CXIS'441/541: Intro to Computer Graphics
Lecture 4: Interpolation

January 15, 2019 Hank Childs, University of Oregon

Announcements

No Class Thursday

* And no more YouTube lectures coming this
week

— We have what we need for 1C. | would prefer to
time extra content for 1D/1E/1F around their due
dates.

Week 2 Office Hours

Actions

Week 2 Office Hours

Hi Everyone,
| apologize that we haven't stabilized OH yet. | know it is important to have stable, reliable OH so you all can plan your schedules.

The good news is that our surge OH were successful in getting almost everyone in going on 1A (62/66 submitted, and we got one more VTK install
completed just now).

For Week 2, the OH will be:

- Monday with Hank, 1130-1230
- Tuesday with Roscoe, 1-2

- Wednesday with Roscoe, 1-3

- Thursday with Roscoe, 230-330

We will discuss the OH for Week 3 and forward in Tuesday's class.

Best,
Hank

Office Hours: Weeks 3-10

* Monday: 1-2 (Roscoe)
 Tuesday: 1-2 (Roscoe)
 Wednesday: 1-3 (Roscoe)
 Thursday: WHEN? (Hank)
* Friday: WHEN? (Hank)

Some Sample Final Projects

0 UNIVERSITY OF OREGON

—// //I 01N

Quick Review

What Are We Rendering?

* Models made up of polygons

e Usually triangles

* Lighting tricks make surfaces look non-faceted
* More on this later...

UNIVERSITY OF OREGON

O

NEW Slide

* Multiple coordinate spaces

* “World space”

— Specify an origin and locations with respect to
that origin

— (lelz)
e “Screen space”

— Everything relative to pixels on the screen
— Triangle vertex (10.5, 20.5) lies in pixel (10, 20)

UNIVERSITY OF OREGON

O

NEW Slide

* Later, we will figure out how to:
— Define a camera position

— Transform triangle vertices from world space to
screen space

— Currently: assuming the transform has happened,
and operating on triangle vertices already in
screen space

O oy oromgon

The middle and lower-left variants are

half-pixel translations of the other

We will use the lower-left
convention for the projects.

Problem: how to deposit triangle
colors onto an image?

e Let’s take an example:
— 12x12 image

— Red triangle
e Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)
* Vertex coordinates are with respect to pixel locations

O

UNIVERSITY OF OREGON

(0,12) (12,12)

Our desired output

N — .
@ =
'ag <
C o
O
O = —
O o
+ o
» — e B —
TE Y=
QO >
c O <€
U
cC Qo
o X D
0O a

O

UNIVERSITY OF OREGON

— Red triangle
e Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)

O

UNIVERSITY OF OREGON

— Red triangle
e Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)

O

UNIVERSITY OF OREGON

— Red triangle

e Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)

O

UNIVERSITY OF OREGON

— Red triangle
e Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)

O

UNIVERSITY OF OREGON

— Red triangle
e Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)

Algebra!

O

UNIVERSITY OF OREGON

— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
* Vertex 3:(10.5, 1.5)

— Y =mx+b

— 10.5=m*2.5+b
— 1.5=m*10.5+b
- =2

— 9=-8m

— m=-1.125

— b=13.3125

— 5=-1.125*x +13.3125
— x=7.3888 (2.5,5)

Algebra!

Y=5

Don’t need to consider any
RERRREER

Pixels outside these lines

=
© 9
-
Cl).:
29

(V)]
gcu
O
O w
+ O
3L

]
QO >
c O
v
cC
O X

O

UNIVERSITY OF OREGON

Scanline algorithm

* Determine rows of pixels triangles can
possibly intersect
— Call them rowMin to rowMax

* rowMin: ceiling of smallest Y value
* rowMax: floor of biggest Y value

 Forrin[rowMin =2 rowMax] ; do

— Find end points of r intersected with triangle
e Call them leftEnd and rightEnd

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do

* ImageColor(r, c) & trianile ii|i_

UNIVERSITY OF OREGON

O

Scanline algorithm

. Dete.rmlr)e rows of pixels triangles Can__ yyalues from 1.5 to 10.5
possibly intersect mean rows 2 through 10

* Forrin [rowMin =2 rowMax] ; do

— Find end points of r intersected with triangle Forr=5, leftEnd = 2.5,
e Call them leftEnd and rightEnd «— rightEnd = 7.3888

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do
* ImageColor(r, c) < triangle color

Forr =5, we call ImageColor with
(5I3)I (5I4)I (515)I (516)1 (517)

UNIVERSITY OF OREGON

Project 1B (due last night): Questions?

