(X1S'441/541: Intro to Computer Graphics
Lecture 3: Interpolation

April 6, 2021 Hank Childs, University of Oregon

UNIVERSITY OF OREGON

O

Class Thursday

e Starts at 9am

 9am-930am: Q&A / group OH on topics related to
project 1, graphics

* 930am-940am: quiz
— You must be present for these 10 minutes to take the quiz

— If you cannot be present, you must (1) contact me by
12noon on Weds or (2) be in an emergency situation

— Still determining how to make custom quizzes — know your
UO ID

 This “lecture” will not be recorded

UNIVERSITY OF OREGON

Let’s do a practice quiz

Uo ID Column A Column B

951994649 268 449

951907704 64 915

951790388 758 3

951062645 861 584

951166497 137 742

951648310 570 98

951239287 638 14

o237 Quiz #1 (THIS IS A FAKE QUIZ FOR US TO PRACTICE WITH)
951193827 368 188

951075481 420 802

951260966 545 343 .

951448235 611 659 Question 1: enter column A for your UO ID
951422849 320 636 . .

oo1r19327 w1 s Question 2: enter column B for your UO ID
951774503 152 128 Question 3: what is A+B?
951432579 605 857 . .
951709896 955 535 Question 4: what is A-B?
951129767 101 906

951622873 463 288

951858116 560 863

951807629 678 118

951292153 477 651

951652318 678 309

951907604 891 8

951062452 24 194

951302405 653 421

951727929 150 538

951449684 830 727

951958265 143 843

951329660 401 750

951645337 837 500

951650461 845 363

951407127 63 549

951749776 934 424

951690768 529 776

951339608 685 371

951035559 338 406

951848919 81 52

951035905 413 451

951957181 960 487

951190320 589

Note: all of these UO IDs are fake

Virtual Delivery is Changing
How This Class is Delivered

* Despite my best efforts, | have done a lot of
repetition in previous offerings

— In this setting, repeating myself seems like a waste
of your time

* Borderline disrespectful

 We will figure this issue out as we go

— Positive aspect: | was already considering using
Thursdays in non-lecture format

May Have Too Much Lecture Today

* We will get as far as we can

0 UNIVERSITY OF OREGON

Week 2 Office Hours

How to access Office Hours Apr 4 at 2:02pm
Hank Childs

All Sections

Hi Everyone,

We currently have an asymmetry for accessing Hank and Abhishek's Office Hours.
And Hank's are accessible via the Zoom Meetings area in Canvas.

Let's chat on Tuesday about the most standard way to do this.

Finally, here is the OH schedule again:

Monday (Abhishek): 10am-11am
Tuesday (Abhishek): 945am-1045am
Wednesday (Hank): 230pm-330pm
Thursday (Abhishek): 945am-1045am

Best,
Hank

UNIVERSITY OF OREGON

What Are We Rendering?

* Models made up of polygons

e Usually triangles

* Lighting tricks make surfaces look non-faceted
* More on this later...

UNIVERSITY OF OREGON

O

NEW Slide

 Multiple coordinate spaces
* “World space”

— Specify an origin and locations with respect to
that origin

— (X,y,Z)
e “Screen space”

— Everything relative to pixels on the screen
— Triangle vertex (10.5, 20.5) lies in pixel (10, 20)

UNIVERSITY OF OREGON

O

NEW Slide

* Later, we will figure out how to:
— Define a camera position

— Transform triangle vertices from world space to
screen space

— Currently: assuming the transform has happened,
and operating on triangle vertices already in
screen space

UNIVERSITY OF OREGON

ese are REPEAT slides | traditionally have
repeated this lecture (although quickly)

0 v
Where we are...

* We haven’t talked about how to get triangles
in position.
— Arbitrary camera positions through linear algebra
We haven't talked about shading
* Today, we are tackling this problem:

How to deposit triangle colors onto an image?

29

Don't need to consider any
Pixels outside these lines.

33

— Red triangle
* Vertex1: (2.5, 1.5)

37

tNe will extract a “scanline,” i.e., calculate
the intersections for one column pixels

xes
[T 1
.. I

Y=7.6875

Problem: how to deposit triangle
colors onto an image?

