O ' CIS'441/541: Intro to Computer Graphics
Lecture 4: Z-Buffer, Project 1D, Cameras & Matrices

April 13, 2021 Hank Childs, University of Oregon

UNIVERSITY OF OREGON

Class Thursday — Quiz #2

O

 Starts at 9am

 9am-915am: Q&A / group OH on topics related to
project 1, graphics

e 915am-945am: quiz (be here at 910)
— You must be present for these 30 minutes to take the quiz

— If you cannot be present, you must (1) contact me by
12noon on Weds or (2) be in an emergency situation

e Have a friend to text for internet issues
— Know your UO ID
— Have a camera

e This “lecture” will not be recorded

UNIVERSITY OF OREGON

Midway Experience

Midway Student Experience Survey opens next week
otp@uoregon.edu
<
° Mon 4/12/2021 8:10 AM G 9 9 >
To: Hank Childs

Dear Hank,

The Midway Student Experience Survey for your courses will open at 08:00 AM on Mon, Apr 19, 2021 PDT and will close at 06:00 PM on Fri, Apr 23, 2021 PDT. You can view the
feedback from your students beginning April 26th at noon.

Students will receive an email from the Office of the Registrar directing them to Duckweb to complete the survey when it opens next week.

Other ways to increase response rates and quality feedback include:

1. Make it an assignment (you don't have to give points or extra credit or even keep track).
2. Tell your students that their feedback is valuable to you.
3. Provide students with examples of useful and actionable comments, in contrast to non-actionable comments.

Resources:

Office of the Provost: Revising UO's Teaching_Evaluations
Teaching Engagement Program: Student Feedback
Office of the Registrar: Student Experience Survey FAQ

For questions, email the Office of the Provost at otp@uoregon.edu.

Thank you!
Office of the Provost

UNIVERSITY OF OREGON

O

Question

Hello,

I'm writing because wanted to ask for your opinion on how to modularize
the code for this assignment. By this, | mean writing code in methods
and functions to be called in Main instead of having all the code in

there.

| successfully transferred my Project 1B Main function code to a
Rasterize() method inside the Triangle object.

Now, | want to write a Split() method, where | will split a triangle and
create two new Triangle objects to be rasterized. Do you think this
Split() would be better as a Triangle method, or as a separate,
independent function, since it will create new Triangle objects?

0 UNIVERSITY OF OREGON

Week 3 Office Hours

How to access Office Hours Apr 4 at 2:02pm
Hank Childs

All Sections

Hi Everyone,

We currently have an asymmetry for accessing Hank and Abhishek's Office Hours.
And Hank's are accessible via the Zoom Meetings area in Canvas.

Let's chat on Tuesday about the most standard way to do this.

Finally, here is the OH schedule again:

Monday (Abhishek): 10am-11am
Tuesday (Abhishek): 945am-1045am
Wednesday (Hank): 230pm-330pm
Thursday (Abhishek): 945am-1045am

Best,
Hank

UNIVERSITY OF OREGON

Feeling a little tired...

LUDWIG-

zﬁaﬁug?yf' DER DEKAN DER FAKULTAT FUR
MATHEMATIK, INFORMATIK UND STATISTIK

MUNCHEN

Miinchen, 06.04.2021

Einladung

an die Mitglieder der Prifungskommission zur Promotion von Herrn Wiedemann:

Prof. Dr. Kranzlmiiller

Prof. Childs, PH.D., University of Oregon
Prof. Dr. Kauermann Vorsitz

Prof. Dr. Seidl Ersatz

Die Disputation wurde festgelegt auf

Dienstag, 13.04.2021, um 14 Uhr s.t.

Via Zoom:
https://Imu-munich.zoom.us/j/99841492875?pwd=azBi[MERUMWFFRHoObENTLytKMi8zQT09

Meeting-ID: 998 4149 2875
Kenncode: 882944

Hierzu lade ich die Mitglieder der Prifungskommission ein.

