
Hank Childs, University of OregonMarch 7th, 2019

CIS 441/541: Introduction to Computer Graphics
Lecture 14: tests, interactors, raytracing, collision detection, animation

Talk about the test

Project G

¨ Blender
¨ WebGL #1
¨ WebGL #2
¨ CUDA
¨ Bezier
¨ Computer Vision
¨ Shaders

Schedule

¨ Upcoming:
¤ Project G Mass OH?
¤ Live code project 1?

Late Passes

¨ Will bring forms to final

Hank OH

¨ Primary purpose of Hank’s OH is now to help with
self-defined projects

¨ Also can help with 1A-1F,2A,2B
¨ Continues as Thurs/Fri 1130-1230

Transparent	Geometry

Compositing and Blending

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

9Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Opacity and Transparency

• Opaque surfaces permit no light to pass through
• Transparent surfaces permit all light to pass
• Translucent surfaces pass some light

translucency = 1 – opacity (a)

opaque surface a =1

Transparency

• If	you	have	an	opaque	red	square	in	front	of	a	
blue	square,	what	color	would	you	see?
– Red

• If	you	have	a	50%	transparent	red	square	in	front	
of	a	blue	square,	what	color	would	you	see?
– Purple

• If	you	have	a	100%	transparent	red	square	in	
front	of	a	blue	square,	what	color	would	you	see?
– Blue

(One)	Formula	For	Transparency

• Front	=	(Fr,Fg,Fb,Fa)
– a	=	alpha,	transparency	factor

• Sometimes	percent
• Typically	0-255,	with	255	=	100%,	0	=	0%

• Back	=	(Br,Bg,Bb,Ba)
• Equation	=	(Fa*Fr+(1-Fa)*Br,	

Fa*Fg+(1-Fa)*Bg,	
Fa*Fb+(1-Fa)*Bb,	
Fa+(1-Fa)*Ba)

Transparency

• If	you	have	an	25%	transparent	red	square	
(255,0,0)	in	front	of	a	blue	square	(0,0,255),	
what	color	would	you	see	(in	RGB)?
– (192,0,64)

• If	you	have	an	25%	transparent	blue	square	
(0,0,255)	in	front	of	a	red	square	(255,0,0),	
what	color	would	you	see	(in	RGB)?
– (64,0,192)

Implementation

• Per	pixel	storage:
– RGB:	3	bytes
– Alpha:	1	byte
– Z:	4	bytes

• Alpha	used	to	control	blending	of	current	
color	and	new	colors

Vocab	term	reminder:	fragment

• Fragment	is	the	contribution	of	a	triangle	to	a	
single	pixel

Examples
• Imagine	pixel	(i,	j)	has:

– RGB	=	255/255/255
– Alpha=255
– Depth	=	-0.5

• And	we	contribute	fragment:
– RGB=0/0/0
– Alpha=128
– Depth	=	-0.25

• What	do	we	get?
• Answer:	128/128/128,	Z	=	-0.25
• What’s	the	alpha?

Examples
• Imagine	pixel	(i,	j)	has:

– RGB	=	255/255/255
– Alpha=128
– Depth	=	-0.25

• And	we	contribute	fragment:
– RGB=0/0/0
– Alpha=255
– Depth	=	-0.5

• What	do	we	get?
• Answer:	(probably)	128/128/128,	Z	=	-0.25
• What’s	the	alpha?

System	doesn’t	work	well	for	
transparency

• Contribute	fragments	in	this	order:
– Z=-0.1
– Z=-0.9
– Z=-0.5
– Z=-0.4
– Z=-0.6

• Model	is	too	simple.		Not	enough	info	to	
resolve!	

18Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Order Dependency

• Is this image correct?
- Probably not
- Polygons are rendered
in the order they pass
down the pipeline
- Blending functions
are order dependent

How do you sort?