CIS 441/541: Project #1B
Due January 14t, 2019 (meaning 6am Jan 15th)
Worth 3% of your grade

Instructions

1) Download and build project1B.cxx. Re-use your CMakeLists.txt from
projectlA, and just replace “1A” with “1B”

2) Project1B.cxx contains a routine that will generate 100 triangles.

a. All of these triangles have two points with the same Y value and the
third point with a lower Y value (i.e., “going down” triangles)

3) Implement the scanline algorithm to these triangles and fill up the image
buffer with their colors.

4) The correct image (100triangles.png) is posted to the website.

When you are done, upload your code to Canvas.

If your code does not produce exactly the same image, you should expect to get less
than half credit. You can confirm that it produces the same image with the difference
program and the reference image on the website (100triangles.png).

Some notes:
1) Ibegan my implementation by figuring out which vertex was which, i.e.,
which was top-left, which was top-right, and which was bottom.
2) There are vertical lines, and they need special handling. Otherwise you get
divide-by-zero in slope calculations.
3) Some pixels may be outside the screen. Plan for that.
4) Don’t forget to use double precision and the floor_441 and ceil 441 functions.
5) What I printed when debugging:
a. The triangle (I added a print method)
b. Which vertices were which (top-left, top-right, bottom)
c. The range of scanlines for a triangle
d. ALSO: I sometimes modified the for loop to only do one triangle ata
time, so it would be fewer print statements.

End Review

Arbitrary Triangles

* The description of the scanline algorithm in
the preceding slides is general.

* But the implementation for these three
triangles vary:

AY

Arbitrary Triangles

* Project #1B: implement the scanline algorithm
for “going down” triangles

* Project #1C: arbitrary triangles

AY

O

UNIVERSITY OF OREGON

Arbitrary Triangles

* Function: RasterizeGoingDownTriangle
— (You have this from 1B)

* Function: RasterizeGoingUpTriangle

— (You can write this by modifying
RasterizeGoingDownTriangle)

* Function: RasterizeArbitraryTriangle

— Split into two triangles

— Call RasterizeGoingUpTriangle and
RasterizeGoingDownTriangle

UNIVERSITY OF OREGON

Project #1C (6%), Due (Jan 23rd)

O

* Goal: apply the scanline
algorithm to arbitrary
triangles and output an
Image.

e Extend your projectlB code

* File projlc_geometry.vtk
available on web (80MB)

* File “reader.cxx” has code
to read triangles from file.

* No Cmake, projectlc.cxx

UNIVERSITY OF OREGON
FORMAT = (column, row) = triangle ID
NOTE: O's are ambiguous. Likely no triangle (black pixel), but possibly Triangle #0

O

(79, Ol18] = Z110149
(921, 614) = 211516
(922, 614) = 211517
(923, 614) = 211518
(924, 614) = 211520
F. . . (925, 614) = 211522
o I | (j (926, 614) = 211523
e trlang e—l S (927, 614) = 211524
(928, 614) = 211526
(929, 614) = 211528
(930, 614) = 211529
(931, 614) = 211530
(932, 614) = 211532
(933, 614) = 211534
(934, 614) = 211536
(935, 614) = 211536
(936, 614) = 211538
(937, 614) = ©
(938, 614) = @

* Output from my
program

Triangle 211525 is writing to row 615, column 927
Triangle 211526 is writing to row 614, column 928
Triangle 211527 is writing to row 615, column 928
Triangle 211528 is writing to row 614, column 929
Triangle 211529 is writing to row 614, column 930
Triangle 211529 is writing to row 615, column 929
Triangle 211529 is writing to row 615, column 930
Triangle 211530 is writing to row 614, column 931

UNIVERSITY OF OREGON

O

How did | get my output?

int trianglelID = -1;
void Screen::SetPixel(int r, int c, unsigned char xcol)
{

cerr << "Triangle " << triangleID << " is writing to row " << r << ", column " << c << endl;

for (int 1 = @ ; i < triangles.size() ; i++)
{

trianglelID = i; // trianglelID is a global
Triangle &t = triangles[il;
//t.Print(cerr);

RasterizeTriangle(t, screen);

UNIVERSITY OF OREGON

Negative Y values

Triangle curT, Screen &

Immediate Window
3

587178
0x081b8aed {310013} i

ptlds[1] 310014 int The expression cannot be evaluated whild
ptlds[2] 310016 int i

pts 0x00f4d0f0 {Bounds=0x00f4d 110 {1.0000000000000001e+299, -1.0000000000000001e... vtkPoints * {vtkCommon... : 12221

tris { size=2566541 } std::vector<Triangle,std::a... i

tris[idx] {X=0x12507d90 {11.951287269592285, 13.261287689208984, 11.928421020507813} Y=... Triangle 23536

tris[idx].Y Uxi2ourudo {- 12401000 71057129, -15.450022521972656, -14.171888351440430} double[3] 2 d
587178

tris[idx].Y[0] -15.481888771057129 double C rrent |n ex

tris[idx].Y[1] -15.459022521972656 double
tris[idx].Y[2] -14.171888351440430 double

Freshly parsed

Value

LV VI VI V(DR

& |
check for out of bounds pixels

Hi Everyone,
| am grading the submitted 1B's, and three of the projects crashed on my machine since they did not check for out of bounds issues.