Mit freundlichen GriiBen

A

Prof. Dr. Goran Kauermann
Dekan

UNIVERSITY OF OREGON

O

Where we are...

 We haven’t talked about how to get triangles
Into position.

— Arbitrary camera positions through linear algebra
 We haven’t talked about shading
* On Thursday, we tackled this problem:

How to deposit triangle colors onto an image?

Still don’t know how to: Today’s lecture will
go over the key

1) Vary colors (easy) / oormtion 1o do

2) Deal with triangles that overlap #2. Last week was

ﬁ

O UNIVERSITY OF OREGON

What is a field?

00:00 11-APR-2013 GHT ©Copyright HSI Corporation http://uwu, wsi,.con
High Temperature Forecast HWed 10-Apr-13

UPDATED! 04:30 UTC 10-Apr-13
DATA FROH GFS+HODEL

Example field (2D): temperature over the United States

O

“Linear Interpolation for Scalar
Field F

* General equation to interpolate:
— F(X) = F(A) + t*(F(B)-F(A))

* tis proportion of X between A and B
— t=(X-A)/(B-A)

F(A)
X)

F(B)

O cohsider a single scalar field
defined on a triangle.

Y-axis

Y=1

Y=0.5

O cohsider a single scalar field
defined on a triangle.

Y-axis

V2
y=1 F(V2) =2

Y=0.5

\i V3
F(V1) =10 F(V3) = -2 X-axis

Y=0

UNIVERSITY OF OREGON

What is F(V4)?

Y-axis

V2
¥=1 F(V2) =2

Y=0.5

¢ | V4, at (0.5, 0.25)
\"A V3

F(V1) =10 F(V3) = -2 X-axis

O

UNIVERSITY OF OREGON

What is F(V4)?

Y-axis
V2
o1 F(V2) =2
Y=0.5
V5 V4, at (0.5, 0.25) ve
V3
F(V1) = 10 F(V3) = - X-axis

O

UNIVERSITY OF OREGON

e Steps to follow:

— Calcu
— Calcu

— Calcu

ate V5, the left intercept for Y=0.25
ate V6, the right intercept for Y=0.25
ate V4, which is between V5 and V6

* Note: when you implement this, you will be
doing vertical scanlines, so doing it for X=0.5

UNIVERSITY OF OREGON

Online Lecture B

> YouTube

erminal _Shell Edit View Window Help %o © 7 70x@F Tue 1:19PM Hank Childs Q i=

- 441 —vim — 99x52 ") o
Vi e (2.5, 4.5), F(V1) =3 L

/\
/

V2 @ (1.5, 2) F(v3) =1
F(V2) = @

va @ (2.25, 2.75)
F(va) = 772

V5 @ (1.8, 2.75)
F(V5) = 777

V6 @ (X?, 2.75)
F(v6) = 772

t = (2.75-2)/(4.5-2) = 0.3
I X(V5) = 1.5 + 0.3%(2.5-1.5) = 1.8

MKIIMME«

>calar Flelar

"E g&\sxc‘mg@@viug@m

T —
N~
N

3

* General equation to interpolate:
— F(X) = F(A) + t*(F(B)-F(A))

* tis proportion of X between A and B
—t=(X-A)/(B-A)

FA)|

.

E(X)
F(B)

~ INSERT -

441 LERP

212 views ¢ Jan 22,2019 b Jlo) SHARE =y SAVE

Link posted on class webpage.
Also: https://www.youtube.com/watch?v=8lkioJrMiSs

O

UNIVERSITY OF OREGON

New Vocab Term: a “Fragment”

nen rasterizing a triangle
hen doing a scanline for that triangle

= £ =

nen that scanline finds a pixel to deposit colors for

—> that contribution is called a fragment

Now We Understand Interpolation
Let’s Use It For Two New ldeas:

Cotorinterpotation
& Z-buffer Interpolation

How To Resolve When Triangles
Overlap:
The Z-Buffer

O oo oo

each face has its own color....