•1) Calculate depth of each triangle center.
•2) Sort based on depth

- Not perfect, but good

• In practice: sort along X, Y, and Z and use
“dominant axis” and only do “perfect sort”
when rotation stops

But	there	is	a	problem…

(-1,	-1,	-0.3)
(2,	-1.5,	-0.3)

(1,	-1,	-0.5)

(0,	1,	-0.4)

(-2,	-1.5,	-0.5)

(0,	1.5,	-0.4)

Depth	Peeling
• a	multi-pass	technique	that	renders	transparent	
polygonal	geometry	without	sorting

• Pass	#1:
– render	as	opaque,	but	note	opacity	of	pixels	placed	on	
top

– treat	this	as	“top	layer”
– save	Z-buffer	and	treat	this	as	“max”

• Pass	#2:
– render	as	opaque,	but	ignore	fragments	beyond	
“max”

• repeat,	repeat…

CS 535

Introduction to Ray
Tracing

Dr. Xiaoyu Zhang
Cal State U., San Marcos

CS 535

Classifying Rendering
Algorithms
l One way to classify rendering algorithms is

according to the type of light interactions they
capture

l For example: The OpenGL lighting model captures:
l Direct light to surface to eye light transport
l Diffuse and rough specular surface reflectance
l It actually doesn’t do light to surface transport correctly,

because it doesn’t do shadows
l We would like a way of classifying interactions: light

paths

CS 535

Classifying Light Paths
l Classify light paths according to where they come

from, where they go to, and what they do along the
way

l Assume only two types of surface interactions:
l Pure diffuse, D
l Pure specular, S

l Assume all paths of interest:
l Start at a light source, L
l End at the eye, E

l Use regular expressions on the letters D, S, L and E
to describe light paths
l Valid paths are L(D|S)*E

CS 535

Simple Light Path Examples
l LE

l The light goes straight from the source to the
viewer

l LDE
l The light goes from the light to a diffuse surface

that the viewer can see
l LSE

l The light is reflected off a mirror into the
viewer’s eyes

l L(S|D)E
l The light is reflected off either a diffuse surface

or a specular surface toward the viewer
l Which do OpenGL (approximately) support?

CS 535

Radiosity Cornell box,
due to Henrik wann
Jensen,
http://www.gk.dtu.dk/
~hwj, rendered with
ray tracer

More Complex Light Paths
l Find the

following:
l LE
l LDE
l LSE
l LDDE
l LDSE
l LSDE

CS 535

More Complex Light Paths
LE LDDE

LDE

LSDE

LSE
LDSE

CS 535

The OpenGL Model
l The “standard” graphics lighting model captures

only L(D|S)E
l It is missing:

l Light taking more than one diffuse bounce: LD*E
l Should produce an effect called color bleeding,

among other things
l Approximated, grossly, by ambient light

l Light refracted through curved glass
l Consider the refraction as a “mirror” bounce: LDSE

l Light bouncing off a mirror to illuminate a diffuse surface:
LS+D+E

l Many others
l Not sufficient for photo-realistic rendering

CS 535

PCKTWTCH by
Kevin Odhner,
POV-Ray

Raytraced Images

CS 535

Kettle, Mike
Miller, POV-
Ray

CS 535

The previous slides now look
like amateur hour…

CS 535

Graphics Pipeline Review
l Properties of the Graphics Pipeline

l Primitives are transformed and projected (not depending on display
resolution)

l Primitives are processed one at a time
l Forward-mapping from geometrical space to image space

CS 535

Alternative Approaches: Ray
CASTING (not Ray TRACING)

Ray-casting searches along lines of sight, or rays, to determine the
primitive that is visible along it.