Here's an example lldb output:
frame #0: 0x000000010002474e project1B 'main at project1B.cxx:258

255 std::cout << "Pixel index " << index << " out of screen." << endl;
256 break;
257 }
-> 258 buffer[index+0] = triangles[i].color[0];
259 buffer[index+1] = trianglesi].color[1];
260 buffer[index+2] = triangles[i].color[2];
261 }

(lldb) print index
(int) $1 = -91488

Please consider this issue as you implement your code.

Finally, you can instruct CMake to build with debug mode with:
cmake -DCMAKE_BUILD_TYPE=Debug .

| Curious why they would not crash for the person who turned it in and then crash when you ran it....

Hank Childs 46 minutes ago WIill talk about this tomorrow in class..

O

UNIVERSITY OF OREGON

Where we are...

 We haven’t talked about how to get triangles
Into position.

— Arbitrary camera positions through linear algebra

* We haven’t talked about shading
* On Thursday, we tackled this problem:

How to deposit triangle colors onto an image?

Still don’t know how to: Today’s lecture
| will go over the

1) Vary colors (easy) / ey operation 0

2) Deal with triangles that overlap do these two.

0 UNIVERSITY OF OREGON

What is a field?

00:00 11-APR-2013 GHT ©Copyright HSI Corporation http://uwu, wsi,.con
High Temperature Forecast MHWed 10-Apr—13

«

UPDATED 04:30 UTC 10-Apr-13
DATA FROH| GFS' HODEL

O ““How much data is needed to
make this picture?

00:00 11-APR-2013 GHT ©Copyright HSI Corporation http://uwu, wsi,.con

High Temperature Forecast MHWed 10-Apr—13

UPDATED 04:30 UTC 10-Apr-13
DATA FROH| GFS' HODEL

Linear Interpolation for Scalar
Field F

F(A)

F(B)

A X B

Linear Interpolation for Scalar
Field F

* General equation to interpolate:
— F(X) = F(A) + t*(F(B)-F(A))

* tis proportion of X between A and B
— t=(X-A)/(B-A)

F(A)
X)

F(B)

Quiz Time #4

* F(3)=5, F(6) =11
. What is F(4)? =5 + (4-3)/(6-3)*(11-5) = 7

* General equation to interpolate:
— F(X) = F(A) + t*(F(B)-F(A))

* tis proportion of X between A and B
—t=(X-A)/(B-A)

O ““Consider a single scalar field
defined on a triangle.

Y-axis

Y=1

Y=0.5

O ““Consider a single scalar field
defined on a triangle.

Y-axis

V2
y=1 F(V2) =2

Y=0.5

V3

\'}
2 F(V1) =10 F(V3) =-2 X-axis

UNIVERSITY OF OREGON

What is F(V4)?

Y-axis

V2
y=1 F(V2) =2

Y=0.5

o | V4, at (0.5, 0.25)
V1 V3

F(V1) =10 F(V3) =-2 X-axis

O

UNIVERSITY OF OREGON

What is F(V4)?

Y-axis

V2
y=1 F(V2) =2

Y=0.5

\" V3
-2 F(V1) =10 F(V3) = - X-axis

UNIVERSITY OF OREGON

O

e Steps to follow:
— Calculate V5, the left intercept for Y=0.25
— Calculate V6, the right intercept for Y=0.25
— Calculate V4, which is between V5 and V6

O

UNIVERSITY OF OREGON

What is the X-location of V57

Y-axis

V2

y=1 F(V2) =2

Y=0.5

F(vl) = A > F(0)=0
V5 V4, at (0.5, 0.25) F(v2)=B > F(1)=1
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

F(V1) =10 :
F(v) =0.25, find v

Y=0
0.25 = 0 + ((v-0)/(1-0)*(1-0)

X=0 X=0.5 e v=0.25 |

UNIVERSITY OF OREGON

What is the F-value of V5?

