
Hank Childs, University of OregonApril 13, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 4: Z-Buffer, Project 1D, Cameras & Matrices

Class	Thursday	– Quiz	#2

• Starts	at	9am
• 9am-915am:	Q&A	/	group	OH	on	topics	related	to	
project	1,	graphics

• 915am-945am:	quiz	(be	here	at	910)
– You	must	be	present	for	these	30	minutes	to	take	the	quiz
– If	you	cannot	be	present,	you	must	(1)	contact	me	by	
12noon	on	Weds	or	(2)	be	in	an	emergency	situation

• Have	a	friend	to	text	for	internet	issues
– Know	your	UO	ID
– Have	a	camera

• This	“lecture”	will	not	be	recorded

Midway	Experience

Question

Week	3	Office	Hours

Feeling	a	little	tired...

Where	we	are…

• We	haven’t	talked	about	how	to	get	triangles	
into	position.		
– Arbitrary	camera	positions	through	linear	algebra

• We	haven’t	talked	about	shading
• On	Thursday,	we	tackled	this	problem:

How	to	deposit	triangle	colors	onto	an	image?
Still	don’t	know	how	to:
1) Vary	colors	(easy)
2) Deal	with	triangles	that	overlap

Today’s	lecture	will	
go	over	the	key	
operation	to	do	
#2.		Last	week	was	
#1.

What	is	a	field?

Example	field	(2D):	temperature	over	the	United	States

Linear	Interpolation	for	Scalar	
Field	F

• General	equation	to	interpolate:
– F(X)	=	F(A)	+	t*(F(B)-F(A))

• t	is	proportion	of	X	between	A	and	B
– t	=	(X-A)/(B-A)

A B

F(B)

X

F(X)
F(A)

Consider	a	single	scalar	field	
defined	on	a	triangle.

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

Consider	a	single	scalar	field	
defined	on	a	triangle.

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

What	is	F(V4)?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

What	is	F(V4)?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

• Steps	to	follow:
– Calculate	V5,	the	left	intercept	for	Y=0.25
– Calculate	V6,	the	right	intercept	for	Y=0.25
– Calculate	V4,	which	is	between	V5	and	V6

• Note:	when	you	implement	this,	you	will	be	
doing	vertical	scanlines,	so	doing	it	for	X=0.5

Online	Lecture	B

Link	posted	on	class	webpage.
Also:	https://www.youtube.com/watch?v=8IkioJrMiSs

New	Vocab	Term:	a	“Fragment”

• When	rasterizing	a	triangle
• When	doing	a	scanline	for	that	triangle
• When	that	scanline	finds	a	pixel	to	deposit	colors	for
• à that	contribution	is	called	a	fragment

Now	We	Understand	Interpolation
Let’s	Use	It	For	Two	New	Ideas:

Color	Interpolation	
&	Z-buffer	Interpolation

How	To	Resolve	When	Triangles	
Overlap:

The	Z-Buffer

Imagine	you	have	a	cube	where	
each	face	has	its	own	color….

View	from	“front/top/right”	side

Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Imagine	you	have	a	cube	where	
each	face	has	its	own	color….

View	from	“back/bottom/left”	side

How	do	we	render	the	pixels	that	we	want	and	
ignore	the	pixels	from	faces	that	are	obscured?

View	from	“front/top/right”	side

Consider	a	scene	
from	the	right	side

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Right	side

Consider	the	scene
from	the	top	side

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

What	do	we	render?

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

Green,	Red,	Purple,	and	Cyan	all	“flat”	to	camera.		
Only	need	to	render	Blue	and	Yellow	faces	(*).

What	do	we	render?

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

What	should	the	picture	look	like?
What’s	visible?		What’s	obscured?

New	field	associated	with	each	
triangle:	depth

• Project	1B,1C:	
class	Triangle
{	
public:

Double		X[3];
Double		Y[3];
…

};
• Now…

Double		Z[3];

What	do	we	render?

