigned,	
1E	due

Lec 8	(GL),	
2A	assigned

6 1F	due Lec 9	(GL),	
2B assigned

Discussion	
of	final	
projects	/	
Quiz 3

2A	due

7 Lec 11	– ray	
tracing

More	
discussion	
of	final	
projects	(?)

2B	
due



Current	Plan (2/2)

• Weeks	8-10	à you	work	on	final	projects
• Lectures	will	be	on	misc.	topics	in	graphics,	
esp.	in	support	of	final	projects

• Quiz	3	(Week	6):	likely	on	matrices
• Quiz	4	(Week	8):	likely	on	GL
• Quiz	5	(Week	10):	likely	on	topics	in	final	
weeks



Week	4 Office	Hours



Cameras	and	Matrices

• Note:	I	will	be am	repeating	some	of	this	
content	next this	week.



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height



MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices



MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices



Space

¨ A “space” is a set of points
¨ Many types of spaces



Here is a space ‘S’:
the points in the blue shape



We can pick an arbitrary point 
in S and call it our “origin.”

O



Consider two directions, D1 and D2.   

O
D1

D2



Imagine you live at “O” and you want 
to get to “X.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X
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Imagine you live at “O” and you want 
to get to “X.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X



Imagine you live at “O” and you want 
to get to “X2.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X2



Imagine you live at “O” and you want 
to get to “X2.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X2



Imagine you live at “O” and you want 
to get to “X3.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X3



Imagine you live at “O” and you want 
to get to “X4.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X4



Imagine you live at “O” and you want 
to get to “X4.”  Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X4



Conventions!

¨ Let (a, b) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2



Where is (-3, 2)?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2



MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices



A basis

¨ Paraphrasing Wikipedia: 
¨ Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨ Let S be our Shape
¨ B is a basis for S if every element of S can be 

written as a unique linear combination of elements 
of B.

¨ The coefficients of this linear combination are 
referred to as components or coordinates on B of 
the vector. 

¨ The elements of a basis are called basis vectors.



Why unique?

D1

D2

D3

¨ Let (a, b, c) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2
¤ The number of steps ‘c’ in direction D3

¨ Then there is more than one way to get to 
some point X in S, i.e.,
¤ (a1, b1, c1) = X    and
¤ (a2, b2, c2) = X



What does it mean to form a 
basis?

¨ For any vector v, there are unique coordinates (c1, 
…, cn) such that
v = c1*v1 + c2*v2 + … + cn*vn

¨ Consider some point P.
¤ This point is relative to some origin O
¤ There is a vector v such that O+v = P
¤ We know we can construct v using a combination of vi’s
¤ Therefore we can represent P using the coordinates (c1, 

c2, …, cn)



A basis

¨ Paraphrasing Wikipedia: 
¨ Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨ Let S be our Shape
¨ B is a basis for S if every element of S can be 

written as a unique linear combination of elements 
of B.

¨ The coefficients of this linear combination are 
referred to as components or coordinates on B of 
the vector. 

¨ The elements of a basis are called basis vectors.



Most common basis

¨ D1 = X-axis   (i.e., (1,0,0)-(0,0,0))
¨ D2 = Y-axis   (i.e., (0,1,0)-(0,0,0))
¨ D3 = Z-axis   (i.e., (0,0,1)-(0,0,0))

¨ Then the coordinate (2, -3, 5) means
¤ 2 units along X-axis
¤ -3 units along Y-axis
¤ 5 units along Z-axis



But we could have other bases

¨ Instead of “basis 1” (B1)
¤ D1 = X-axis   (i.e., (1,0,0)-(0,0,0))
¤ D2 = Y-axis   (i.e., (0,1,0)-(0,0,0))
¤ D3 = Z-axis   (i.e., (0,0,1)-(0,0,0))

¨ Use “basis 2” (B2)
¤ D1 = Y-axis   (i.e., (0,1,0)-(0,0,0))
¤ D2 = X-axis   (i.e., (1,0,0)-(0,0,0))
¤ D3 = Z-axis   (i.e., (0,0,1)-(0,0,0))

¨ Then (a,b,c) in B1 is the same as (b,a,c) in B2



MATH!