* Let’s take an example:
—12x12 image
— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
* Vertex 3:(10.5, 1.5)
* Vertex coordinates are with respect to pixel locations

30

Scanline algorithm: consider all rows
columns that can possibly overlap

[T T
. I

,
N

[
t

,
N 5!
N
S

34
— Red triangle A
atare the end points?
« Vertex 1: (2.5, 1.5) — P

* Vertex 2: (2.5, 10.5)
* Vertex 3: (105, 1.5)

38

If (r, c) is pixel at row r and column c, then scanline
for X=5 leads to colors deposited at:

¥=7.6875

42

o

(©012)

(12,12)

[]
@SS

31

QNe will extract a “scanline,” i.e., calculate
the intersections for one column of pixels

X5

35

— Red triangle
« Vertex1: (25, 15)
* Vertex 2: (2.5, 10.5)
* Vertex 3: (105, 1.5)

_— Whatare the end points?
lgebray

o

Scanline algorithm for one triangle

+ Determine columns of pixels the triangle can
possibly intersect
— Call them columnMin to columnMax
* columnMin: ceiling of smallest X value
* columnMax: floor of biggest X value
For c in [columnMin = columnMax] ; do
— Find end points of ¢ intersected with triangle
+ Call them bottomend and topEnd
— For rin [ceiling(bottomEnd) > floor(topEnd)] ; do
+ ImageColor(, c) € triangle color

o
Our desired output

[T 1
-. [

How do we make this output? Efficiently?

— Red triangle
* Vertex1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
* Vertex 3: (10.5, 1.5)

— Red triangle
* Vertex1: (25, 1.5)

* Vertex 2: (25, 10.5)
* Vertex3: (105, 1.5)

_— Whatare the end points?

lgebra)

— y=-9/8x+133125 @]
— @X==5y=-9/8"5+133125=7.6875

40

o
Scanline algorithm

+ Determine columns of pixels triangles can
possibly intersect < Vvalues from 250 105
— Call them columnMin to columnMax means rows 3 through 10
* columnin: celing of smallest X value
 columnMax: floor of iggest Xvalue
« For cin [columnMin -> columnMax] ; do
— Find end points of ¢ intersected with triangle
- Callthem bottomEnd and topend
~ Forrin [celing(bottomend) > floor(topEnd) ;o
. \7gz€nlnr(r,) € triangle color o

For c==5, bottoménd = 1.5,
topEnd = 7.6875

we call ImageColor with
3.5), (4,5), (55), (6,5). 7

a4 *

* Goal: apply the
scanline algorithm to
“going right” triangles
and output an image

* File “project1B.cxx”
has triangles defined
In it

* Due: Weds April 7

* % of grade: 3%

A
4
y
y
>
>
3
A

FYVVVVUNN

FVVVVNN

Arbitrary Triangles

* The description of the scanline algorithm in
the preceding slides is general.

* But the implementation for these three

triangles vary:

Arbitrary Triangles

* Project #1B: implement the scanline algorithm
for “going right” triangles

* Project #1C: arbitrary triangles

-

Arbitrary Triangles

* Function: RasterizeGoingRightTriangle
— (You have this from 1B)

* Function: RasterizeGoinglLeftTriangle

— (You can write this by modifying
RasterizeGoingRightTriangle)

* Function: RasterizeArbitraryTriangle
— Split into two triangles

— Call RasterizeGoingRightTriangle and
RasterizeGoingLeftTriangle

UNIVERSITY OF OREGON

O
Project #1C (6%), Due (April 14th)

* Goal: apply the scanline
algorithm to arbitrary
triangles and output an
Image.

e Extend your projectlB code

* File projlc_geometry.vtk
available on web (80MB)

* File “reader.cxx” has code to
read triangles from file.

* No Cmake, projectlc.cxx
e POSTED SOON

O

UNIVERSITY OF OREGON

Where we are...

 We haven’t talked about how to get triangles
Into position.

— Arbitrary camera positions through linear algebra
 We haven’t talked about shading
* On Thursday, we tackled this problem:

How to deposit triangle colors onto an image?

Still don’t know how to: Today’s lecture will
go over the key

1) Vary colors (easy) / oormtion 1o do

2) Deal with triangles that overlap these two.

O UNIVERSITY OF OREGON

What is a field?

