(X1S'441/541: Intro to Computer Graphics
Lecture 2: The Scanline Algorithm

January 10, 2019 Hank Childs, University of Oregon

Announcements

Trying to Add the Class?

e Let’s talk after class...

Projects

* 1A due Saturday
e 1B: assignhed today, due Monday

e 1C: assigned Tuesday, due following
Wednesday (1/24)

Announcements

* | am adding a 3" |ate pass

* Not everyone will be able to get 1B done by
Monday

 BUT: | really want you to try, since | want to be
able to offer you lots of OH support

Office Hours

* Hank
— Thursday 5pm (help with 1A)
— Friday: ??? (help with 1A)
— Sunday: 3pm-430pm (help with 1B)
— Monday: ??? (help with 1B)
* Roscoe

Project 1A

UNIVERSITY OF OREGON

Projec

Goal: write a specific
Image

Due: Sat Jan 12th

% of grade: 2%
May be a little painful

CIS 441/541: Project #1A Due 11:59pm September 30", 2016
(which means 6am October 1st)

Worth 2% of your grade

Setup:

1) Download and install CMake. Use version 2.8.12.1 or higher

2) Download, build, and install VTK. Use version 6.X.

3) Make directory called “project1A”

4) Download file project1A.cxx and CMakelLists.txt from class website and copy them into
directory project1A

5) Run CMake. This will create build files.

6) Compile the program. For Unix/Mac, this means “make”

7) Run the program.

8) It should output an image that is 1024x1024 called oneRedPixel.png. The first pixel of
the file should be red (although that might be hard to eyeball)

Assignment:
1) You are to make an image that is 1024x1350.
a. The image will be broken into 27 horizontal strips, with each strip of 50 pixels
2) The color for the Xth strip should be:
a.X%3=0->B=0
b.X%3=1->B=128
c.X%3=2 >B=255
d.(X/3)%3=0>G=0
e.(X/3)%3=1-> G=128
f. (X/3) % 3 =2 G=255
g.X/9=0->R=0
h.X/9=1-> R=128
i.X/9=2 - R=255
3) Examples
a. The first strip (which is at the beginning of the image buffer and at the bottom of
the image) is to be black. R=0, G=0, B=0
b. The strip immediately above that should be dark blue, R=0, G=0, B=255
c. Above that should be bright blue R=0, G=0, B=255
d. Above that should be dark green, R=0, G=128, B=0

The correct answer is located on the class website.

There is also an image differencer program on the class website. You can use that to
verify that your image is correct. You should do this for this assignment.

When you are done, verify you have the correct image via the differencer. Then submit
the following:

(1) your source code

(2) a screen capture showing the output of differencer

UNIVERSITY OF OREGON

O

Project #1A: background

* Definitions:
— Image: 2D array of pixels

— Pixel: A minute area of illumination on a display screen,
one of many from which an image is composed.

* Pixels are made up of three colors: Red, Green, Blue
(RGB)

 Amount of each color scored from O to 1
— 100% Red + 100% Green + 0% Blue = Yellow
— 100% Red + 0% Green + 100 %Blue = Purple
— 0% Red + 100% Green + 0% Blue = Cyan

— 100% Red + 100% Blue + 100% Green = Whit

UNIVERSITY OF OREGON

O

Project #1A: background

 Colors are 0->1, but how much resolution is
needed? How many bits should you use to
represent the color?

— Can your eye tell the difference between 8 bits and 32
bits?

— =2 No. Human eye can distinguish ~10M colors.
— 8bits * 3 colors = 24 bits = ~16M colors.

* Red =(255,0,0)
 Green =(0,255,0)
* Blue =(0,0,255)

Project #1A: background

 An “M by N” 8 bit image consists of MxNx3
bytes.

— It is stored as:

PO/R, PO/G, PO/B, P1/R, P1/G, P1/B, ... P(MxN)/R,
P(MxN)/G, P(MxN)/B

* POis the top, left pixel

* P(M-1) is the top, right pixel

* P((MxN)-M+1) is the bottom, left pixel
* P(MxN) is the bottom, right pixel

OOOOOOOOOOOOOO

Project #1A: background

e The red contributions are called the “red
channel”.