¨ Concepts coming:
¤ Spaces
¤ Basis
¤ Coordinates
¤ Frames
¤ Matrices



Frames

¨ Frame:
¤ A way to place a coordinate system into a specific 

location in a space
¤ Basis + reference coordinate (“the origin”)

¨ Cartesian example: (3,4,6)
¤ It is assumed that we are speaking in reference to the 

origin location (0,0,0).



Example of Frames

¨ Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨ What are F’s coordinates for the point (6, 6)?



Example of Frames

¨ Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨ What are F’s coordinates for the point (6, 6)?

¨ Answer: (-2, 3)



Each box is a frame, and each 
arrow converts to the next frame

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height



Context

¨ Models stored in “world space” frame
¤ Pick an origin, store all points relative to that origin

¨ We have been rasterizing in “device space” frame
¨ Our goal: transform from world space to device 

space
¨ We will do this using matrix multiplications

¤ Multiply point by matrix to convert coordinates from 
one frame into coordinates in another frame



(x1,y1,z1) à P1

(x2,y2,z2) à P2 (x3,y3,z3) à P3

(1    0    0)            

(x1    y1     z1)   X (0    1    0)   = (x+dx y+dy 1)

(dx  dy 1) 



But wait! There’s more…

¨ And matrices also useful for more than frame-to-
frame conversions.

¨ So let’s get comfy with matrices (next time).



THIS IS WHERE WE 
STOPPED LAST TIME



Matrix

¨ Defined: a rectangular array of numbers (usually) 
arranged in rows and columns

¨ Example
¤ 2D matrix
¤ “two by three” (two rows, three columns)

n [3    4    8]
n [-1 9.2 12]



Matrix: wikipedia picture



Matrix

¨ What do you do with matrices?
¨ Lots of things

¤ Transpose, invert, add, subtract

¨ But most of all: multiply!



Multiplying two 2x2 matrices

(a   b)        (e    f)          (a*e+b*g     a*f+b*h)

(c   d) X (g    h)   
=

(c*e+d*g      c*f+d*h)



(a   b)        (e    f)          (a*e+b*g     a*f+b*h)

X (g    h)   
=

One usage for matrices:
Let (a, b) be the coordinates of a point
Then the 2x2 matrix can transform (a,b) to a  
new location – (a*e+b*g, a*f+b*h)

Multiplying two 2x2 matrices



Identity Matrix

(a   b)        (1 0)          (a    b)

X (0    1)   
=



(a   b)        (2    0)          (2a    b)

X (0    1)   
=

(a,b) (2a,b)

Scale in X, not in Y



(a   b)        (s 0)          (sa tb)

X (0    t)   
=

Scale in both dimensions

(a,b)

(sa,tb)



(a   b)        (0   -1)          (b    -a)

X (1    0)   
=

Rotate 90 degrees clockwise

(a,b)

(b,-a)



(a   b)        (0     1)          (-b    a)

X (-1    0)   
=

Rotate 90 degrees counter-
clockwise

(a,b)
(-b, a)



(a   b)        (cos(Ω) -sin(Ω))          (cos(Ω)*a + sin(Ω)*b,
-sin(Ω)*a +cos(Ω)*b)

X (sin(Ω) cos(Ω))   
=

Rotate “Ω” degrees counter-clockwise

(x,y)(x’, y’)

Ω



Combining transformations

¨ How do we rotate by 90 degrees clockwise and 
then scale X by 2?
¤ Answer: multiply by matrix that multiplies by 90 

degrees clockwise, then multiple by matrix that scales X 
by 2.

¤ But can we do this efficiently?

(0   -1)           (2    0)          (0     -1)

(1   0) 
X 

(0    1)   
=

(2      0)



Combining transformations

¨ How do we scale X by 2 and then rotate by 90 
degrees clockwise?
¤ Answer: multiply by matrix that scales X by 2, then 

multiply by matrix that rotates 90 degrees clockwise.

(2   0)          (0   -1)          (0     -2)

(0   1) 
X 

(1    0)   
=

(1      0)

Rotate then scale
Order matters!!