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

Z=0 Z=-1

Using	depth	when	rendering

• Use	Z	values	to	guide	which	geometry	is	
displayed	and	which	is	obscured.

• Example….

Consider	4	triangles	with	constant	
Z	values

Z=-0.35
Z=-0.5

Z=-0.65
Z=-0.8

Consider	4	triangles	with	constant	
Z	values

Z=-0.35 Z=-0.5

Z=-0.65 Z=-0.8

How	do	we	make	this	picture?

Idea	#1

• Sort	triangles	“back	to	front”	(based	on	Z)
• Render	triangles	in	back	to	front	order

– Overwrite	existing	pixels

Idea	#2

• Sort	triangles	“front	to	back”	(based	on	Z)
• Render	triangles	in	front	to	back	order

– Do	not	overwrite	existing	pixels.

But	there	is	a	problem…

(-1,	-1,	-0.3)
(2,	-1.5,	-0.3)

(1,	-1,	-0.5)

(0,	1,	-0.4)

(-2,	-1.5,	-0.5)

(0,	1.5,	-0.4)

The	Z-Buffer	Algorithm

• The	preceding	10	slides	were	designed	to	get	you	
comfortable	with	the	notion	of	depth/Z.

• The	Z-Buffer	algorithm	is	the	way	to	deal	with	
overlapping	triangles	when	doing	rasterization.
– It	is	the	technique	that	GPUs	use.

• It	works	with	opaque	triangles,	but	not	
transparent	geometry,	which	requires	special	
handling
– Transparent	geometry	discussed	week	7.
– Uses	the	front-to-back	or	back-to-front	sortings just	
discussed.

The	Z-Buffer	Algorithm:
Data	Structure

• Existing:	for	every	pixel,	we	store	3	bytes:
– Red	channel,	green	channel,	blue	channel

• New:	for	every	pixel,	we	store	a	floating	point	
value:
– Depth	buffer	(also	called	“Z	value”)

• Now	7	bytes	per	pixel	(*)
– (*):	8	with	RGBA

The	Z-Buffer	Algorithm:
Initialization

• Existing:
– For	each	pixel,	set	R/G/B	to	0.

• New:
– For	each	pixel,	set	depth	value	to	-1.

– Valid	depth	values	go	from	-1	(back)	to	0	(front)
– This	is	partly	convention	and	partly	because	it	
“makes	the	math	easy”	when	doing	
transformations.

Scanline	algorithm	for	one	triangle

• Determine	columns	of	pixels	the	triangle	can	
possibly	intersect
– Call	them	columnMin to	columnMax

• columnMin:	ceiling	of	smallest	X	value
• columnMax:	floor	of	biggest	X	value

• For	c	in	[columnMinà columnMax]	;	do
– Find	end	points	of	c	intersected	with	triangle

• Call	them	bottomEnd and	topEnd
– For	r	in	[ceiling(bottomEnd)	à floor(topEnd)]	;	do

• ImageColor(r,	c)	ß triangle	color

Scanline	algorithm	w/	Z-Buffer
• Determine	columns	of	pixels	the	triangle	can	possibly	

intersect
– Call	them	columnMin to	columnMax

• columnMin:	ceiling	of	smallest	X	value
• columnMax:	floor	of	biggest	X	value

• For	c	in	[columnMinà columnMax]	;	do
– Find	end	points	of	c	intersected	with	triangle

• Call	them	bottomEnd and	topEnd
– Interpolate	z(bottomEnd)	and	z(topEnd)	from	triangle	vertices
– For	r	in	[ceiling(bottomEnd)	à floor(topEnd)]	;	do

• Interpolate	z(c,r)	from	z(bottomEnd)	and	z(topEnd)
• If	(z(c,r)	>	depthBuffer(c,r))

– ImageColor(r,	c)	ß triangle	color
– depthBuffer(c,r)	=	z(c,r)

The	Z-Buffer	Algorithm:
Example

(0,0) (12,0)

(12,12)(0,12)

(2.5,10.5,	-0.25)

(2.5,2.5,	-0.5) (10.5,2.5,	-1)

X=5

Interpolation	and	Triangles

• We	introduced	the	notion	of	interpolating	a	
field	on	a	triangle

• We	used	the	interpolation	in	two	settings:
– 1)	to	interpolate	colors
– 2)	to	interpolate	depths	for	z-buffer	algorithm

• Project	1D:	you	will	be	adding	color	
interpolation	and	the	z-buffer	algorithm	to	
your	programs.