— Ditto blue & green.

o T
d
o T

nere are 3 channels in the image described
oove.

nere is sometimes a fourth channel, called

llalpha”
— It is used for transparency.

* - Images are either RGB or RGBA

Project #1A in a nutshell

* Assighnment:
— Install CMake
— Install VTK
— Modify template program to output specific image

O

UNIVERSITY OF OREGON

What is ACMake ?

0 Cmake is a cross-platform, open-source build
system.

0 CMake is a family of tools designed to build, test
and package software.

1 CMake is used to control the software compilation
process using simple platform and compiler
independent configuration files.

1 CMake generates native makefiles and workspaces
that can be used in the compiler environment of

your choice.

UNIVERSITY OF OREGON

How do you install CMake?

e Go to www.cmake.org & follow the directions

VA9 S~
Kitv Va

/

/) CMake

RESOURCES OPEN SOURCE

Welcome to CMake, the cross-platform, open-source build system. CMake is a family of

tools designed to build, test and package software. CMake is used to control the software CMa ke 2_8 1 0 Available
compilation process using simple platform and compiler independent configuration files. f

or Download
CMake generates native makefiles and workspaces that can be used in the compiler

environment of your choice.

News More News >

11.07.2012 CMake 2.8.10 Just Released

08.09.2012 CMake 2.8.9 is Now Available!
07.18.2012 Kitware Announces New Fall Courses Download Now »
04.19.2012 CMake 2.8.8 is Now Available

03.02.2012 CDash 2.0.2 Now Available

dl Visualization ,
\ Toolkit :

What is the

* The Visualization Toolkit (VTK) is an open-
source, freely available software system for 3D
computer graphics, image processing and
visualization.

* VTK consists of a C++ class library and several

interpreted interface layers including Tcl/Tk,
Java, and Python.

 VTK is cross-platform and runs on Linux,
Windows, Mac and Unix platforms.

UNIVERSITY OF OREGON

How do you install VTK?

* Go to www.vtk.org, go to Resources-
>Download and follow the directions

| {ﬁ fWe Search

Tell'us what you think

RESOURCES HELP OPEN SOURCE

The Visualization Toolkit (VTK) is an open-source, freely available software system for
3D computer graphics, image processing and visualization. VTK consists of a C++ class Kitware receives HPCwire’s Editors’ Choice
library and several interpreted interface layers including Tcl/Tk, Java, and Python. Kitware, Award for VTK.

whose team created and continues to extend the toolkit, offers professional support and

consulting services for VTK. VTK supports a wide variety of visualization algorithms Learn More>»

including: scalar, vector, tensor, texture, and volumetric methods; and advanced modeling
techniques such as: implicit modeling, polygon reduction, mesh smoothing, cutting,
contouring, and Delaunay triangulation. VTK has an extensive information visualization
framework, has a suite of 3D interaction widgets, supports parallel processing, and
integrates with various databases on GUI toolkits such as Qt and Tk. VTK is cross-platform

and runs on Linux, Windows, Mac and Unix platforms.

Editors’ Choice

News More News > Avrcrks

01.31.2013 Kitware Provides Mobile Visualization Support for the Visible Pat...
12.03.2012 ParaView 3.98.0 Now Available

11.27.2012 Kitware Receives DARPA Funding to Develop a Visualization Design ...
07.18.2012 Kitware Announces New Fall Courses

05.16.2012 VTK 5.10 Now Available

UNIVERSITY OF OREGON

O

What is the image I’'m supposed to

R=255

R=128

\/\/\

make?

55,255,255)

—

(255, 0, 0)
(128,255,255)

(128,0,128)

(128, 0, 0)

o 255,255
,255,128

0 255, 0
0,128, 25

(0,128 128

What do | do again?

* |nstall CMake & VTK.

 Download “projectlA.cxx” from class website

* Download “CMakelLists.txt” from class website
 Run CMake

* Modify projectlA.cxx to complete the assighment
* And...