(0   -1)           (2    0)          (0     -1)

(1   0) 
X 

(0    1)   
=

(2      0)



Translations

¨ Translation is harder:

(a)           (c)          (a+c)

(b) + (d)   
=

(b+d)

But this doesn’t fit our nice matrix multiply model…
What to do??



Homogeneous Coordinates

(1   0    0)

(x    y     1) X   (0   1    0)   = (x       y      1)

(0   0    1) 

Add an extra dimension.
A math trick … don’t overthink it.



Homogeneous Coordinates

Translation

We can now fit translation into 
our matrix multiplication system.

(1    0    0)            

(x    y     1)   X   (0    1    0)   = (x+dx y+dy 1)

(dx  dy 1) 



Graphics

¨ Two really important operations:
¤ Transform from one frame to another
¤ Transform geometry (rotate, translate, etc)

¨ Both can be done with matrix operations
¨ In both cases, need homogeneous coordinates

¨ Much of graphics is accomplished via 4x4 matrices
¤ And: you can compose the matrices and do bunches of 

things at once (EFFICIENCY) 





3dfx Voodoo 
(source: wikipedia)



Early GPUs

¨ Special hardware to do 4x4 matrix operations
¨ A lot of them (in parallel)



GPUs now

¨ Many, many, many cores
¨ Each code less powerful than typical CPU core



STOP HERE – rest on YouTube

¨ Look as a class



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height



World Space

¨ World Space is the space defined by the user’s 
coordinate system.

¨ This space contains the portion of the scene that is 
transformed into image space by the camera 
transform. 

¨ Many of the spaces have “bounds”, meaning limits 
on where the space is valid

¨ With world space 2 options:
¤ No bounds
¤ User specifies the bound



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height

Camera Transform



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height



How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum 
(plural: frusta or frustums) is the 
portion of a solid (normally a cone 
or pyramid) that lies between two 
parallel planes cutting it.



What is the up axis?

¨ Up axis is the direction from the base of your nose 
to your forehead

Up



What is the up axis?

¨ Up axis is the direction from the base of your nose 
to your forehead

+ =



What is the up axis?

¨ Up axis is the direction from the base of your nose 
to your forehead

¨ (if you lie down while watching TV, the screen is 
sideways)

+ =



Image Space Diagram

Up



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height

View Transform



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height



Image Space

¨ Image Space is the three-dimensional coordinate 
system that contains screen space. 

¨ It is the space where the camera transformation 
directs its output.

¨ The bounds of Image Space are 3-dimensional cube. 
{(x,y,z) : −1≤x≤1,−1≤y≤1, −1≤z≤1} 

(or −1≤z≤0)



Image Space Diagram

Up

X=1

X = -1

Y=1

Y = -1

Z=1

Z = -1



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height



Screen Space

¨ Screen Space is the intersection of the xy-plane 
with Image Space. 

¨ Points in image space are mapped into screen 
space by projecting via a parallel projection, onto 
the plane z = 0 .

¨ Example:
¤ a point (0, 0, z) in image space will project to the 

center of the display screen 



Screen Space Diagram

X-1 +1

Y

-1

+1



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height



Device Space

¨ Device Space is the lowest level coordinate 
system and is the closest to the hardware 
coordinate systems of the device itself.

¨ Device space is usually defined to be the n × m 
array of pixels that represent the area of the 
screen. 

¨ A coordinate system is imposed on this space by 
labeling the lower-left-hand corner of the array 
as (0,0), with each pixel having unit length and 
width. 



Device Space Example



Device Space With Depth 
Information

¨ Extends Device Space to three dimensions by 
adding z-coordinate of image space.

¨ Coordinates are (x, y, z) with 
0 ≤ x ≤ n
0 ≤ y ≤ m 
z arbitrary (but typically -1 ≤ z ≤ +1 or

-1 ≤ z ≤ 0 ) 



How do we transform?

