
Hank Childs, University of OregonJanuary 10, 2019

CIS 441/541: Intro to Computer Graphics
Lecture 2: The Scanline Algorithm



Announcements



Trying	to	Add	the	Class?

• Let’s	talk	after	class…



Projects

• 1A	due	Saturday
• 1B:	assigned	today,	due	Monday
• 1C:	assigned	Tuesday,	due	following	
Wednesday	(1/24)



Announcements

• I	am	adding	a	3rd late	pass
• Not	everyone	will	be	able	to	get	1B	done	by	
Monday

• BUT:	I	really	want	you	to	try,	since	I	want	to	be	
able	to	offer	you	lots	of	OH	support



Office	Hours

• Hank
– Thursday	5pm	(help	with	1A)
– Friday:	???	(help	with	1A)
– Sunday:	3pm-430pm	(help	with	1B)
–Monday:	???	(help	with	1B)

• Roscoe



Project	1A



Project	#1A

• Goal:	write	a	specific	
image

• Due:	Sat	Jan	12th
• %	of	grade:	2%
• May	be	a	little	painful



Project	#1A:	background
• Definitions:
– Image:	2D	array	of	pixels
– Pixel:	A	minute	area	of	illumination	on	a	display	screen,	
one	of	many	from	which	an	image	is	composed.

• Pixels	are	made	up	of	three	colors:	Red,	Green,	Blue	
(RGB)

• Amount	of	each	color	scored	from	0	to	1
– 100%	Red	+	100%	Green	+	0%	Blue	=	Yellow
– 100%	Red	+	0%	Green	+	100	%Blue	=	Purple
– 0%	Red	+	100%	Green	+	0%	Blue	=	Cyan
– 100%	Red	+	100%	Blue	+	100%	Green	=	White



Project	#1A:	background

• Colors	are	0->1,	but	how	much	resolution	is	
needed?		How	many	bits	should	you	use	to	
represent	the	color?		
– Can	your	eye	tell	the	difference	between	8	bits	and	32	
bits?

– à No.		Human	eye	can	distinguish	~10M	colors.
– 8bits	*	3	colors	=	24	bits	=	~16M	colors.

• Red	=	(255,0,0)
• Green	=	(0,255,0)
• Blue	=	(0,0,255)



Project	#1A:	background

• An	“M	by	N”	8	bit	image	consists	of	MxNx3	
bytes.
– It	is	stored	as:
P0/R,	P0/G,	P0/B,	P1/R,	P1/G,	P1/B,	…	P(MxN)/R,	
P(MxN)/G,	P(MxN)/B

• P0	is	the	top,	left	pixel
• P(M-1)	is	the	top,	right	pixel
• P((MxN)-M+1)	is	the	bottom,	left	pixel
• P(MxN)	is	the	bottom,	right	pixel



Project	#1A:	background

• The	red	contributions	are	called	the	“red	
channel”.	
– Ditto	blue	&	green.

• There	are	3	channels	in	the	image	described	
above.

• There	is	sometimes	a	fourth	channel,	called	
“alpha”
– It	is	used	for	transparency.

• à Images	are	either	RGB	or	RGBA



Project	#1A	in	a	nutshell

• Assignment:
– Install	CMake
– Install	VTK
–Modify	template	program	to	output	specific	image



What	is																		?	
¨ Cmake is	a	cross-platform,	open-source	build	
system.	

¨ CMake is	a	family	of	tools	designed	to	build,	test	
and	package	software.	

¨ CMake is	used	to	control	the	software	compilation	
process	using	simple	platform	and	compiler	
independent	configuration	files.	

¨ CMake generates	native	makefiles and	workspaces	
that	can	be	used	in	the	compiler	environment	of	
your	choice.



How	do	you	install	CMake?

• Go	to	www.cmake.org &	follow	the	directions



What	is	the																																		?	

• The	Visualization	Toolkit	(VTK)	is	an	open-
source,	freely	available	software	system	for	3D	
computer	graphics,	image	processing	and	
visualization.	

• VTK	consists	of	a	C++	class	library	and	several	
interpreted	interface	layers	including	Tcl/Tk,	
Java,	and	Python.	

• VTK	is	cross-platform	and	runs	on	Linux,	
Windows,	Mac	and	Unix	platforms.



How	do	you	install	VTK?
• Go	to	www.vtk.org ,	go	to	Resources-
>Download	and	follow	the	directions



What	is	the	image	I’m	supposed	to	
make?