* Submit to Canvas the source and image result by
Friday midnight.

UNIVERSITY OF OREGON

I
AV ok

D
X
Ay

?
v

A
?

N

'é:ﬂ

(N

QL0
R]

Uy
: Q
Vo)
@ -
©
z
)
G rmg
(- S
Q 2 o
+— - @
5 o
E D¢
O ”.”
@ C +
w+
U_
o

The Scanline Algorithm

O

UNIVERSITY OF OREGON

Reminder: ray-tracing vs rasterization

 Two basic ideas for rendering: rasterization and
ray-tracing

e Ray-tracing: cast a ray for every pixel and see
what geometry it intersects.

— O(nPixels)
e (actually, additional computational
complexity for geometry searches)
— Allows for beautiful rendering
effects (reflections, etc)
— Will discuss at the end of
the quarter

UNIVERSITY OF OREGON

O

Reminder: ray-tracing vs rasterization

* Two basic ideas for rendering: rasterization
and ray-tracing

e Rasterization: examine every triangle and see
what pixels it covers.

— O(nTriangles)

 (actually, additional computational complexity for
painting in pixels)

— GPUs do rasterization very quickly

— Qur focus for the next 5 weeks -

) oo oromeon

hat color should we choose for each

of these four pixels?
|

O What color should we choose for each
of these four pixels?

Most dominant triangle

O What color should we choose for each
of these four pixels?

O What color should we choose for each
of these four pixels?

Pixel center

O What color should we choose for each
of these four pixels?

Lower left of pixel

O the middle and lower-left variants are
half-pixel translations of the other

We will use the lower-left
convention for the projects.

Where we are...

 We haven’t talked about how to get triangles
In position.
— Arbitrary camera positions through linear algebra

 We haven’t talked about shading

* Today, we are tackling this problem:
How to deposit triangle colors onto an image?

Problem: how to deposit triangle
colors onto an image?

e Let’s take an example:
— 12x12 image

— Red triangle
* Vertex 1: (2.5, 1.5)
e Vertex 2: (2.5, 10.5)
e Vertex 3:(10.5, 1.5)
* Vertex coordinates are with respect to pixel locations

UNIVERSITY OF OREGON

O

(0,12) (12,12)

Our desired output

' How do we make this output? Efficiently? \

UNIVERSITY OF OREGON

1

S pEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR

>

SaUuI| 93yl 9pISINO S|axid
Aue Japisuod 03 paau 1,uoQq

Don’t need to consider any
T I A T T T 1117

Pixels outside these lines

(

Don’t need to consider,
Pixels outside these li

UNIVERSITY OF OREGON

O

— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
e Vertex 3: (10.5, 1.5)

UNIVERSITY OF OREGON

O

— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
e Vertex 3: (10.5, 1.5)

Y=5

UNIVERSITY OF OREGON

O

— Red triangle

* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
e Vertex 3: (10.5, 1.5)

What are the end points?

UNIVERSITY OF OREGON

O

— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
e Vertex 3: (10.5, 1.5)

(2.5, 5)

What are the end points?

UNIVERSITY OF OREGON

O

— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
e Vertex 3: (10.5, 1.5)

Algebra!

(2.5, 5)

What are the end points?

UNIVERSITY OF OREGON

— Red triangle
* Vertex 1: (2.5, 1.5)
* Vertex 2: (2.5, 10.5)
* Vertex 3:(10.5, 1.5)

— Y =mx+b

— 10.5=m*2.5+b
— 1.5=m%*10.5+b
- 2

— 9=-8m

— m=-1.125

— b=13.3125

— 5=-1.125*x + 13.3125

— x=7.3888 (2.5,5)

What are the end points?

Algebra!