00:00 11-APR-2013 GHT ©Copyright HSI Corporation http://uwu, wsi,.con
High Temperature Forecast HWed 10-Apr-13

UPDATED! 04:30 UTC 10-Apr-13
DATA FROH GFS+HODEL

Example field (2D): temperature over the United States

O “H6W much data is needed to
make this picture?

00:00 11-APR-2013 GHT ©Copyright HSI Corporation http://uwu, wsi,.con

High Temperature Forecast HWed 10-Apr-13

7

b8
bt

bYaps

UPDATED! 04:30 UTC 10-Apr-13
DATA FROH GFS+HODEL

Example field (2D): temperature over the United States

O

- Linear Interpolation for Scalar
Field F

F(A)

F(B)

A X B

O

“Linear Interpolation for Scalar
Field F

* General equation to interpolate:
— F(X) = F(A) + t*(F(B)-F(A))

* tis proportion of X between A and B
— t=(X-A)/(B-A)

F(A)
X)

F(B)

Quiz Time

. F(3)=5, F(6) = 11
« What is F(4)? =5 + (4-3)/(6-3)*(11-5) = 7

* General equation to interpolate:
— F(X) = F(A) + t*(F(B)-F(A))

* tis proportion of X between A and B
—t = (X-A)/(B-A)

O cohsider a single scalar field
defined on a triangle.

Y-axis

Y=1

Y=0.5

O cohsider a single scalar field
defined on a triangle.

Y-axis

V2
y=1 F(V2) =2

Y=0.5

Vi V3
F(V1) =10 F(V3) = -2 X-axis

Y=0

UNIVERSITY OF OREGON

What is F(V4)?

Y-axis

V2
¥=1 F(V2) =2

Y=0.5

¢ | V4, at (0.5, 0.25)
\"A V3

F(V1) =10 F(V3) = -2 X-axis

O

UNIVERSITY OF OREGON

What is F(V4)?

Y-axis
V2
o1 F(V2) =2
Y=0.5
V5 V4, at (0.5, 0.25) ve
V3
F(V1) = 10 F(V3) = - X-axis

O

UNIVERSITY OF OREGON

e Steps to follow:

— Calcu
— Calcu

— Calcu

ate V5, the left intercept for Y=0.25
ate V6, the right intercept for Y=0.25
ate V4, which is between V5 and V6

* Note: when you implement this, you will be
doing vertical scanlines, so doing it for X=0.5

UNIVERSITY OF OREGON

What is the X-location of V5?

Y-axis

V2

F(V2) =2

Y=0.5

F(vl) = A -2 F(0)=0
F(v2)=B > F(1)=1
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

V4, at (0.5, 0.25)

F(V1) =10 .
F(v) = 0.25, find v

Y=0
0.25 =0+ ((v-0)/(1-0)*(1-0)

X=0 X=0.5 o v=0.25 |

UNIVERSITY OF OREGON

What is the F-value of V5?

Y-axis

V2
¥=1 F(V2) =2

Y=0.5

Fvl)=A > F0)=10
V5 V4, at (0.5, 0.25) F(v2) =B > F(1) =2
) F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v =0.25, find F(v)

F(v) = 10 + ((0.25-0)/(1-0))*(2-10)
=10+0.25*-8=10-2=8

X=0 X=0.5 X=1

UNIVERSITY OF OREGON

What is the X-location of V6?

Y-axis

V2

F(V2) =2

Y= F(vl)=A 2> F1)=1
F(v2)=B > F(2) =0
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

F(v) =0.25, find v

0.25 = 1 + ((v-1)/(2-1)*(0-1)
) = 1+ (v-1)*(-1)
0.25=2-v

X=1.5 X=2

v=1.75 _

UNIVERSITY OF OREGON

What is the F-value of V6?

Y-axis

V2

F(V2) =2

Fvi)=A > F(1)=2
F(v2)=B =2 F(2)=-2
F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v =1.75, find F(v)

F(v) = 2 + ((1.75-1)/(2-1)*(-2 - +2)
=2 + (.75)*(-4)
=2-3
=-1

UNIVERSITY OF OREGON

What is the F-value of V5?

