
Hank Childs, University of OregonApril 6, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 3: Interpolation



Class	Thursday

• Starts	at	9am
• 9am-930am:	Q&A	/	group	OH	on	topics	related	to	
project	1,	graphics

• 930am-940am:	quiz
– You	must	be	present	for	these	10	minutes	to	take	the	quiz
– If	you	cannot	be	present,	you	must	(1)	contact	me	by	
12noon	on	Weds	or	(2)	be	in	an	emergency	situation

– Still	determining	how	to	make	custom	quizzes	– know	your	
UO	ID

• This	“lecture”	will	not	be	recorded



Let’s	do	a	practice	quiz

Note:	all	of	these	UO	IDs	are	fake



Virtual	Delivery	is	Changing	
How	This	Class	is	Delivered

• Despite	my	best	efforts,	I	have	done	a	lot	of	
repetition	in	previous	offerings
– In	this	setting,	repeating	myself	seems	like	a	waste	
of	your	time
• Borderline	disrespectful

• We	will	figure	this	issue	out	as	we	go
– Positive	aspect:	I	was	already	considering	using	
Thursdays	in	non-lecture	format



May	Have	Too	Much	Lecture	Today

• We	will	get	as	far	as	we	can



Week	2	Office	Hours



Quick	Review



What	Are	We	Rendering?

• Models	made	up	of	polygons
• Usually	triangles
• Lighting	tricks	make	surfaces	look	non-faceted
• More	on	this	later…



NEW	Slide

• Multiple	coordinate	spaces
• “World	space”
– Specify	an	origin	and	locations	with	respect	to	
that	origin

– (x,y,z)
• “Screen	space”
– Everything	relative	to	pixels	on	the	screen
– Triangle	vertex	(10.5,	20.5)	lies	in	pixel	(10,	20)



NEW	Slide

• Later,	we	will	figure	out	how	to:
– Define	a	camera	position
– Transform	triangle	vertices	from	world	space	to	
screen	space

– Currently:	assuming	the	transform	has	happened,	
and	operating	on	triangle	vertices	already	in	
screen	space



These	are	REPEAT	slides	I	traditionally	have	
repeated	this	lecture	(although	quickly)



Project	#1B	(due	tomorrow):	Questions?

• Goal:	apply	the	
scanline	algorithm	to	
“going	right”	triangles	
and	output	an	image

• File	“project1B.cxx”	
has	triangles	defined	
in	it

• Due:	Weds	April	7
• %	of	grade:	3%



Arbitrary	Triangles

• The	description	of	the	scanline algorithm	in	
the	preceding	slides	is	general.

• But	the	implementation	for	these	three	
triangles	vary:



Arbitrary	Triangles

• Project	#1B:	implement	the	scanline	algorithm	
for	“going	right”	triangles

• Project	#1C:	arbitrary	triangles



Arbitrary	Triangles

• Function:	RasterizeGoingRightTriangle
– (You	have	this	from	1B)

• Function:	RasterizeGoingLeftTriangle
– (You	can	write	this	by	modifying	
RasterizeGoingRightTriangle)

• Function:	RasterizeArbitraryTriangle
– Split	into	two	triangles
– Call	RasterizeGoingRightTriangle and	
RasterizeGoingLeftTriangle



Project	#1C	(6%),	Due	(April	14th)

• Goal:	apply	the	scanline
algorithm	to	arbitrary	
triangles	and	output	an	
image.

• Extend	your	project1B	code
• File	proj1c_geometry.vtk	

available	on	web	(80MB)
• File	“reader.cxx”	has	code	to	

read	triangles	from	file.
• No	Cmake,	project1c.cxx
• POSTED	SOON



Where	we	are…

• We	haven’t	talked	about	how	to	get	triangles	
into	position.		
– Arbitrary	camera	positions	through	linear	algebra

• We	haven’t	talked	about	shading
• On	Thursday,	we	tackled	this	problem:

How	to	deposit	triangle	colors	onto	an	image?
Still	don’t	know	how	to:
1) Vary	colors	(easy)
2) Deal	with	triangles	that	overlap

Today’s	lecture	will	
go	over	the	key	
operation	to	do	
these	two.	



What	is	a	field?

Example	field	(2D):	temperature	over	the	United	States



How	much	data	is	needed	to	
make	this	picture?