Front Blue
Right Green
Top Red
Back Yellow
Left Purple
Bottom Cyan

View from “front/top/right” side

O oo oo

View from “front/top/right” side View from “back/bottom/left” side

UNIVERSITY OF OREGON

O

Consider a scene
from the right side

Face | color__

Camera/eyeball Front Blue

Right Green

Camera oriented dlrectl.y at Eront face, Top Red
seen from the Right side

Back Yellow

Left Purple

Bottom Cyan

O

UNIVERSITY OF OREGON

Consider the scene
from the top side

>

Face | Color

Camera/eyeball Eront Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow

Left Purple

Bottom Cyan

UNIVERSITY OF OREGON

What do we render?

O

Green, Red, Purple, and Cyan all “flat” to camera.

>

Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow
Left Purple
Bottom Cyan

UNIVERSITY OF OREGON

What do we render?

O

What

should the picture look like?

4 4

Face | Color
Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow

Left Purple

Bottom Cyan

New field associated with each

triangle: depth
* Project 1B,1C:
class Triangle

{

public:
Double X[3];
Double Y[3];

5
* Now...
Double Z[3];

UNIVERSITY OF OREGON

What do we render?

O

Z=0 Z=-1
Face | Color
Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red
seen from the Top side Back Yellow

Left Purple

Bottom Cyan

Using depth when rendering

* Use Z values to guide which geometry is
displayed and which is obscured.

 Example....

Ocoiisider 4 tria ngles with constant
/ values

Ocoiisider 4 tria ngles with constant
/ values

E ‘How do we make this picture?

ldea #1

e Sort triangles “back to front” (based on Z)
* Render triangles in back to front order

— Overwrite existing pixels

ldea #2

e Sort triangles “front to back” (based on 7)
* Render triangles in front to back order

— Do not overwrite existing pixels.

But there is a problem...

(0, 1.5, -0.4)

(-2, -1.5, -0.5) (2,-1.5,-0.3)

UNIVERSITY OF OREGON

The Z-Buffer Algorithm

O

* The preceding 10 slides were designed to get you
comfortable with the notion of depth/Z.

* The Z-Buffer algorithm is the way to deal with
overlapping triangles when doing rasterization.
— |t is the technique that GPUs use.

* |t works with opaque triangles, but not
transparent geometry, which requires special
handling
— Transparent geometry discussed week 7.

— Uses the front-to-back or back-to-front sortings just
discussed.

The Z-Buffer Algorithm:
Data Structure

* Existing: for every pixel, we store 3 bytes:

— Red channel, green channel, blue channel

* New: for every pixel, we store a floating point
value:

— Depth buffer (also called “Z value”)

* Now 7 bytes per pixel (*)
— (*): 8 with RGBA

The Z-Buffer Algorithm:

Initialization
* Existing:
— For each pixel, set R/G/B to 0.
* New:

— For each pixel, set depth value to -1.

— Valid depth values go from -1 (back) to O (front)

— This is partly convention and partly because it
“makes the math easy” when doing
transformations.

UNIVERSITY OF OREGON

O

Scanline algorithm for one triangle

* Determine columns of pixels the triangle can
possibly intersect
— Call them columnMin to columnMax

* columnMin: ceiling of smallest X value
* columnMax: floor of biggest X value

* For cin [columnMin = columnMax] ; do

— Find end points of c intersected with triangle
e Call them bottomEnd and topEnd

— For rin [ceiling(bottomEnd) = floor(topEnd)] ; do

* ImageColor(r, c) € triangle color

UNIVERSITY OF OREGON

O

Scanline algorithm w/ Z-Buffer

* Determine columns of pixels the triangle can possibly
intersect
— Call them columnMin to columnMax

e columnMin: ceiling of smallest X value
e columnMax: floor of biggest X value

* For cin [columnMin = columnMax] ; do
— Find end points of c intersected with triangle
e Call them bottomEnd and topEnd
— Interpolate z(bottomEnd) and z(topEnd) from triangle vertices
— For rin [ceiling(bottomEnd) = floor(topEnd)] ; do
* Interpolate z(c,r) from z(bottomEnd) and z(topEnd)
* |If (z(c,r) > depthBuffer(c,r))