Project	#1D	(5%),	
Due	Weds	April	21

• Goal:	interpolation	of	
color	and	zbuffer

• Extend	your	project1C	
code

• File	proj1d_geometry.vtk	
available	on	web	(1.4MB)

• File	“reader1d.cxx”	has	
code	to	read	triangles	
from	file.

• No	Cmake,	project1d.cxx

Color	is	now	floating-point

• We	will	be	interpolating	colors,	so	please	use	
floating	point	(0	à 1)

• Keep	colors	in	floating	point	until	you	assign	
them	to	a	pixel

• Fractional	colors?	à use	ceil__441…
– As	in:	ceil__441(value*255)

Changes	to	data	structures

class	Triangle
{
public:
double	X[3],	Y[3],	Z[3];
double colors[3][3];

};

à reader1d.cxx	will	not	compile	until	you	make	
these	changes

Cameras	and	Matrices

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height

MATH!

Space

¨ A “space” is a set of points
¨ Many types of spaces

Here is a space ‘S’:
the points in the blue shape

We can pick an arbitrary point
in S and call it our “origin.”

O

Consider two directions, D1 and D2.

O
D1

D2

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X

Imagine you live at “O” and you want
to get to “X2.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X2

Imagine you live at “O” and you want
to get to “X2.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X2

Imagine you live at “O” and you want
to get to “X3.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X3

Imagine you live at “O” and you want
to get to “X4.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X4

Imagine you live at “O” and you want
to get to “X4.” Can you do it?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

X4

Conventions!

¨ Let (a, b) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2

Where is (-3, 2)?

O
D1

D2

Rules (chess):
- Bishop can only move diagonally
- Rooks can only move in straight lines

Rules (this space):
- You can only move in direction D1 or D2

A basis

¨ Paraphrasing Wikipedia:
¨ Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨ Let S be our Shape
¨ B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

¨ The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

¨ The elements of a basis are called basis vectors.

Why unique?

D1

D2

D3

¨ Let (a, b, c) mean:
¤ The number of steps ‘a’ in direction D1
¤ The number of steps ‘b’ in direction D2
¤ The number of steps ‘c’ in direction D3

¨ Then there is more than one way to get to
some point X in S, i.e.,
¤ (a1, b1, c1) = X and
¤ (a2, b2, c2) = X

What does it mean to form a
basis?

¨ For any vector v, there are unique coordinates (c1,
…, cn) such that
v = c1*v1 + c2*v2 + … + cn*vn

¨ Consider some point P.
¤ The basis has an origin O
¤ There is a vector v such that O+v = P
¤ We know we can construct v using a combination of vi’s
¤ Therefore we can represent P in our frame using the

coordinates (c1, c2, …, cn)

A basis

¨ Paraphrasing Wikipedia:
¨ Let B = { D1, D2 } (a set of two vectors, D1 & D2)
¨ Let S be our Shape
¨ B is a basis for S if every element of S can be

written as a unique linear combination of elements
of B.

¨ The coefficients of this linear combination are
referred to as components or coordinates on B of
the vector.

¨ The elements of a basis are called basis vectors.