Example	field	(2D):	temperature	over	the	United	States



Linear	Interpolation	for	Scalar	
Field	F

A B

F(B)

F(A)

X

F(X)



Linear	Interpolation	for	Scalar	
Field	F

• General	equation	to	interpolate:
– F(X)	=	F(A)	+	t*(F(B)-F(A))

• t	is	proportion	of	X	between	A	and	B
– t	=	(X-A)/(B-A)

A B

F(B)

X

F(X)
F(A)



Quiz	Time

• General	equation	to	interpolate:
– F(X)	=	F(A)	+	t*(F(B)-F(A))

• t	is	proportion	of	X	between	A	and	B
– t	=	(X-A)/(B-A)

• F(3)	=	5,	F(6)	=	11
• What	is	F(4)? =	5	+	(4-3)/(6-3)*(11-5)	=	7



Consider	a	single	scalar	field	
defined	on	a	triangle.

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5



Consider	a	single	scalar	field	
defined	on	a	triangle.

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2



What	is	F(V4)?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2



What	is	F(V4)?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2



• Steps	to	follow:
– Calculate	V5,	the	left	intercept	for	Y=0.25
– Calculate	V6,	the	right	intercept	for	Y=0.25
– Calculate	V4,	which	is	between	V5	and	V6

• Note:	when	you	implement	this,	you	will	be	
doing	vertical	scanlines,	so	doing	it	for	X=0.5



What	is	the	X-location	of	V5?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

F(v1)	=	A		 à F(0)	=	0
F(v2)	=	B		à F(1)	=	1
F(v)	=	A	+	((v-v1)/(v2-v1))*(B-A):

F(v)	=	0.25,	find	v

0.25	=	0	+	((v-0)/(1-0)*(1-0)
v	=	0.25



What	is	the	F-value	of	V5?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

F(v1)	=	A		 à F(0)	=	10
F(v2)	=	B		à F(1)	=	2
F(v)	=	A	+	((v-v1)/(v2-v1))*(B-A):

v	=	0.25,	find	F(v)

F(v)	=	10	+	((0.25-0)/(1-0))*(2-10)
=	10	+	0.25*-8	=	10	-2	=	8



What	is	the	X-location	of	V6?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

F(v1)	=	A		 à F(1)	=	1
F(v2)	=	B		à F(2)	=	0
F(v)	=	A	+	((v-v1)/(v2-v1))*(B-A):

F(v)	=	0.25,	find	v

0.25	=	1	+	((v-1)/(2-1)*(0-1)
=	1	+	(v-1)*(-1)

0.25	=	2	- v
v	=	1.75



What	is	the	F-value	of	V6?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5

F(V2)	=	2

F(V1)	=	10 F(V3)	=	-2

F(v1)	=	A		 à F(1)	=	2
F(v2)	=	B		à F(2)	=	-2
F(v)	=	A	+	((v-v1)/(v2-v1))*(B-A):

v	=	1.75,	find	F(v)

F(v)	=	2	+	((1.75-1)/(2-1)*(-2	- +2)
=	2	+	(.75)*(-4)
=	2	- 3
=	-1



What	is	the	F-value	of	V5?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5 L(V5)	=	(0.25,	0.25)
F(V5)	=	8

F(V1)	=	10 F(V3)	=	-2

L(V6)	=	(1.75,	0.25)
F(V6)	=	-1



What	is	the	F-value	of	V5?

X-axis

X=0 X=0.5 X=1 X=1.5 X=2

Y-axis

Y=0

Y=1

Y=0.5 L(V5)	=	(0.25,	0.25)
F(V5)	=	8

F(V1)	=	10 F(V3)	=	-2

L(V6)	=	(1.75,	0.25)
F(V6)	=	-1

F(v1)	=	A		 à F(0.25)	=	8
F(v2)	=	B		à F(1.75)	=	-1
F(v)	=	A	+	((v-v1)/(v2-v1))*(B-A):

v	=	0.5,	find	F(v)

F(v)	=	8	+	((0.5-0.25)/(1.75-0.25))*(-1-8)
=	8	+	(0.25/1.5)*9	=	8-1.5	=	6.5



Visualization	of	F

Not	defined
F=-2

F=10

How	do	you	think	this	picture	was	made?



Now	We	Understand	Interpolation
Let’s	Use	It	For	Two	New	Ideas:

Color	Interpolation	
&	Z-buffer	Interpolation



Colors



What	about	triangles	that	have	more	
than	one	color?