F(V2) = 2

Y=0.5

F(vl) = A - F(0) =10
F(v2)=B =2 F(1)=2
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v =0.25, find F(v)
Y=0

F(v) =10 + ((0.25-0)/(1-0))*(2-10)
=10+0.25*-8=10-2=8

X=0 X=0.5 X=1

UNIVERSITY OF OREGON

What is the X-location of V67

Y-axis

V2

F(V2) = 2

y2 Fvl)=A S>F1)=1
F(v2)=B > F(2)=0

F(v) = A + ((v-v1)/(v2-v1))*(B-A):

F(v) =0.25, find v

0.25 = 1 + ((v-1)/(2-1)*(0-1)
\ = 1+ (v-1)*(-1)
0.25=2-v
v=175

O

UNIVERSITY OF OREGON

What is the F-value of V6?

Y-axis

Y=1

V2

F(V2) = 2

Fvi)=A D> F(1)=2
F(v2)=B > F(2) =-2
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v =1.75, find F(v)

F(v) = 2 + ((1.75-1)/(2-1)*(-2 - +2)
=2 + (.75)*(-4)
=2-3
=-1

O

UNIVERSITY OF OREGON

What is the F-value of V5?

Y-axis
V2
Y=1
Y=0.5 L(V5) = (0.25, 0.25 L(V6) = (1.75, 0.25)
F(V5) =8 F(V6) = -1
V; V4, at (0.5, 0.25) V6
\" V3
-2 F(V1) =10 F(V3) = - X-axis

O

UNIVERSITY OF OREGON
[]
Whptietha Ealua afiin)

F(vl) = A > F(0.25) =8
F(v2) =B = F(1.75) =-1
Y-axis F(v) = A + ((v-v1)/(v2-v1))*(B-A):

Y=1 v = 0.5, find F(v)

F(v) = 8 + ((0.5-0.25)/(1.75-0.25))*(-1-8)
=8+ (0.25/1.5)*9 = 8-1.5=6.5

L(V6) = (1.75, 0.25)
F(V6) = -1

V6

L(V5) = (0.25, 0.
F(V5) = 8

V5

7(_._.

F(V1) = 10

Y=0.5

V4, at (0.5, 0.25)

Visualization of F

F=10

III F=-2

B Not defined

How do you think this picture was made?

Now We Understand Interpolation
Let’s Use It For Two New ldeas:
Color Interpolation
& Z-buffer Interpolation

UNIVERSITY OF OREGON

Colors

Oy

hat about triangles that have more
than one color?

() oo oronseon

The color is in three channels, hence three
scalar fields defined on the triangle.

O

UNIVERSITY OF OREGON

Scanline algorithm

* Determine rows of pixels triangles can
possibly intersect
— Call them rowMin to rowMax

* rowMin: ceiling of smallest Y value
* rowMax: floor of biggest Y value

 Forrin[rowMin =2 rowMax] ; do

— Find end points of r intersected with triangle
e Call them leftEnd and rightEnd

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do

* ImageColor(r, c) & trianile ii|i_

UNIVERSITY OF OREGON

Scanline algorithm w/ Color

O

* Determine rows of pixels triangles can possibly intersect

— Call them rowMin to rowMax
* rowMin: ceiling of smallest Y value
* rowMax: floor of biggest Y value

 Forrin[rowMin =2 rowMax] ; do

— Find end points of r intersected with triangle
e Call them leftEnd and rightEnd
— Calculate Color(leftEnd) and Color(rightEnd) using interpolation
from triangle vertices
— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do

* Calculate Color(r, c) using Color(leftEnd) and Color(rightEnd)
* ImageColor(r, c) € Color(r, c)

O

UNIVERSITY OF OREGON

Simple Example

V(2,2) RrGB=(0,1,0)

V(1,1) V(2,1) V(3,1)

v(0,0) V(4,0)
RGB =(1,0,0) What is the color at (2, 1)? RGB =(0,0,1)

UNIVERSITY OF OREGON

Scanline algorithm w/ Color

O

* Determine rows of pixels triangles can possibly intersect

— Call them rowMin to rowMax
* rowMin: ceiling of smallest Y value

« rowMax: floor of biggest Y value Calculating multiple

. _ color channels
 Forrin[rowMin =2 rowMax] ; do here!

— Find end points of r intersected with triangle /
e Call them leftEnd and rightEnd

— Calculate Color(leftEnd) and Color(rightEnd) using interpolation
from triangle vertices

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do

* Calculate Color(r, c) using Color(leftEnd) and Color(rightEnd)
* ImageColor(r, c) € Color(r, c)

Important

 ceiling / floor: needed to decide which pixels
to deposit colors to

— used: rowMin / rowMax, leftEnd / rightEnd

— not used: when doing interpolation

How To Resolve When Triangles
Overlap:
The Z-Buffer

O oo o gracon

Imagine you have a cube where
each face has its own color....