Properties of ray-casting:
n Go through all primitives at each pixel
n Image space sample first
n Analytic processing afterwards

CS 535

Ray Casting Overview

n For every pixel shoot a ray from
the eye through the pixel.

n For every object in the scene
n Find the point of intersection

with the ray closest to (and in
front of) the eye

n Compute normal at point of
intersection

n Compute color for pixel based on
point and normal at intersection
closest to the eye (e.g. by Phong
illumination model). t

0

CS 535

Ray Casting
l Ray Cast (Point R, Ray D) {

foreach object in the scene
find minimum t>0 such that R + t D hits object

if (object hit)
return object
else return background object

}

CS 535

Raytracing
l Cast rays from the eye point the same way as ray casting

l Builds the image pixel by pixel, one at a time

l Cast additional rays from the hit point to determine the pixel color
l Shoot rays toward each light. If they hit something, then the

object is shadowed from that light, otherwise use “standard”
model for the light

l Reflection rays for mirror surfaces, to see what should be
reflected in the mirror

l Refraction rays to see what can be seen through transparent
objects

l Sum all the contributions to get the pixel color

CS 535

Raytracing

Shadow rays

Reflection ray

refracted ray

CS 535

Recursive Ray Tracing
l When a reflected or refracted ray hits a surface,

repeat the whole process from that point
l Send out more shadow rays
l Send out new reflected ray (if required)
l Send out a new refracted ray (if required)
l Generally, reduce the weight of each additional ray when

computing the contributions to surface color
l Stop when the contribution from a ray is too small to notice

or maximum recursion level has been reached

CS 535

Raytracing Implementation
l Raytracing breaks down into two tasks:

l Constructing the rays to cast
l Intersecting rays with geometry

l The former problem is simple vector arithmetic
l Intersection is essentially root finding (as we will

see)
l Any root finding technique can be applied

l Intersection calculation can be done in world
coordinates or model coordinates

CS 535

Constructing Rays
l Define rays by an initial point and a direction: x(t)=x0+td
l Eye rays: Rays from the eye through a pixel

l Construct using the eye location and the pixel’s location on the
image plane. X0 = eye

l Shadow rays: Rays from a point on a surface to the light.
l X0 = point on surface

l Reflection rays: Rays from a point on a surface in the reflection
direction
l Construct using laws of reflection. X0 = surface point

l Transmitted rays: Rays from a point on a transparent surface
through the surface
l Construct using laws of refraction. X0 = surface point

CS 535

From Pixels to Rays
look upu
look up
look uv
look u

´
=

´

´
=

´

r

rr
r

2 tan(/ 2)

2 tan(/ 2)

x

y

fovx u
W
fov

y v
H

D =

D =

r r

r r

(2 1) (2 1)(,)
2 2

look i W j Hd i j x y
look

+ - + -
= + D + D

r r r

CS 535

Ray Tracing Illumination
Recursive

dtransmittereflecteddirect IIIVEI ++=),(

),(dtransmittetdtransmitte VPIkI =

() () úû
ù

êë
é ×-+×+= shinyn

sdlightambientadirect RVkLNkIIkI ˆˆˆˆ

I

V

E

P
reflectedI

reflectedV

dtransmitteI dtransmitteV

N̂

L R

directIVEI =),(reflecteddirect IIVEI +=),(

),(reflectedrreflected VPIkI =

Check for shadowing (intersection with object along ray (P,L))

CS 535

The Ray Tree
R

2

R
1

R
3

L2

L1
L3N1

N2

N3

T1

T3

Ni surface normal
Ri reflected ray
Li shadow ray

Ti transmitted (refracted) ray
Psuedo-code

Viewpoint

L1

T3R
3

L3L2

T1R
1

R
2

Eye

CS 535

Reflection
l Reflection angle = view angle

CS 535

Reflection
l The maximum depth of the tree affects the handling of refraction
l If we send another reflected ray from here, when do we stop? 2

solutions (complementary)
l Answer 1: Stop at a fixed depth.
l Answer 2: Accumulate product of reflection coefficients and stop when

this product is too small.