The	color	is	in	three	channels,	hence	three	
scalar	fields	defined	on	the	triangle.

Red	channel Green	channel Blue	channel



Scanline	algorithm	for	one	triangle

• Determine	columns	of	pixels	the	triangle	can	
possibly	intersect
– Call	them	columnMin to	columnMax

• columnMin:	ceiling	of	smallest	X	value
• columnMax:	floor	of	biggest	X	value

• For	c	in	[columnMinà columnMax]	;	do
– Find	end	points	of	c	intersected	with	triangle

• Call	them	bottomEnd and	topEnd
– For	r	in	[ceiling(bottomEnd)	à floor(topEnd)	]	;	do

• ImageColor(r,	c)	ß triangle	color



• Determine	columns	of	pixels	the	triangle	can	possibly	
intersect
– Call	them	columnMin to	columnMax

• columnMin:	ceiling	of	smallest	X	value
• columnMax:	floor	of	biggest	X	value

• For	c	in	[columnMinà columnMax]	;	do
– Find	end	points	of	c	intersected	with	triangle

• Call	them	bottomEnd and	topEnd
• Calculate	Color(bottomEnd)	and	Color(topEnd)	using	interpolation	
from	triangle	vertices

– For	r	in	[ceiling(bottomEnd)	à floor(topEnd)	]	;	do
• Calculate	Color(r,	c)	using	Color(bottomEnd)	and	Color(topEnd)
• ImageColor(r,	c)	ß Color(r,	c)

Scanline	Algorithm	w/	Color



Simple	Example

V(0,0) V(4,0)

V(2,2)

What	is	the	color	at	(2,	1)?RGB	=	(1,0,0)

RGB	=	(0,1,0)

RGB	=	(0,0,1)
V(2,0) RGB	=	(0.5,0.,0.5)

V(2,1)

RGB	=	(0.25,0.5,0.25)



Scanline algorithm	w/	Color
• Determine	rows	of	pixels	triangles	can	possibly	intersect

– Call	them	rowMin to	rowMax
• rowMin:	ceiling	of	smallest	Y	value
• rowMax:	floor	of	biggest	Y	value

• For	r	in	[rowMinà rowMax]	;	do
– Find	end	points	of	r	intersected	with	triangle

• Call	them	leftEnd and	rightEnd
– Calculate	Color(leftEnd)	and	Color(rightEnd)	using	interpolation	

from	triangle	vertices
– For	c	in	[ceiling(leftEnd)	à floor(rightEnd)	]	;	do

• Calculate	Color(r,	c)	using	Color(leftEnd)	and	Color(rightEnd)
• ImageColor(r,	c)	ß Color(r,	c)

Calculating	multiple	
color	channels	
here!



Important

• ceiling	/	floor:	needed	to	decide	which	pixels	
to	deposit	colors	to
– used:	rowMin /	rowMax,	leftEnd /	rightEnd
– not	used:	when	doing	interpolation

Color(leftEnd)	and	Color(rightEnd)	should	be	at	the	
intersection	locations	…	no	ceiling/floor.



How	To	Resolve	When	Triangles	
Overlap:

The	Z-Buffer



Imagine	you	have	a	cube	where	
each	face	has	its	own	color….

View	from	“front/top/right”	side

Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan



Imagine	you	have	a	cube	where	
each	face	has	its	own	color….

View	from	“back/bottom/left”	side

How	do	we	render	the	pixels	that	we	want	and	
ignore	the	pixels	from	faces	that	are	obscured?

View	from	“front/top/right”	side



Consider	a	scene	
from	the	right	side

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Right	side



Consider	the	scene
from	the	top	side

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side



What	do	we	render?

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

Green,	Red,	Purple,	and	Cyan	all	“flat”	to	camera.		
Only	need	to	render	Blue	and	Yellow	faces	(*).



What	do	we	render?

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

What	should	the	picture	look	like?
What’s	visible?		What’s	obscured?



New	field	associated	with	each	
triangle:	depth

• Project	1B,1C:	
class	Triangle
{	
public:

Double		X[3];
Double		Y[3];
…

};
• Now…

Double		Z[3];



What	do	we	render?

Camera/eyeball
Face Color

Front Blue

Right Green

Top Red

Back Yellow

Left Purple

Bottom Cyan

Camera	oriented	directly	at	Front	face,	
seen	from	the	Top	side

Z=0 Z=-1



Using	depth	when	rendering

• Use	Z	values	to	guide	which	geometry	is	
displayed	and	which	is	obscured.