— ImageColor(r, c) € triangle color
— depthBuffer(c,r) = z(c,r)

O e The Z-Buffer Algorithm:
Example

X=5
(0,12) (12,12)

Interpolation and Triangles

 We introduced the notion of interpolating a
field on a triangle

* We used the interpolation in two settings:
— 1) to interpolate colors
— 2) to interpolate depths for z-buffer algorithm
* Project 1D: you will be adding color

interpolation and the z-buffer algorithm to
your programs.

O OOOOOOOOOOOOOOOOO Project #1D (5%)’
Due Weds April 21

* Goal: interpolation of
color and zbuffer

e Extend your projectlC
code

* File projld_geometry.vtk
available on web (1.4MB)

* File “readerld.cxx” has
code to read triangles
from file.

No Cmake, projectld.cxx

Color is now floating-point

 We will be interpolating colors, so please use
floating point (0 = 1)

e Keep colors in floating point until you assign
them to a pixel

* Fractional colors? = use ceil 441...
— As in: ceil __441(value*255)

Changes to data structures

class Triangle
{
public:
double X[3], Y[3], Z[3];
double colors[3][3];
};

- readerld.cxx will not compile until you make
these changes

Cameras and Matrices

World space:

Our goal

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <=x,y,z <= +1

Triangle coordinates relative to camera frame

>
Screen space: Device space:
All viewable objects within All viewable objects within

- <= X,y <= +1 0<=x<=width, 0 <=y<=height

MATH!

Space O

0 A “space” is a set of points

O Many types of spaces

Here is a space ‘S’

the goin’rs in the blue shage e

We can pick an arbitrary point

in S and call it our “origin.”

Consider two directions, D1 and D2. | . ‘

Imagine you live at “O” and you wom’rO
to get to “X.” Can you do it¢ -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X.” Can you do it¢ -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X.” Can you do it¢ -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X.” Can you do it¢ -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X2.” Can you do it? -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X2.” Can you do it? -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X3.” Can you do it? -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X4.” Can you do it¢ -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Imagine you live at “O” and you wom’rO
to get to “X4.” Can you do it¢ -

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space): %2

- You can only move in direction D1 or D2

Conventions! O

0 Let (a, b) mean:

O The number of steps ‘a’ in direction D1 //
O The number of steps ‘b’ in direction D2

Where is (-3, 2)?

Rules (chess):

- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

A basis O

0 Paraphrasing Wikipedia:
0 Let B={ D1, D2 } (a set of two vectors, D1 & D2)
0 Let S be our Shape

0 B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

0 The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

0 The elements of a basis are called basis vectors.

Why unique?

0 Let (a, b, ¢) mean:
O The number of steps ‘a’ in direction D1
O The number of steps ‘b’ in direction D2

O The number of steps ‘c’ in direction D3

0 Then there is more than one way to get to /
some point X in §, i.e., DI

O(al, bl,cl)=X and —. D3

O(a2, b2,c2)=X
D2

What does it mean to form o O

basis?

0 For any vector v, there are unique coordinates (c1,
..., cn) such that

v=cl®*v1 + c2*v2 + ... + cn*vn

0 Consider some point P.
O The basis has an origin O
O There is a vector v such that O+v = P
O We know we can construct v using a combination of vi’s

O Therefore we can represent P in our frame using the
coordinates (c1, c2, ..., ¢cn)

A basis O

0 Paraphrasing Wikipedia:
0 Let B={ D1, D2 } (a set of two vectors, D1 & D2)
0 Let S be our Shape

0 B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

0 The coefficients of this linear combination are

referred to as components 0|1 coordinq’res! on B of
the vector.