¨ For a camera C,
¤ Calculate Camera Frame
¤ From Camera Frame, 

calculate Camera Transform
¤ Calculate View Transform
¤ Calculate Device Transform
¤ Compose 3 Matrices into 1 

Matrix (M)

¨ For each triangle T, apply 
M to each vertex of T, then 
apply 
rasterization/zbuffer

A

BC



Easiest Transform

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height



Image Space to Device Space

¨ (x, y, z) à ( x’, y’, z’), where
¤ x’ = n*(x+1)/2 = nx/2 + n/2
¤ y’ = m*(y+1)/2 = my/2 + m/2
¤ z’ = z = z
¤ (for an n x m image)

¨ Matrix:
(x    y    z    1) (n/2      0       0     0)

x   (0      m/2       0     0) 
(0        0      1      0)
(n/2  m/2   0     1)



More Math Prep

Note: Ken Joy’s graphics 
notes are fantastic

http://www.idav.ucdavis.ed
u/education/GraphicsNote

s/homepage.html



What is the norm of a vector?

¨ The norm of a vector is its length
¤ Denoted with || . ||

¨ For a vector A = (A.x, A.y), 
||A|| = sqrt(A.x*A.x+A.y*A.y)

¨ Physical interpretation:

¨ For 3D, ||A|| = sqrt(A.x*A.x+A.y*A.y+A.z*A.z)

(A.x,A.y)
||A||

y

x



What does it means for a 
vector to be normalized?

¨ The vector A is normalized if ||A|| = 1.
¤ This is also called a unit vector.

¨ To obtain a normalized vector, take A/||A||

¨ Many of the operations we will discuss today will 
only work correctly with normalized vectors.

¨ Example: A=(3,4,0).  Then:
¤ ||A|| = 5
¤ A/||A|| = (0.6, 0.8, 0)



What is a dot product?

¨ A.B = A.x*B.x + A.y*B.y
¤ (or A.x*B.x + A.y*B.y + A.z*B.z)

¨ Physical interpretation:
¤ A.B = cos(α)*(||A||*||B||)

A = (A.x,A.y)B = (B.x, B.y)

α



What is the cross product?

¨ AxB = (A.y*B.z - A.z*B.y, 
B.x*A.z - A.x*B.z, 
A.x*B.y - A.y*B.x)

¨ What is the physical interpretation of a cross 
product?
¤ Finds a vector perpendicular to both A and B. 



Homogeneous Coordinates

¨ Defined: a system of coordinates used in projective 
geometry, as Cartesian coordinates are used in 
Euclidean geometry

¨ Primary uses:
¤ 4 × 4 matrices to represent general 3-dimensional 

transformations
¤ it allows a simplified representation of mathematical 

functions – the rational form – in which rational 
polynomial functions can be simply represented

¨ We only care about the first
¤ I don’t really even know what the second use means



Interpretation of 
Homogeneous Coordinates

¨ 4D points: (x, y, z, w)
¨ Our typical frame: (x, y, z, 1)



¨ 4D points: (x, y, z, w)
¨ Our typical frame: (x, y, z, 1)

Our typical frame in the context of 4D points

So how to treat 
points not along 
the w=1 line?

Interpretation of 
Homogeneous Coordinates



Projecting back to w=1 line

¨ Let P = (x, y, z, w) be a 4D point with w != 1
¨ Goal: find P’ = (x’, y’, z’, 1) such P projects to P’

¤ (We have to define what it means to project)

¨ Idea for projection:
¤ Draw line from P to origin.
¤ If Q is along that line (and Q.w == 1), then Q is a 

projection of P



Projecting back to w==1 line

¨ Idea for projection:
¤ Draw line from P to origin.
¤ If Q is along that line (and Q.w == 1), then Q is a 

projection of P



So what is Q?

¨ Similar triangles argument:
¤ x’ = x/w
¤ y’ = y/w
¤ z’ = z/w



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O -Z

¨ Need to construct a Camera Frame
¨ Need to construct a matrix to transform points from 

Cartesian Frame to Camera Frame
¤ Transform triangle by transforming its three vertices



Basis pt 2 
(more linear algebra-y this time)

¨ Camera frame must be a basis:
¤ Spans space … can get any point through a linear 

combination of basis vectors
¤ Every member must be linearly independent

n à we didn’t talk about this much on Thursday.
n linearly independent means that no basis vector can be 

represented via others
n Repeat slide (coming up) shows linearly *dependent* vectors



(REPEAT) Why unique?

