
Hank Childs, University of OregonMarch 12th, 2019

CIS 441/541: Introduction to Computer Graphics
Lecture 15: shaders



Talk _more_ about the test



Project G

¨ Blender
¨ WebGL #1
¨ WebGL #2
¨ CUDA
¨ Bezier
¨ Computer Vision
¨ Shaders



Schedule

¨ Upcoming:
¤ Today: shaders, live code
¤ Thursday: test re-take



Late Passes

¨ Will bring forms to final



Hank OH

¨ Primary purpose of Hank’s OH is now to help with 
self-defined projects

¨ Also can help with 1A-1F,2A,2B
¨ Friday OH: 11am-12noon



Final Presentations

¨ 3 minutes each
¨ Make sure to make it clear what you did
¨ Try to impress judges

¤ What is cool about what you did?

¨ Format
¤ PowerPoint
¤ Demo
¤ PowerPoint + Demo

¨ Connect A/V to Rm 220 project before 9am as test



Shaders



Shaders

¨ Shader: computer program used to do “shading”
¨ “Shading”: general term that covers more than just 

shading/lighting
¤ Used for many special effects

¨ Increased control over:
¤ position, hue, saturation, brightness, contrast

¨ For:
¤ pixels, vertices, textures



Motivation: Bump Mapping

¨ Idea:
¤ typical rasterization, calculate fragments
¤ fragments have normals (as per usual)
¤ also interpolate texture on geometry & fragments

n use texture for “bumps”
n take normal for fragment and displace it by “bump” from texture

image from wikipedia



Bump Mapping Example

credit: http://www.fabiensanglard.net/bumpMapping/



Bump Mapping Example



How to do Bump Mapping?

¨ Answer: easy to imagine doing it in your Project 1A-
1F infrastructure
¤ You have total control

¨ But what OpenGL commands would do this?
¤ Not possible in V1 of the GL interface, which is what 

we have learned

¨ It is possible with various extensions to OpenGL
¤ We will learn to do this with shaders



Shading Languages

¨ shading language: programming language for 
graphics, specifically shader effects

¨ Benefits: increased flexibility with rendering
¨ OpenGL (as we know it so far): fixed 

transformations for color, position, of pixels, vertices, 
and textures.

¨ Shader languages: custom programs, custom effects 
for color, position of pixels, vertices, and textures.



ARB assembly language

¨ ARB: low-level shading language
¤ at same level as assembly language

¨ Created by OpenGL Architecture Review Board 
(ARB)

¨ Goal: standardize instructions for controlling GPU
¨ Implemented as a series of extensions to OpenGL
¨ You don’t want to work at this level, but it was an 

important development in terms of establishing 
foundation for today’s technology



GLSL: 
OpenGL Shading Language

¨ GLSL: high-level shading language
¤ also called GLSLang
¤ syntax similar to C

¨ Purpose: increased control of graphics pipeline for 
developers, but easier than assembly 
¤ This is layer where developers do things like “bump 

mapping”

¨ Benefits:
¤ Benefits of GL (cross platform: Windows, Mac, Linux)
¤ Support over GPUs (NVIDIA, ATI)
¤ HW vendors support GLSL very well



Other high-level shading 
languages

¨ Cg (C for Graphics)
¤ based on C programming language
¤ outputs DirectX or OpenGL shader programs
¤ deprecated in 2012

¨ HLSL (high-level shading language)
¤ used with MicroSoft Direct3D
¤ analogous to GLSL
¤ similar to CG

¨ RSL (Renderman Shading Language)
¤ C-like syntax
¤ for use with Renderman: Pixar’s rendering engine



Relationship between GLSL 
and OpenGL

Source: wikipedia



4 Types of Shaders

¨ Vertex Shaders
¨ Fragment Shaders
¨ Geometry Shaders
¨ Tessellation Shaders

¨ It is common to use multiple types of shaders in a 
program and have them interact.



How Shaders Fit Into the 
Graphics Pipeline

Transform Vertices 
from World Space 
to Device Space

Rasterize
Contribute 

Fragments to 
Buffers

vertex shaders: 
custom 

implementation

fragment 
shaders: custom 
implementation

geometry & tessellation 
shaders: create new 

geometry before 
rasterized

¨ You can have 0 
or 1 of each 
shader type

¨ Vertex & 
fragment: very 
common

¨ Geometry & 
tessellation: 
less common
¤ adaptive 

meshing



Vertex Shader

¨ Run once for each vertex
¨ Can: manipulate position, color, texture
¨ Cannot: create new vertices
¨ Primary purpose: transform from world-space to 

device-space (+ depth for z-buffer).
¤ However: A vertex shader replaces the transformation, 

texture coordinate generation and lighting parts of 
OpenGL, and it also adds texture access at the vertex 
level

¨ Output goes to geometry shader or rasterizer



Geometry Shader

¨ Run once for each geometry primitive
¨ Purpose: create new geometry from existing 

geometry.
¨ Output goes to rasterizer
¨ Examples: glyphing, mesh complexity modification
¨ Formally available in GL 3.2, but previously 

available in 2.0+ with extensions

¨ Tessellation Shader: doing some of the same things
¨ Available in GL 4.0



Fragment Shader

¨ Run once for each fragment
¨ Purpose: replaces the OpenGL 1.4 fixed-function 

texturing, color sum and fog stages
¨ Output goes to buffers
¨ Example usages: bump mapping, shadows, specular 

highlights
¨ Can be very complicated: can sample surrounding 

pixels and use their values (blur, edge detection)
¨ Also called pixel shaders



How to Use Shaders

¨ You write a shader program: a tiny C-like program
¨ You write C/C++ code for your application
¨ Your application loads the shader program from a 

text file
¨ Your application sends the shader program to the 

OpenGL library and directs the OpenGL library to 
compile the shader program

¨ If successful, the resulting GPU code can be 
attached to your (running) application and used

¨ It will then supplant the built-in GL operations



OpenGL
library

How to Use Shaders: 
Visual Version

Project2B’
C++ code

Project2B’
binary

g++ 

shader
program

reads
text
file

when
running

sends “char *”
version of
program to GL via 
function call

shader
program is a 

binary

OpenGL 
compiles program, 
binary made just for
the current 
execution

Program is used
on GPU to support
Project2B’ binary



Compiling Shader



Compiling Shader: inspect if it 
works



Compiling Multiple Shaders



Attaching Shaders to a 
Program



Inspecting if program link 
worked…



BUT: this doesn’t work in VTK…

¨ VTK has its own shader handling, and it doesn’t play 
well with the GL calls above…

note: VTK6.1 much better for shaders than 6.0



Simplest Vertex Shader

Many built-in variables.
Some are input.
Some are required output (gl_Position).



Simplest Vertex Shader
(VTK version)

VTK uses special names
propFuncVS: vertex shader
propFuncFS: fragment shader

somehow it changes these into “main” just in time…



Bump-mapping with GLSL

bump map texture

output



Will need to load a texture…



Need to put 2D textures on our 
triangles…



Need to set up shaders and 
textures…



So what is the vertex shader
program?...



And what is the fragment 
shader program?...