0 The elements of a basis are called basis vectors.

Most common basis O

0 D1 = X-axis (i.e., (1,0,0)-(0,0,0))
0 D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
0 D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

0 Then the coordinate (2, -3, 5) means
O 2 units along X-axis
O -3 units along Y-axis

O 5 units along Z-axis

But we could have other bases O

O Instead of “basis 1”7 (B1)
oD1 = X-axis (i.e., (1,0,0)-(0,0,0))
oD2 = Y-axis (i.e., (0,1,0)-(0,0,0))
oD3 = Z-axis (i.e., (0,0,1)-(0,0,0))
0 Use “basis 2”7 (B2)
oDl = Y-axis (i.e., (0,1,0)-(0,0,0))
oD2 = X-axis (i.e., (1,0,0)-(0,0,0))
oD3 = Z-axis (i.e., (0,0,1)-(0,0,0))

0 Then (a,b,c) in B1 is the same as (b,qa,c) in B2

Last vocab term for a few O
slides: frame

0O Frame:

O A way to place a coordinate system into a specific
location in a space

O Basis + reference coordinate (“the origin”)
0 Cartesian example: (3,4,6)

O It is assumed that we are speaking in reference to the
origin location (0,0,0).

Example of Frames O

0 Frame F = (v1, v2, O)

ovl = (0, -1)
ov2 =(1,0)
0O = (3, 4)

0 What are F's coordinates for the point (6, 6)¢

Example of Frames O

0 Frame F = (v1, v2, O)

ovl = (0, -1)
ov2 =(1,0)
0O = (3, 4)

0 What are F's coordinates for the point (6, 6)¢

0 Answer: (-2, 3)

Each box is a frame, and each

arrow converts to the next frame

___9‘!:{:___.

World space: Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere Triangle coordinates relative to camera frame

Z
y
—— ——
X

Image space: Screen space: Device space:

All viewable objects within All viewable objects within All viewable objects within

-1 <= x,y,z <= +1 -1 <=x,y<=+1 0<=x<=width, 0 <=y<=height

Context

0 Models stored in “world space” frame

O Pick an origin, store all points relative to that origin
0 We have been rasterizing in “device space” frame

0 Our goal: transform from world space to device
space
0 We will do this using matrix multiplications

O Multiply point by matrix to convert coordinates from
one frame into coordinates in another frame

But wait! There’s more...

0 And matrices also useful for more than frame-to-
frame conversions.

O So let’s get comfy with matrices (next time).

® = 3 NEn SR N N

N L 4
Y
»
I
2
’ -)
3 o4 %
: zr’
’ i:
B 1.‘:‘
»
)
,j;
R
|
»

- .

STOP HERE O

Matrix O

0 Defined: a rectangular array of numbers (usually)

arranged in rows and columns

0 Example
O 2D matrix

O “two by three” (two rows, three columns)
m[3 4 8]
m[-19.212]

Matrix: wikipedia picture O

m-by-n matrix

aj ncolumns NSNS

m — r__

IOWS

Matrix O

0 What do you do with matrices?

O Lots of things

O Transpose, invert, add, subtract

0 But most of all: multiply!

Multiplying two 2x2 matrices O

(a b) (e f) (a*etb*g a*f+b*h)

(c d) X (g h) - (c*et+d*g c*f+d*h)

Multiplying two 2x2 matrices O

(a b) (e f) (a*etb*g a*f+b*h)

X

One usage for matrices:

Let (a, b) be the coordinates of a point

Then the 2x2 matrix can transform (q,b) to a
new location — (a™e+b*g, a*f+b*h)

ldentity Matrix O

(a b) (1 0) (a b)

X(O 1):

O

(@ b) (2 0 (2a b)

X(O 1):

Scale in X, notin Y

(a,b) (2a,b)

v

(a b) (s O) (sa tb) (a.b]
X = (saif)

Scale in both dimensions

v

O

(@ b) (0 -1) (b -a)

X(1 0):

Rotate 90 degrees counter-
clockwise

(a,b)

v

(b,-a)