Most common basis

¨ D1 = X-axis (i.e., (1,0,0)-(0,0,0))
¨ D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
¨ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨ Then the coordinate (2, -3, 5) means
¤ 2 units along X-axis
¤ -3 units along Y-axis
¤ 5 units along Z-axis

But we could have other bases

¨ Instead of “basis 1” (B1)
¤ D1 = X-axis (i.e., (1,0,0)-(0,0,0))
¤ D2 = Y-axis (i.e., (0,1,0)-(0,0,0))
¤ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨ Use “basis 2” (B2)
¤ D1 = Y-axis (i.e., (0,1,0)-(0,0,0))
¤ D2 = X-axis (i.e., (1,0,0)-(0,0,0))
¤ D3 = Z-axis (i.e., (0,0,1)-(0,0,0))

¨ Then (a,b,c) in B1 is the same as (b,a,c) in B2

Last vocab term for a few
slides: frame

¨ Frame:
¤ A way to place a coordinate system into a specific

location in a space
¤ Basis + reference coordinate (“the origin”)

¨ Cartesian example: (3,4,6)
¤ It is assumed that we are speaking in reference to the

origin location (0,0,0).

Example of Frames

¨ Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨ What are F’s coordinates for the point (6, 6)?

Example of Frames

¨ Frame F = (v1, v2, O)
¤ v1 = (0, -1)
¤ v2 = (1, 0)
¤ O = (3, 4)

¨ What are F’s coordinates for the point (6, 6)?

¨ Answer: (-2, 3)

Each box is a frame, and each
arrow converts to the next frame

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 <=y<=height

Context

¨ Models stored in “world space” frame
¤ Pick an origin, store all points relative to that origin

¨ We have been rasterizing in “device space” frame
¨ Our goal: transform from world space to device

space
¨ We will do this using matrix multiplications

¤ Multiply point by matrix to convert coordinates from
one frame into coordinates in another frame

But wait! There’s more…

¨ And matrices also useful for more than frame-to-
frame conversions.

¨ So let’s get comfy with matrices (next time).

STOP HERE

Matrix

¨ Defined: a rectangular array of numbers (usually)
arranged in rows and columns

¨ Example
¤ 2D matrix
¤ “two by three” (two rows, three columns)

n [3 4 8]
n [-1 9.2 12]

Matrix: wikipedia picture

Matrix

¨ What do you do with matrices?
¨ Lots of things

¤ Transpose, invert, add, subtract

¨ But most of all: multiply!

Multiplying two 2x2 matrices

(a b) (e f) (a*e+b*g a*f+b*h)

(c d) X (g h)
=

(c*e+d*g c*f+d*h)

(a b) (e f) (a*e+b*g a*f+b*h)

X (g h)
=

One usage for matrices:
Let (a, b) be the coordinates of a point
Then the 2x2 matrix can transform (a,b) to a
new location – (a*e+b*g, a*f+b*h)

Multiplying two 2x2 matrices

Identity Matrix

(a b) (1 0) (a b)

X (0 1)
=

(a b) (2 0) (2a b)

X (0 1)
=

(a,b) (2a,b)

Scale in X, not in Y

(a b) (s 0) (sa tb)

X (0 t)
=

Scale in both dimensions

(a,b)

(sa,t)

(a b) (0 -1) (b -a)

X (1 0)
=

Rotate 90 degrees counter-
clockwise

(a,b)

(b,-a)

(a b) (0 1) (-b a)

X (-1 0)
=

Rotate 90 degrees counter-
clockwise

(a,b)
(-b, a)

(a b) (cos(Ω) -sin(Ω)) (cos(Ω)*a + sin(Ω)*b,
-sin(Ω)*a +cos(Ω)*b)

X (sin(Ω) cos(Ω))
=

Rotate “Ω” degrees counter-clockwise

(x,y)(x’, y’)

Ω

Combining transformations

¨ How do we rotate by 90 degrees clockwise and
then scale X by 2?
¤ Answer: multiply by matrix that multiplies by 90

degrees clockwise, then multiple by matrix that scales X
by 2.

¤ But can we do this efficiently?

(0 -1) (2 0) (0 -1)

(1 0)
X

(0 1)
=

(2 0)

Combining transformations

¨ How do we scale X by 2 and then rotate by 90
degrees clockwise?
¤ Answer: multiply by matrix that scales X by 2, then

multiply by matrix that rotates 90 degrees clockwise.

(2 0) (0 -1) (0 -2)

(0 1)
X

(1 0)
=

(1 0)

Rotate then scale
Order matters!!