Y-axis
V2
y=1
V=05 L(V5) = (0.25, 0.25 L(V6) = (1.75, 0.25)
F(v5) =8 F(V6) = -1
V5 V4, at (0.5, 0.25) V6
vl » V3
F(V1) =10 F(V3) = - X-axis

Y=0

UNIVERSITY OF OREGON
What-ie tha Eualua af VR

F(vl) = A > F(0.25)=8
F(v2) =B = F(1.75) = -1
Y-axis F(v) = A + ((v-v1)/(v2-v1))*(B-A):

v = 0.5, find F(v)

F(v) = 8 + ((0.5-0.25)/(1.75-0.25))*(-1-8)
=8+ (0.25/1.5)*9 =8-1.5=6.5

L(V6) = (1.75, 0.25)
F(V6) = -1

V6

L(V5) = (0.25, 0.
F(V5) =8

V5

7(_._.
V3

F(V1) =10 F(V3) = -2 X-axis

Y=0.5

V4, at (0.5, 0.25)

Visualization of F

F=10

I F=-2

B Not defined

‘ How do you think this picture was made? |

Now We Understand Interpolation
Let’s Use It For Two New ldeas:
Color Interpolation
& Z-buffer Interpolation

UNIVERSITY OF OREGON

Colors

O What about triangles that have more
than one color?

UNIVERSITY OF OREGON

The color is in three channels, hence three
scalar fields defined on the triangle.

O

Red channel Green channel Blue channel

UNIVERSITY OF OREGON

O

Scanline algorithm for one triangle

* Determine columns of pixels the triangle can
possibly intersect
— Call them columnMin to columnMax

* columnMin: ceiling of smallest X value
* columnMax: floor of biggest X value

* For cin [columnMin = columnMax] ; do

— Find end points of c intersected with triangle
e Call them bottomEnd and topEnd

— For rin [ceiling(bottomEnd) = floor(topEnd)] ; do

* ImageColor(r, c) € triangle color

UNIVERSITY OF OREGON

O

Scanline Algorithm w/ Color

* Determine columns of pixels the triangle can possibly
intersect

— Call them columnMin to columnMax
e columnMin: ceiling of smallest X value
e columnMax: floor of biggest X value

* For cin [columnMin = columnMax] ; do

— Find end points of c intersected with triangle
e Call them bottomEnd and topEnd

* Calculate Color(bottomEnd) and Color(topEnd) using interpolation
from triangle vertices

— For rin [ceiling(bottomEnd) = floor(topEnd)] ; do
 Calculate Color(r, c) using Color(bottomEnd) and Color(topEnd)
* ImageColor(r, ¢) € Color(r, c)

UNIVERSITY OF OREGON

O

Simple Example

V(2,2) RrGB=(0,1,0)

V(2)1)
RGB = (0.25,0.5,0.25)

V(0,0) V(2,0) RGB =(0.5,0.,0.5) V(4,0)
RGB =(1,0,0) What is the color at (2, 1)? RGB = (0,0,1)

UNIVERSITY OF OREGON

Scanline algorithm w/ Color

O

 Determine rows of pixels triangles can possibly intersect

— Call them rowMin to rowMax
* rowMin: ceiling of smallest Y value

« rowMax: floor of biggest Y value Calculating multiple

. . color channels
* Forrin[rowMin = rowMax] ; do herel

— Find end points of r intersected with triangle /
e Call them leftEnd and rightEnd

— Calculate Color(leftEnd) and Color(rightEnd) using interpolation
from triangle vertices

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do

* Calculate Color(r, c) using Color(leftEnd) and Color(rightEnd)
* ImageColor(r, c) € Color(r, c)

Important

 ceiling / floor: needed to decide which pixels
to deposit colors to

— used: rowMin / rowMayx, leftEnd / rightEnd
— not used: when doing interpolation

How To Resolve When Triangles
Overlap:
The Z-Buffer

O oo oo

each face has its own color....

Front Blue
Right Green
Top Red
Back Yellow
Left Purple
Bottom Cyan

View from “front/top/right” side

O oo oo

View from “front/top/right” side View from “back/bottom/left” side

UNIVERSITY OF OREGON

O

Consider a scene
from the right side

Face | color__

Camera/eyeball Front Blue

Right Green

Camera oriented dlrectl.y at Eront face, Top Red
seen from the Right side

Back Yellow

Left Purple

Bottom Cyan

O

UNIVERSITY OF OREGON

Consider the scene
from the top side

>

Face | Color

Camera/eyeball Eront Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow

Left Purple

Bottom Cyan

UNIVERSITY OF OREGON

What do we render?