• Example….



Consider	4	triangles	with	constant	
Z	values

Z=-0.35
Z=-0.5

Z=-0.65
Z=-0.8



Consider	4	triangles	with	constant	
Z	values

Z=-0.35 Z=-0.5

Z=-0.65 Z=-0.8

How	do	we	make	this	picture?



Idea	#1

• Sort	triangles	“back	to	front”	(based	on	Z)
• Render	triangles	in	back	to	front	order
– Overwrite	existing	pixels



Idea	#2

• Sort	triangles	“front	to	back”	(based	on	Z)
• Render	triangles	in	front	to	back	order
– Do	not	overwrite	existing	pixels.



But	there	is	a	problem…

(-1,	-1,	-0.3)
(2,	-1.5,	-0.3)

(1,	-1,	-0.5)

(0,	1,	-0.4)

(-2,	-1.5,	-0.5)

(0,	1.5,	-0.4)



The	Z-Buffer	Algorithm

• The	preceding	10	slides	were	designed	to	get	you	
comfortable	with	the	notion	of	depth/Z.

• The	Z-Buffer	algorithm	is	the	way	to	deal	with	
overlapping	triangles	when	doing	rasterization.
– It	is	the	technique	that	GPUs	use.

• It	works	with	opaque	triangles,	but	not	
transparent	geometry,	which	requires	special	
handling
– Transparent	geometry	discussed	week	7.
– Uses	the	front-to-back	or	back-to-front	sortings just	
discussed.



The	Z-Buffer	Algorithm:
Data	Structure

• Existing:	for	every	pixel,	we	store	3	bytes:
– Red	channel,	green	channel,	blue	channel

• New:	for	every	pixel,	we	store	a	floating	point	
value:
– Depth	buffer	(also	called	“Z	value”)

• Now	7	bytes	per	pixel	(*)
– (*):	8	with	RGBA



The	Z-Buffer	Algorithm:
Initialization

• Existing:
– For	each	pixel,	set	R/G/B	to	0.

• New:
– For	each	pixel,	set	depth	value	to	-1.

– Valid	depth	values	go	from	-1	(back)	to	0	(front)
– This	is	partly	convention	and	partly	because	it	
“makes	the	math	easy”	when	doing	
transformations.



Scanline	algorithm	for	one	triangle

• Determine	columns	of	pixels	the	triangle	can	
possibly	intersect
– Call	them	columnMin to	columnMax

• columnMin:	ceiling	of	smallest	X	value
• columnMax:	floor	of	biggest	X	value

• For	c	in	[columnMinà columnMax]	;	do
– Find	end	points	of	c	intersected	with	triangle

• Call	them	bottomEnd and	topEnd
– For	r	in	[ceiling(bottomEnd)	à floor(topEnd)	]	;	do

• ImageColor(r,	c)	ß triangle	color



Scanline	algorithm	w/	Z-Buffer
• Determine	columns	of	pixels	the	triangle	can	possibly	

intersect
– Call	them	columnMin to	columnMax

• columnMin:	ceiling	of	smallest	X	value
• columnMax:	floor	of	biggest	X	value

• For	c	in	[columnMinà columnMax]	;	do
– Find	end	points	of	c	intersected	with	triangle

• Call	them	bottomEnd and	topEnd
– Interpolate	z(bottomEnd)	and	z(topEnd)	from	triangle	vertices
– For	r	in	[ceiling(bottomEnd)	à floor(topEnd)	]	;	do

• Interpolate	z(c,r)	from	z(bottomEnd)	and	z(topEnd)
• If	(z(c,r)	>	depthBuffer(c,r))

– ImageColor(r,	c)	ß triangle	color
– depthBuffer(c,r)	=	z(c,r)



The	Z-Buffer	Algorithm:
Example

(0,0) (12,0)

(12,12)(0,12)

(2.5,10.5,	-0.25)

(2.5,2.5,	-0.5) (10.5,2.5,	-1)

X=5



Interpolation	and	Triangles

• We	introduced	the	notion	of	interpolating	a	
field	on	a	triangle

• We	used	the	interpolation	in	two	settings:
– 1)	to	interpolate	colors
– 2)	to	interpolate	depths	for	z-buffer	algorithm

• Project	1D:	you	will	be	adding	color	
interpolation	and	the	z-buffer	algorithm	to	
your	programs.