Y=5

Don’t need to consider any
T I A I T T 1117

Pixels outside these lines

=
T D
=
v .=
- =
-Gq)

(V5]
C o
O
O B
O o
o
Ul—
o 2
v >
c O
¥ v
cC
O X

UNIVERSITY OF OREGON

O

Scanline algorithm

* Determine rows of pixels triangles can
possibly intersect

— Call them rowMin to rowMax
* rowMin: ceiling of smallest Y value
* rowMax: floor of biggest Y value

* Forrin [rowMin 2 rowMax] ; do

— Find end points of r intersected with triangle
e Call them leftEnd and rightEnd

— For c in [ceiling(leftEnd) = floor(rightEnd)] ; do

* ImageColor(r, c) € trianile color -

UNIVERSITY OF OREGON

O

Scanline algorithm

 Determine rows of pixels triangles can v values from 1.5 t6 10.5
possibly intersect mean rows 2 through 10

* Forrin[rowMin 2 rowMax] ; do

— Find end points of r intersected with trlangle‘ Forr =5, leftEnd = 2.5,

* Call them leftEnd and rightEnd <— rightEnd = 7.3888

— For cin [ceiling(leftEnd) = floor(rightEnd)] ; do
* ImageColor(r, c) € triangle color

3
=,
.

.

.

.

.

.

"

.

For r =5, we call ImageColor with :
(5,3), (5,4), (5,5), (5,6), (5,7)

Arbitrary Triangles

* The description of the scanline algorithm in
the preceding slides is general.

* But the implementation for these three
triangles vary:

AY

OOOOOOOOOOOOOOOOOO

Supersamping: use the scanline
algorithm a bunch of times to
converge on the “average” picture.

O

UNIVERSITY OF OREGON

Where we are...

 We haven’t talked about how to get triangles
Into position.

— Arbitrary camera positions through linear algebra
 We haven’t talked about shading

* Today, we tackled this problem:
How to deposit triangle colors onto an image?

Still don’t know how to:
1) Vary colors (easy)

2) Deal with triangles that overlap -

Project 1B

Arbitrary Triangles

* You will implement the scanline
algorithm for “going down”
triangles

AY

Project #1B

* Goal: apply the
scanline algorithm to
“going down” triangles
and output an image.

* File “project1B.cxx”
has triangles defined
In it.

* Due: Monday, Jan 14th

* % of grade: 3%

Project #1C

* You will implement the scanline algorithm for
arbitrary triangles ... plan ahead

AY

Tips On Floating Point Precision

O

UNIVERSITY OF OREGON

Project 1B

* Cout/cerr can be misleading:

fawcett:Downloads childs$ cat t2.C
#include <iostream.h>
#include <iomanip>

int main()
{
double X=188;
X-=1e-12;
cerr << X << endl;
cerr << std::setprecision(16) << X << endl;
}
fawcett:Downloads childs$./a.out
188

187.999999999999

UNIVERSITY OF OREGON

O

Project 1B

* The limited accuracy of cerr/cout can cause
other functions to be appear to be wrong:

fawcett:Downloads childs$ cat t3.C
#include <iostream.h>

#include <iomanip>

#include <math.h>

int main()

{
double X=188;
X-=1e-12;
cerr << "The floor of " << X << " is " << floor(X) << endl;

}

fawcett:Downloads childs$./a.out

The floor of 188 is 187

UNIVERSITY OF OREGON

O
Project 1B

* Floating point precision is an approximation of
the problem you are trying to solve

* Tiny errors are introduced in nearly every

operation you perform
— Exceptions for integers and denominators that are a

power of two

* Fundamental problem:
— Changing the sequence of these operations leads to
*different™ errors.

— Example: (A+B)+C # A+(B+C)

UNIVERSITY OF OREGON

O

Project 1B

* For project 1B, we are making a binary decision for each
pixel: should it be colored or not?

* Consider when a triangle vertex coincides with the bottom
left of a pixel:

|

e We all do different variations on how to solve for the
endpoints of a line, so we all get slightly different errors.

O

UNIVERSITY OF OREGON

Project 1B

* Our algorithm incorporates floor and ceiling
functions.

— This is the right place to bypass the precision problem.

— | have included “floor441” and “ceil441” in project
prompt. You need to use them, or you will get one
pixel differences.

Project 1B: other thoughts

* You will be building on this project ...

— think about magic numbers (e.g. screen size of
1000)

— add safeguards against cases that haven’t shown
up yet

— Assume nothing!