R=0

R=128

R=255

(0,0,0)
(0,0,128)
(0,0,255)
(0,128,0)

(0,128,128)
(0,128,255)
(0,	255,	0)
(0,	255,	128)
(0,255,255)
(128,	0,	0)
(128,0,128)

(255,	0,	0)

(255,255,255)

(128,255,255)



What	do	I	do	again?

• Install	CMake &	VTK.
• Download	“project1A.cxx”	from	class	website
• Download	“CMakeLists.txt”	from	class	website
• Run	CMake
• Modify	project1A.cxx	to	complete	the	assignment
• And…
• Submit	to	Canvas	the	source	and	image	result	by	
Friday	midnight.



Computer	Graphics	Models

• Usually	made	up	of	triangles
– +	tricks	for	shading

Picture	credit:	wikipedia,	cs.mun.ca



The	Scanline Algorithm



Reminder:	ray-tracing	vs rasterization

• Two	basic	ideas	for	rendering:	rasterization and	
ray-tracing

• Ray-tracing:	cast	a	ray	for	every	pixel	and	see	
what	geometry	it	intersects.		
– O(nPixels)

• (actually,	additional	computational	
complexity	for	geometry	searches)

– Allows	for	beautiful	rendering	
effects	(reflections,	etc)
– Will	discuss	at	the	end	of	
the	quarter



Reminder:	ray-tracing	vs rasterization

• Two	basic	ideas	for	rendering:	rasterization
and	ray-tracing

• Rasterization:	examine	every	triangle	and	see	
what	pixels	it	covers.	
– O(nTriangles)
• (actually,	additional	computational	complexity	for	
painting	in	pixels)

– GPUs do	rasterization very	quickly
– Our	focus	for	the	next	5	weeks



What	color	should	we	choose	for	each	
of	these	four	pixels?



Most	dominant	triangle

What	color	should	we	choose	for	each	
of	these	four	pixels?



Average

What	color	should	we	choose	for	each	
of	these	four	pixels?



Pixel	center

What	color	should	we	choose	for	each	
of	these	four	pixels?



Lower	left	of	pixel

What	color	should	we	choose	for	each	
of	these	four	pixels?



The	middle	and	lower-left	variants	are	
half-pixel	translations	of	the	other

Pixel	center

Lower	left	of	pixel

We	will	use	the	lower-left	
convention	for	the	projects.



Where	we	are…

• We	haven’t	talked	about	how	to	get	triangles	
in	position.		
– Arbitrary	camera	positions	through	linear	algebra

• We	haven’t	talked	about	shading
• Today,	we	are	tackling	this	problem:

How	to	deposit	triangle	colors	onto	an	image?



Problem:	how	to	deposit	triangle	
colors	onto	an	image?

• Let’s	take	an	example:
– 12x12	image
– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)
• Vertex	coordinates	are	with	respect	to	pixel	locations



(0,0) (12,0)

(12,12)(0,12)

(2.5,10.5)

(2.5,1.5) (10.8,1.5)



Our	desired	output

How	do	we	make	this	output?		Efficiently?



Do
n’
t	n

ee
d	
to
	c
on

sid
er
	a
ny
	

Pi
xe
ls	
ou

ts
id
e	
th
es
e	
lin
es



Scanline algorithm:	consider	all	rows	
that	can	possibly	overlap

Do
n’
t	n

ee
d	
to
	c
on

sid
er
	a
ny
	

Pi
xe
ls	
ou

ts
id
e	
th
es
e	
lin
es



Scanline algorithm:	consider	all	rows	
that	can	possibly	overlap

Do
n’
t	n

ee
d	
to
	c
on

sid
er
	a
ny
	

Pi
xe
ls	
ou

ts
id
e	
th
es
e	
lin
es

We	will	extract	a	“scanline”,	i.e.	calculate	the	
intersections	for	one	row	of	pixels

X X X X X Y=5



– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)



– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)

Y=5



– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)

Y=5

What	are	the	end	points?



– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)

Y=5

(2.5,	5)

What	are	the	end	points?



– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)

Y=5

(2.5,	5)

Algebra!

What	are	the	end	points?



– Red	triangle
• Vertex	1:	(2.5,	1.5)
• Vertex	2:	(2.5,	10.5)
• Vertex	3:	(10.5,	1.5)

– Y	=	mx+b
– 10.5=m*2.5+b
– 1.5	=	m*10.5+b
– à
– 9	=	-8m
– m =	-1.125
– b =	13.3125
– 5	=	-1.125*x	+	13.3125
– x	=	7.3888

Y=5

(2.5,	5)

Algebra!

What	are	the	end	points?