O

Green, Red, Purple, and Cyan all “flat” to camera.

>

Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow
Left Purple
Bottom Cyan

UNIVERSITY OF OREGON

What do we render?

O

What

should the picture look like?

4 4

Face | Color
Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red

seen from the Top side

Back Yellow

Left Purple

Bottom Cyan

O

"‘New field associated with each
triangle: depth

* Project 1B,1C:
class Triangle

{

public:
Double X[3];
Double Y[3];

5
* Now...
Double Z[3];

UNIVERSITY OF OREGON

What do we render?

O

Z=0 Z=-1
Face | Color
Camera/eyeball Front Blue
Right Green
Camera oriented directly at Front face, Top Red
seen from the Top side Back Yellow

Left Purple

Bottom Cyan

Using depth when rendering

* Use Z values to guide which geometry is
displayed and which is obscured.

 Example....

Ocoiisider 4 tria ngles with constant
/ values

Ocoiisider 4 tria ngles with constant
/ values

E ‘How do we make this picture?

ldea #1

e Sort triangles “back to front” (based on Z)
* Render triangles in back to front order

— Overwrite existing pixels

ldea #2

e Sort triangles “front to back” (based on 7)
* Render triangles in front to back order

— Do not overwrite existing pixels.

But there is a problem...

(0, 1.5, -0.4)

(-2, -1.5, -0.5) (2,-1.5,-0.3)

UNIVERSITY OF OREGON

The Z-Buffer Algorithm

O

* The preceding 10 slides were designed to get you
comfortable with the notion of depth/Z.

* The Z-Buffer algorithm is the way to deal with
overlapping triangles when doing rasterization.
— |t is the technique that GPUs use.

* |t works with opaque triangles, but not
transparent geometry, which requires special
handling
— Transparent geometry discussed week 7.

— Uses the front-to-back or back-to-front sortings just
discussed.

Data Structure

* Existing: for every pixel, we store 3 bytes:

— Red channel, green channel, blue channel

* New: for every pixel, we store a floating point
value:

— Depth buffer (also called “Z value”)

* Now 7 bytes per pixel (*)
— (*): 8 with RGBA

O e ‘The Z-Buffer Algorithm:

Initialization
* Existing:
— For each pixel, set R/G/B to 0.
* New:

— For each pixel, set depth value to -1.

— Valid depth values go from -1 (back) to O (front)

— This is partly convention and partly because it
“makes the math easy” when doing
transformations.

UNIVERSITY OF OREGON

O

Scanline algorithm for one triangle

* Determine columns of pixels the triangle can
possibly intersect
— Call them columnMin to columnMax

* columnMin: ceiling of smallest X value
* columnMax: floor of biggest X value

* For cin [columnMin = columnMax] ; do

— Find end points of c intersected with triangle
e Call them bottomEnd and topEnd

— For rin [ceiling(bottomEnd) = floor(topEnd)] ; do

* ImageColor(r, c) € triangle color

UNIVERSITY OF OREGON

O

Scanline algorithm w/ Z-Buffer

* Determine columns of pixels the triangle can possibly
intersect
— Call them columnMin to columnMax

e columnMin: ceiling of smallest X value
e columnMax: floor of biggest X value

* For cin [columnMin = columnMax] ; do
— Find end points of c intersected with triangle
e Call them bottomEnd and topEnd
— Interpolate z(bottomEnd) and z(topEnd) from triangle vertices
— For rin [ceiling(bottomEnd) = floor(topEnd)] ; do
* Interpolate z(c,r) from z(bottomEnd) and z(topEnd)
* |If (z(c,r) > depthBuffer(c,r))

— ImageColor(r, c) € triangle color
— depthBuffer(c,r) = z(c,r)

O e The Z-Buffer Algorithm:
Example

X=5
(0,12) (12,12)

Interpolation and Triangles

 We introduced the notion of interpolating a
field on a triangle

* We used the interpolation in two settings:
— 1) to interpolate colors
— 2) to interpolate depths for z-buffer algorithm
* Project 1D: you will be adding color

interpolation and the z-buffer algorithm to
your programs.