D1

D2

D3

¨ Let (a, b, c) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2
¤ The number of steps ‘c’ in direction D3

¨ Then there is more than one way to get to 
some point X in S, i.e.,
¤ (a1, b1, c1) = X    and
¤ (a2, b2, c2) = X



Camera frame construction

¨ Must choose (u,v,w,O)

¨ O = camera position
¨ w = O-focus

¤ Not “focus-O”, since we want to look down -Z

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O
-Z



Camera frame construction

¨ Must choose (u,v,w,O)

¨ O = camera position
¨ w = O-focus
¨ v = up 
¨ u = up x (O-focus)

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O
-Z



But wait … what if dot(v2,v3) != 0?

¨ We can get around this with two cross products:
¤ u = Up x (O-focus)
¤ v = (O-focus) x u

O-focus

Up



Camera frame summarized

¨ O = camera position
¨ u = Up x (O-focus)
¨ v = (O-focus) x u
¨ w = O-focus

¨ Important note:          
u, v, and w need to be 
normalized!



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O -Z

¨ Need to construct a Camera Frame ß ✔

¨ Need to construct a matrix to transform points from 
Cartesian Frame to Camera Frame
¤ Transform triangle by transforming its three vertices



This Will Come Up Later

¨ Consider the meaning of Cartesian coordinates 
(x,y,z):

[x y z 1][<1,0,0>]
[<0,1,0>]   = (x,y,z)
[<0,0,1>]
[(0,0,0)]



The Two Frames of the Camera 
Transform

¨ Our two frames:

¨ Cartesian:
¨ <1,0,0>
¨ <0,1,0>
¨ <0,0,1>
¨ (0,0,0)

¨ Camera:
¨ u = up x (O-focus)
¨ v = (O-focus) x u
¨ w = (O-focus)
¨ O



The Two Frames of the Camera 
Transform

¨ Our two frames:

¨ Cartesian:
¨ <1,0,0>
¨ <0,1,0>
¨ <0,0,1>
¨ (0,0,0)

¨ Camera:
¨ u = up x (O-focus)
¨ v = (O-focus) x u
¨ w = (O-focus)
¨ O

The “Camera Frame” is a Frame, so we can express any 
Cartesian vector as a combination of u, v, w.



Converting From Cartesian 
Frame To Camera Frame

¨ The Cartesian vector <1,0,0> can be represented as 
some combination of the Camera Frame’s basis 
functions u, v, w:
¤ <1,0,0> = e1,1 * u + e1,2 * v + e1,3 * w

¨ So can the Cartesian vector <0,1,0>
¤ <0,1,0> = e2,1 * u + e2,2 * v + e2,3 * w

¨ So can the Cartesian vector <0,0,1>
¤ <0,0,1> = e3,1 * u + e3,2 * v + e3,3 * w

¨ So can the vector: Cartesian Frame origin – Camera Frame origin

¤ (0,0,0) - O = e4,1 * u + e4,2 * v + e4,3 * w à
¤ (0,0,0) = e4,1 * u + e4,2 * v + e4,3 * w + O



Putting Our Equations Into 
Matrix Form

¨ <1,0,0> = e1,1 * u + e1,2 * v + e1,3 * w
¨ <0,1,0> = e2,1 * u + e2,2 * v + e2,3 * w
¨ <0,0,1> = e3,1 * u + e3,2 * v + e3,3 * w
¨ (0,0,0) = e4,1 * u + e4,2 * v + e4,3 * w + O
¨ à

¨ [<1,0,0>]        [e1,1    e1,2    e1,3   0] [u]
¨ [<0,1,0>]        [e2,1    e2,2    e2,3   0] [v]
¨ [<0,0,1>]    =  [e3,1    e3,2    e3,3   0] [w]
¨ (0,0,0)             [e4,1    e4,2    e4,3   1] [O]



Here Comes The Trick…

¨ Consider the meaning of Cartesian coordinates 
(x,y,z):

[x y z 1][<1,0,0>]
[<0,1,0>]   = (x,y,z)
[<0,0,1>]
[(0,0,0)]

But:
[<1,0,0>]        [e1,1    e1,2    e1,3   0] [u]
[<0,1,0>]        [e2,1    e2,2    e2,3   0] [v]
[<0,0,1>]    =  [e3,1    e3,2    e3,3   0] [w]
(0,0,0)             [e4,1    e4,2    e4,3   1] [O]



Here Comes The Trick…

But:
[<1,0,0>]                     [e1,1    e1,2    e1,3   0] [u]

[x y z 1][<0,1,0>]        [x y z 1] [e2,1    e2,2    e2,3   0] [v]
[<0,0,1>]    =               [e3,1    e3,2    e3,3   0] [w]

[(0,0,0)]                        [e4,1    e4,2    e4,3   1] [O]

Coordinates of (x,y,z) with respect
to Cartesian frame.