(0 -1) (2 0) (0 -1)

(1 0)
X

(0 1)
=

(2 0)

Translations

¨ Translation is harder:

(a) (c) (a+c)

(b) + (d)
=

(b+d)

But this doesn’t fit our nice matrix multiply model…
What to do??

Homogeneous Coordinates

(1 0 0)

(x y 1) X (0 1 0) = (x y 1)

(0 0 1)

Add an extra dimension.
A math trick … don’t overthink it.

Homogeneous Coordinates

Translation

We can now fit translation into
our matrix multiplication system.

(1 0 0)

(x y 1) X (0 1 0) = (x+dx y+dy 1)

(dx dy 1)

Graphics

¨ Two really important operations:
¤ Transform from one frame to another
¤ Transform geometry (rotate, translate, etc)

¨ Both can be done with matrix operations
¨ In both cases, need homogeneous coordinates

¨ Much of graphics is accomplished via 4x4 matrices
¤ And: you can compose the matrices and do bunches of

things at once (EFFICIENCY)

3dfx Voodoo
(source: wikipedia)

Early GPUs

¨ Special hardware to do 4x4 matrix operations
¨ A lot of them (in parallel)

GPUs now

¨ Many, many, many cores
¨ Each code less powerful than typical CPU core

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

World Space

¨ World Space is the space defined by the user’s
coordinate system.

¨ This space contains the portion of the scene that is
transformed into image space by the camera
transform.

¨ Many of the spaces have “bounds”, meaning limits
on where the space is valid

¨ With world space 2 options:
¤ No bounds
¤ User specifies the bound

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Camera Transform

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

How do we specify a camera?

The “viewing pyramid” or
“view frustum”.

Frustum: In geometry, a frustum
(plural: frusta or frustums) is the
portion of a solid (normally a cone
or pyramid) that lies between two
parallel planes cutting it.

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

View Transform

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Image Space

¨ Image Space is the three-dimensional coordinate
system that contains screen space.

¨ It is the space where the camera transformation
directs its output.

¨ The bounds of Image Space are 3-dimensional cube.
{(x,y,z) : −1≤x≤1,−1≤y≤1, −1≤z≤1}

(or −1≤z≤0)

Image Space Diagram

Up

X=1

X = -1

Y=1

Y = -1

Z=1

Z = -1

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Screen Space

¨ Screen Space is the intersection of the xy-plane
with Image Space.

¨ Points in image space are mapped into screen
space by projecting via a parallel projection, onto
the plane z = 0 .

¨ Example:
¤ a point (0, 0, z) in image space will project to the

center of the display screen

Screen Space Diagram

X-1 +1

Y

-1

+1

Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Device Space

¨ Device Space is the lowest level coordinate
system and is the closest to the hardware
coordinate systems of the device itself.

¨ Device space is usually defined to be the n × m
array of pixels that represent the area of the
screen.

¨ A coordinate system is imposed on this space by
labeling the lower-left-hand corner of the array
as (0,0), with each pixel having unit length and
width.

Device Space Example

Device Space With Depth
Information

¨ Extends Device Space to three dimensions by
adding z-coordinate of image space.

¨ Coordinates are (x, y, z) with
0 ≤ x ≤ n
0 ≤ y ≤ m
z arbitrary (but typically -1 ≤ z ≤ +1 or

-1 ≤ z ≤ 0)

Easiest Transform

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Image Space to Device Space

¨ (x, y, z) à (x’, y’, z’), where
¤ x’ = n*(x+1)/2
¤ y’ = m*(y+1)/2
¤ z’ = z
¤ (for an n x m image)

¨ Matrix:
(x’ 0 0 0)
(0 y’ 0 0)
(0 0 z’ 0)
(0 0 0 1)

Coming Up on YouTube Lecture

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O -Z

¨ Need to construct a Camera Frame
¨ Need to construct a matrix to transform points from

Cartesian Frame to Camera Frame
¤ Transform triangle by transforming its three vertices