Scanline algorithm:	consider	all	rows	
that	can	possibly	overlap

Do
n’
t	n

ee
d	
to
	c
on

sid
er
	a
ny
	

Pi
xe
ls	
ou

ts
id
e	
th
es
e	
lin
es

X X X X X Y=5
7.38882.5



Scanline algorithm:	consider	all	rows	
that	can	possibly	overlap

Do
n’
t	n

ee
d	
to
	c
on

sid
er
	a
ny
	

Pi
xe
ls	
ou

ts
id
e	
th
es
e	
lin
es

X X X X X Y=5
7.38882.5

Color	is	deposited	at	(3,5),	(4,5),	(5,5),	(6,5),	(7,5)



Scanline algorithm

• Determine	rows	of	pixels	triangles	can	
possibly	intersect
– Call	them	rowMin to	rowMax
• rowMin:	ceiling	of	smallest	Y	value
• rowMax:	floor	of	biggest	Y	value

• For	r	in	[rowMinà rowMax]	;	do
– Find	end	points	of	r	intersected	with	triangle
• Call	them	leftEnd and	rightEnd

– For	c	in	[ceiling(leftEnd)	à floor(rightEnd)	]	;	do
• ImageColor(r,	c)	ß triangle	color



Scanline algorithm
• Determine	rows	of	pixels	triangles	can	

possibly	intersect
• For	r	in	[rowMinà rowMax]	;	do

– Find	end	points	of	r	intersected	with	triangle
• Call	them	leftEnd and	rightEnd

– For	c	in	[ceiling(leftEnd)	à floor(rightEnd)	]	;	do
• ImageColor(r,	c)	ß triangle	color

Y	values	from	1.5	to	10.5
mean	rows	2	through	10

For	r	=	5,	leftEnd =	2.5,	
rightEnd =	7.3888

For	r	=	5,	we	call	ImageColor with
(5,3),	(5,4),	(5,5),	(5,6),	(5,7)



Arbitrary	Triangles

• The	description	of	the	scanline algorithm	in	
the	preceding	slides	is	general.

• But	the	implementation	for	these	three	
triangles	vary:



Supersamping:	use	the	scanline
algorithm	a	bunch	of	times	to	

converge	on	the	“average”	picture.



Where	we	are…

• We	haven’t	talked	about	how	to	get	triangles	
into	position.		
– Arbitrary	camera	positions	through	linear	algebra

• We	haven’t	talked	about	shading
• Today,	we	tackled	this	problem:

How	to	deposit	triangle	colors	onto	an	image?
Still	don’t	know	how	to:
1) Vary	colors	(easy)
2) Deal	with	triangles	that	overlap



Project	1B



Arbitrary	Triangles

• You	will	implement	the	scanline	
algorithm	for	“going	down”	
triangles



Project	#1B

• Goal:	apply	the	
scanline	algorithm	to	
“going	down”	triangles	
and	output	an	image.

• File	“project1B.cxx”	
has	triangles	defined	
in	it.

• Due:	Monday,	Jan	14th
• %	of	grade:	3%



Project	#1C

• You	will	implement	the	scanline algorithm	for	
arbitrary	triangles	…	plan	ahead



Tips	On	Floating	Point	Precision



Project	1B

• Cout/cerr can	be	misleading:



Project	1B

• The	limited	accuracy	of	cerr/cout can	cause	
other	functions	to	be	appear	to	be	wrong:



Project	1B

• Floating	point	precision	is	an	approximation	of	
the	problem	you	are	trying	to	solve

• Tiny	errors	are	introduced	in	nearly	every	
operation	you	perform
– Exceptions	for	integers	and	denominators	that	are	a	
power	of	two

• Fundamental	problem:
– Changing	the	sequence	of	these	operations	leads	to	
*different*	errors.

– Example:	(A+B)+C	≠	A+(B+C)



Project	1B
• For	project	1B,	we	are	making	a	binary	decision	for	each	
pixel:	should	it	be	colored	or	not?

• Consider	when	a	triangle	vertex	coincides	with	the	bottom	
left	of	a	pixel:

• We	all	do	different	variations	on	how	to	solve	for	the	
endpoints	of	a	line, so	we	all	get	slightly	different	errors.



Project	1B
• Our	algorithm	incorporates	floor	and	ceiling	
functions.
– This	is	the	right	place	to	bypass	the	precision	problem.
– I	have	included	“floor441”	and	“ceil441”	in	project	
prompt.		You	need	to	use	them,	or	you	will	get	one	
pixel	differences.



Project	1B:	other	thoughts

• You	will	be	building	on	this	project	…	
– think	about	magic	numbers	(e.g.	screen	size	of	
1000)

– add	safeguards	against	cases	that	haven’t	shown	
up	yet

– Assume	nothing!