Face | Color

Front Blue
Right Green
Top Red
Back Yellow
Left Purple
Bottom Cyan

O oo o gracon

Imagine you have a cube where
each face has its own color....

‘ How do we render the pixels that we want and \

—

O

UNIVERSITY OF OREGON

Consider a scene
from the right side

>

Camera/eyeball

Face | Color

Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Right side

O

UNIVERSITY OF OREGON

Consider the scene
from the top side

>

Face | Color

Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side Back Yellow

UNIVERSITY OF OREGON

What do we render?

O

Green, Red, Purple, and Cyan all “flat” to camera.

>

Face | Color

Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow
Left Purple
Bottom Cyan

UNIVERSITY OF OREGON

What do we render?

O

What should the picture look like?

>

Face | Color

Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

O ‘Neéwfield associated with each
triangle: depth

* Project 1B,1C:
class Triangle

{

public:
Double X[3];
Double Y[3];

5
* Now...
Double Z[3];

UNIVERSITY OF OREGON

What do we render?

O

Z=0 Z=-1
Face | Color
Camera/eyeball Eren Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side Back Yellow

Using depth when rendering

e Use Z values to guide which geometry is
displayed and which is obscured.

 Example....

OOOOOOOOOOOOOOOOO

/Z values

ldea #1

e Sort triangles “back to front” (based on Z7)

* Render triangles in back to front order

ldea #2

e Sort triangles “front to back” (based on Z7)

* Render triangles in front to back order

But there is a problem...

(0, 1.5, -0.4)

(-2, -1.5, -0.5) (2,-1.5, -0.3)

UNIVERSITY OF OREGON

The Z-Buffer Algorithm

O

 The preceding 10 slides were designhed to get you
comfortable with the notion of depth/Z.

 The Z-Buffer algorithm is the way to deal with
overlapping triangles when doing rasterization.
— |t is the technique that GPUs use.

* |t works with opaque triangles, but not
transparent geometry, which requires special
handling
— Transparent geometry discussed week 7.

— Uses the front-to-back or back-to-front sortings just
discussed.

O ““the z-Buffer Algorithm:
Data Structure

* Existing: for every pixel, we store 3 bytes:
— Red channel, green channel, blue channel

* New: for every pixel, we store a floating point
value:

— Depth buffer (also called “Z value”)

* Now 7 bytes per pixel (*)
— (*): 8 with RGBA

O wwome ‘The Z-Buffer Algorithm:

Initialization
* Existing:
— For each pixel, set R/G/B to 0.
* New:

— For each pixel, set depth value to -1.

— Valid depth values go from -1 (back) to O (front)

— This is partly convention and partly because it
“makes the math easy” when doing
transformations.

O

UNIVERSITY OF OREGON

Scanline algorithm

* Determine rows of pixels triangles can
possibly intersect
— Call them rowMin to rowMax

* rowMin: ceiling of smallest Y value
* rowMax: floor of biggest Y value

 Forrin[rowMin =2 rowMax] ; do

— Find end points of r intersected with triangle
e Call them leftEnd and rightEnd

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do

* ImageColor(r, c) & trianile ii|i_

UNIVERSITY OF OREGON

Scanline algorithm w/ Z-Buffer

O

 Determine rows of pixels triangles can possibly intersect

— Call them rowMin to rowMax
* rowMin: ceiling of smallest Y value
* rowMax: floor of biggest Y value

 Forrin[rowMin =2 rowMax] ; do

— Find end points of r intersected with triangle
e Call them leftEnd and rightEnd

— Interpolate z(leftEnd) and z(rightEnd) from triangle vertices

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do
* Interpolate z(r,c) from z(leftEnd) and z(rightEnd)
* |If (z(r,c) > depthBuffer(r,c))
— ImageColor(r, c) € triangle color
— depthBuffer(r,c) = z(r,c)

O wwome The Z-Buffer Algorithm:
Example

(0,12) (12,12)

(2.5,2.5, -0.5) (10.52.5, 1)

The Z-Buffer Algorithm:
Example

(0,12)

(6.3

8.5,

10.75)

P ——/—‘ ———————————— \— —
(1.3,3.|5, =1) (Y1 3}35F

(12,12)

Y=5

Interpolation and Triangles

 We introduced the notion of interpolating a
field on a triangle

 We used the interpolation in two settings:
— 1) to interpolate colors
— 2) to interpolate depths for z-buffer algorithm

* Project 1D: you will be adding color

interpolation and the z-buffer algorithm to
your programs.