(@ b) (0 1) (-b a)
X

(a,b)

o
o
2

(-1 0)

Rotate 90 degrees counter-
clockwise

v

O

(a b) (cos(Q)) -sin(Q)) (cos(Q)*a + sin(Q)*b,
-sin(QQ)*a +cos(Q)*b)

X (sin(Q) cos(Q)) . T

(X, y')

Rotate “()” degrees counter-clockwise

Combining transformations O

0 How do we rotate by 20 degrees clockwise and
then scale X by 2¢

O Answer: multiply by matrix that multiplies by 20

degrees clockwise, then multiple by matrix that scales X
by 2.

O But can we do this efficiently?

(0 -1) (2 0) (0 -1)

X
(1 0) 0 1) 2 0

Combining transformations O

0 How do we scale X by 2 and then rotate by 90

degrees clockwise?

O Answer: multiply by matrix that scales X by 2, then
multiply by matrix that rotates 20 degrees clockwise.

(2 0) (0 -1) (0 -2

X
(0 1) (1 0) (1t 0

(0 -1) (2 0) (0 -1)

— Rotate then scale

X
(1 0 (0 1) (2 0) Order matters!!

Translations O

O Translation is harder:

(a) (c) (a+c)

+ =
(b) (d) (b+d)

But this doesn’t fit our nice matrix multiply model...
What to do??

Homogeneous Coordinates O

(1 0 0)
xy hX 01 0= x y 1

© 0 1)

Add an extra dimension.
A math trick ... don’t overthink it.

Homogeneous Coordinates O

x y 1) X 0 1 0) = (x+dx y+dy 1)

Translation

We can now fit translation into
our matrix multiplication system.

Graphics O

0 Two really important operations:

O Transform from one frame to another

O Transform geometry (rotate, translate, etc)

0 Both can be done with matrix operations

0 In both cases, need homogeneous coordinates

0 Much of graphics is accomplished via 4x4 matrices

O And: you can compose the matrices and do bunches of
things at once (EFFICIENCY)

Silicon Graphics, Inc.

Sg1

Former type Public

Traded as NYSE: SGlI
OTC Pink: SGID.pk

NASDAQ: SGIC

Industry Computer hardware and
software

Fate Chapter 11 bankruptcy; assets
acquired by Rackable

Systems, which renamed itself
Silicon Graphics International
Corp.

Founded November 9, 1981; 37 years
ago
Mountain View, California,
u.s.ll

Defunct May 11, 2009

Headquarters Sunnyvale, California, U.S.

Key people Jim Clark,
Kurt Akeley,
Ed McCracken,
Thomas Jermoluk

Products High-performance computing,
visualization and storage

Website www.sgi.com/ig ¢

3dfx Voodoo

source: wikipedia

L)
e

ui2

T e e S T
Y o0 ol ik i, AT
416 LA+ SRS w'izr..{:‘: W

b BN s
g RIS NS o
= u

.

oy

i

Early GPUs O

0 Special hardware to do 4x4 matrix operations

O A lot of them (in parallel)

GPUs now O

0 Many, many, many cores

0 Each code less powerful than typical CPU core

World space:

Camera located anywhere

Our goal

\

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

>
e v /
Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, O

P e LN Y

World Space O

0 World Space is the space defined by the user’s

coordinate system.

0 This space contains the portion of the scene that is
transformed into image space by the camera

transform.