Coordinates of (x,y,z) with respect
to Camera frame.
So this matrix is the camera transform!!



And Cramer’s Rule Can Solve 
This, For Example…

(u == v1, v == v2, w == v3 from previous slide)



Solving the Camera Transform

[e1,1    e1,2    e1,3   0]     [u.x v.x w.x 0]
[e2,1    e2,2    e2,3   0]     [u.y v.y w.y 0]
[e3,1    e3,2    e3,3   0] = [u.z v.z w.z 0]
[e4,1    e4,2    e4,3   1]     [u.t v.t w.t 1]
Where t = (0,0,0)-O
How do we know?: Cramer’s Rule + simplifications
Want to derive?:

http://www.idav.ucdavis.edu/education/
GraphicsNotes/Camera-Transform/Camera-
Transform.html



Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height

View Transform





View Transformation

w = +1 w = -1
v = -1

v = +1

The viewing transformation is not a combination of simple translations, 
rotations, scales or shears: it is more complex.



Derivation of Viewing 
Transformation

¨ I personally don’t think it is a good use of class time 
to derive this matrix.

¨ Well derived at:
¤ http://www.idav.ucdavis.edu/education/GraphicsNotes

/Viewing-Transformation/Viewing-Transformation.html



The View Transformation

¨ Input parameters: (α, n, f)
¨ Transforms view frustum to image space cube

¤ View frustum: bounded by viewing pyramid and planes 
z=-n and z=-f

¤ Image space cube: -1 <= u,v,w <= 1

¤ Cotangent = 1/tangent

[cot(α/2) 0             0         0]
[0             cot(α/2) 0         0]
[0                0      (f+n)/(f-n)  -1]
[0                0        2fn/(f-n)   0]



Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[cot(α/2) 0             0         0]
[0             cot(α/2) 0         0]
[0                0      (f+n)/(f-n)  -1]
[0                0        2fn/(f-n)   0]

n=5

f=10



Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1    0    0     0]
[0    1    0     0]
[0    0    3    -1]
[0    0   20   0]

n=5

f=10



Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1    0    0     0]
[0    1    0     0]
[0    0    3    -1]
[0    0   20   0]

n=5

f=10

Let’s multiply some points:
(0,7,-6,1)
(0,7,-8,1)



Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1    0    0     0]
[0    1    0     0]
[0    0    3    -1]
[0    0   20   0]

n=5

f=10

Let’s multiply some points:
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) =  (0, 0.88, -0.5)



Let’s do an example

α=90

¨ Input parameters: (α, n, f) = (90, 5, 10)

[1    0    0     0]
[0    1    0     0]
[0    0    3    -1]
[0    0   20   0]

n=5

f=10

More points:
(0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2)
(0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1)
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) =  (0, 0.88, -0.5)
(0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1)
(0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18)



View Transformation

w = +1 w = -1
v = -1

v = +1

The viewing transformation is not a combination of simple translations, 
rotations, scales or shears: it is more complex.



View Transformation

w = +1 w = -1

v = +1

v = -1

(0,1.75, 2)

(0,0.88,-0.5)

(0,0.7,-1)

(0,0.63,-1.18)

(0,1.4, 1)

(0,1.16, 0.33)

Note there is a non-linear 
relationship in W (“Z”).

More points:
(0,7,-4,1) = (0,7,8,4) = (0, 1.75, 2)
(0,7,-5,1) = (0,7,5,5) = (0, 1.4, 1)
(0,7,-6,1) = (0,7,2,6) = (0, 1.16, 0.33)
(0,7,-8,1) = (0,7,-4,8) =  (0, 0.88, -0.5)
(0,7,-10,1) = (0,7,-10,10) = (0, 0.7, -1)
(0,7,-11,1) = (0,7,-13,11) = (0, .63, -1.18)



Putting It All Together



How do we transform?

¨ For a camera C,
¤ Calculate Camera Frame
¤ From Camera Frame, 

calculate Camera Transform
¤ Calculate View Transform
¤ Calculate Device Transform
¤ Compose 3 Matrices into 1 

Matrix (M)

¨ For each triangle T, apply 
M to each vertex of T, then 
apply 
rasterization/zbuffer



Project 1E



Project #1E (6%), 
Due Tues April 27th

¨ Goal: add arbitrary 
camera positions

¨ Extend your project1D 
code

¨ New: proj1e_geometry.vtk 
available on web (9MB), 
“reader1e.cxx”.

¨ New: Matrix.cxx, 
Camera.cxx

¨ No Cmake, project1E.cxx



Project #1E, expanded

¨ Matrix.cxx: complete
¨ Methods:

class Matrix
{

public:
double          A[4][4];

void            TransformPoint(const double *ptIn, double *ptOut);
static Matrix   ComposeMatrices(const Matrix &, const Matrix &);
void            Print(ostream &o);

};



Project #1E, expanded

¨ Camera.cxx: you work on this
class Camera
{

public:
double          near, far;
double          angle;
double          position[3];
double          focus[3];
double          up[3];

Matrix          ViewTransform(void) {;};
Matrix          CameraTransform(void) {;};
Matrix          DeviceTransform(void) {;};
// Will probably need something for calculating Camera Frame as well

};

Also: GetCamera(int frame, int nFrames)



Project #1E, deliverables

¨ Same as usual, but times 4
¤ 4 images, corresponding to

n GetCamera(0, 1000)
n GetCamera(250,1000)
n GetCamera(500,1000)
n GetCamera(750,1000)

¨ If you want:
¤ Generate all thousand images, make a movie

n Then you should wait for 1F.  Then we will have shading too.



Project #1E, game plan

vector<Triangle> t = GetTriangles();
AllocateScreen();
for (int i = 0 ; i < 4 ; i++)
{   int f = 250*i;

InitializeScreen();
Camera c = GetCamera(f, 1000);
TransformTrianglesToDeviceSpace(); // involves setting up and applying matrices 

//… if you modify vector<Triangle> t,
// remember to undo it later

RenderTriangles();
SaveImage();

}



Correct answers given for 
GetCamera(0, 1000)

Camera Frame: U = 0, 0.707107, -0.707107
Camera Frame: V = -0.816497, 0.408248, 0.408248
Camera Frame: W = 0.57735, 0.57735, 0.57735
Camera Frame: O = 40, 40, 40
Camera Transform
(0.0000000 -0.8164966 0.5773503 0.0000000)
(0.7071068 0.4082483 0.5773503 0.0000000)
(-0.7071068 0.4082483 0.5773503 0.0000000)
(0.0000000 0.0000000 -69.2820323 1.0000000)
View Transform
(3.7320508 0.0000000 0.0000000 0.0000000)
(0.0000000 3.7320508 0.0000000 0.0000000)
(0.0000000 0.0000000 1.0512821 -1.0000000)
(0.0000000 0.0000000 10.2564103 0.0000000)
Transformed 37.1132, 37.1132,37.1132, 1 to 0, 0,1
Transformed -75.4701, -75.4701,-75.4701, 1 to 0, 0,-1



Project #1E pitfalls

¨ All vertex multiplications use 4D points.  Make 
sure you send in 4D points for input and output, 
or you will get weird memory errors.
¤ Make sure you divide by w.



Project #1E, pitfalls

¨ People often get a matrix confused with its 
transpose.  Use the method Matrix::Print() to 
make sure the matrix you are setting up is what 
you think it should be.  Also, remember the 
points are left multiplied, not right multiplied.

¨ Regarding multiple renderings:
¤Don’t forget to initialize the screen between each 

render
¤ If you modify the triangle in place to render, don’t 

forget to switch it back at the end of the render



Project #1F (8%), 
Due Monday May 3rd

¨ Goal: add shading, movie