0 Many of the spaces have “bounds”, meaning limits
on where the space is valid

0 With world space 2 options:
O No bounds
O User specifies the bound

Our goal

1 2
. — T
’ ,/ :
World space: Cameralspace:
Triangles in native Cartesian coordinates f amera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
»
r
Z
Y
— ——
X
Image space: Screen space: Device space:
All viewable objects within All viewable objects within All viewable objects within
-] <= X,Y,Z <= 4] -1 <= X, Y <= +] O<:X<:Wid1‘h, 0

P e LN Y

World space:

Camera located anywhere

X

Image space:

All viewable objects within

Our goal

\

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame
v
b=
r
S
Screen space: Device space:
All viewable objects within All viewable objects within
1 <=x,y <= +1 0<=x<=width, O

-1 <= x,y,z <= +1

P e LN Y

How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum
(plural: frusta or frustums) is the
portion of a solid (normally a cone
or pyramid) that lies between two
parallel planes cutting it.

class Camera

{
public:
double near, far;
double angle;
double position[3];
double focus[3];
double upl[3];

¥

World space:

Triangles in native Cartesian coordinates

Our goal

Camera located anywhere

Camera space:
Camera located at origin, looking down -Z
' Triangle coordinates relative to camera frame
»

View Transform

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Screen space:

Device space:

All viewable objects within
0<=x<=width, O

P e LN Y

All viewable objects within
-] <= X, Y <= -|-]

Our goal

\

World space: Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere Triangle coordinates relative to camera frame

»
r
Z
Y
S
X

Image space: Screen space: Device space:

All viewable objects within All viewable objects within All viewable objects within

LA P e LN Y

Image Space O

0 Image Space is the three-dimensional coordinate

system that contains screen space.

O It is the space where the camera transformation
directs its output.

0 The bounds of Image Space are 3-dimensional cube.
{(x,y,z) : -1<x<1,-1<y<1, -1<z<1}

(or —1<z<0)

Image Space Diagram

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Our goal

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

1

Screen space:

All viewable objects within
-] <= X, Y <= -|-]

.

Device space:

All viewable objects within
0<=x<=width, O

P e LN Y

Screen Space O

O Screen Space is the intersection of the xy-plane

with Image Space.

0 Points in image space are mapped into screen
space by projecting via a parallel projection, onto
the plane z = 0.

0 Example:

O a point (O, O, z) in image space will project to the
center of the display screen

Screen Space Diagram O

World space:

Triangles in native Cartesian coordinates

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Our goal

\

Camera space:

Camera located at origin, looking down -Z

Triangle coordinates relative to camera frame

Screen space:

All viewable objects within
-] <= X, Y <= -|-]

. .

Device space:

All viewable objects within
0<=x<=width, O

5 _\1= Eal PP

Device Space O

0 Device Space is the lowest level coordinate

system and is the closest to the hardware
coordinate systems of the device itself.

0 Device space is usually defined to be the n X m
array of pixels that represent the area of the
screen.

0 A coordinate system is imposed on this space by
labeling the lower-left-hand corner of the array

as (0,0), with each pixel having unit length and
width.

Device Space Example O

——— pixel (15,15)

pixel (3,7) —1——

Hlv

pixel (0, 0)

Device Space With Depth
Information

0 Extends Device Space to three dimensions by
adding z-coordinate of image space.

0 Coordinates are (x, y, z) with
O0<x<n
O<y<m
z arbitrary (but typically -1 <z < +1 or
-1<z<0)

Easiest Transform

—=S Ojler?
d
o
’ et !
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame
»
7
z |
Y ' .
/ —_—
X
Image space: Screen space: Device space:
All viewable objects within All viewable objects within All viewable objects within
-] <= X,Y,Z <= 4] -1 <= X, Y <= +] O<:X<:Wid1‘h, O

P e LN Y

Image Space to Device Space O

o (x,y z) 2 (x),Y,z), where
Ox =n¥x+1)/2
Oy = m*(y+1)/2
0z =z
O (for an n x m image)
0 Matrix:
(x’ 0 0 0)
(0y 00)
(002 0)
(000 1)

Coming Up on YouTube Lectur

v U A
’ et !
World space: Camera space:
Triangles in native Cartesian coordinates Camera located at origin, looking down -Z
Camera located anywhere Triangle coordinates relative to camera frame

0 Need to construct a Camera Frame

0 Need to construct a matrix to transform points from
Cartesian Frame to Camera Frame

O Transform triangle by transforming its three vertices