CS 535

Reflection

CS 535

Refraction
Snell’s Law sin

sin
t i

r
i t

q h h
q h
= =

N̂

N̂-

M̂

T̂

Î
iq

tq

IN i
ˆcosˆ -q

iN qcosˆ

Note that I is the negative of
the incoming ray

CS 535

Pseudo Code for Ray Tracing
rgb lsou; // intensity of light source
rgb back; // background intensity
rgb ambi; // ambient light intensity

Vector L // vector pointing to light source
Vector N // surface normal
Object objects [n] //list of n objects in scene
float Ks [n] // specular reflectivity factor for each object
float Kr [n] // refractivity index for each object
float Kd [n] // diffuse reflectivity factor for each object
Ray r;

void raytrace() {
for (each pixel P of projection viewport in raster order) {

r = ray emanating from viewer through P
int depth = 1; // depth of ray tree consisting of multiple paths
the pixel color at P = intensity(r, depth)

}
}

CS 535

rgb intensity (Ray r, int depth) {
Ray flec, frac;
rgb spec, refr, dull, intensity;

if (depth >= 5) intensity = back;
else {

find the closest intersection of r with all objects in scene
if (no intersection) {

intensity =back;
} else {

Take closest intersection which is object[j]
compute normal N at the intersection point
if (Ks[j] >0) { // non-zero specular reflectivity

compute reflection ray flec;
refl = Ks[j]*intensity(flec, depth+1);

} else refl =0;
if (Kr[j]>0) { // non-zero refractivity

compute refraction ray frac;
refr = Kr[j]*intensity(frac, depth+1);

} else refr =0;
check for shadow;
if (shadow) direct = Kd[j]*ambi
else direct = Phong illumination computation;
intensity = direct + refl +refr;

} }
return intensity; }

CS 535

Ray-traced Cornell box, due
to Henrik Jensen,
http://www.gk.dtu.dk/~hwj

Which paths
are missing?

Raytraced Cornell Box

CS 535

Paths in RayTracing
l Ray Tracing

l Captures LDS*E paths: Start at the eye, any number of specular
bounces before ending at a diffuse surface and going to the light

l Raytracing cannot do:
l LS*D+E: Light bouncing off a shiny surface like a mirror and

illuminating a diffuse surface
l LD+E: Light bouncing off one diffuse surface to illuminate others

l Basic problem: The raytracer doesn’t know where to send rays
out of the diffuse surface to capture the incoming light

l Also a problem for rough specular reflection
l Fuzzy reflections in rough shiny objects

l Need other rendering algorithms that get more paths

CS 535

A Better Rendered Cornell Box

Level of detail

Mipmaps

¨ Mipmaps: pre-calculated, optimized collections of
images that accompany a main texture, intended to
increase rendering speed and reduce aliasing
artifacts.

¨ Widely used in 3D computer games, flight
simulators and other 3D imaging systems.

¨ In use, it is called “mipmapping.”
¨ The letters "MIP" in the name are an acronym of the

Latin phrase multum in parvo, meaning "much in
little”.

Mipmaps

Level of detail (LOD) techniques

¨ level of detail: decreasing the complexity of some
3D object representations, because they
¤ are far away
¤ are moving fast
¤ are not important

¨ increases the efficiency of rendering by decreasing
the workload on graphics pipeline stages
¤ reduced visual quality of the model is often unnoticed

because of the small effect on object appearance when
distant or moving fast.

Types of LOD

¨ Two types:
¤ Discrete LoD (DLoD)
¤ Continuous LoD (CLoD)

Discrete LoD (DLOD)

¨ Discrete LoD (DLoD)
¤ Make a fixed amount of models, ranging from highest

quality to coarse approximation & render appropriate
one based on importance factor

¤ Fastest in practice, but leads to “popping”

Discrete LoD example

OK, how do we create coarse
versions?

¨ How do we take and make these?

¨ Answer: surface decimation

Decimation of
Triangle Meshes

Paper by W.J.Schroeder et.al

Presented by Guangfeng Ji

Goal
­ Reduce the total number of triangles in

a triangle mesh

­ Preserve the original topology and a
good approximation of the original
geometry

Overview
­ A multiple-pass algorithm

­ During each pass, perform the following three basic
steps on every vertex:
– Classify the local geometry and topology for this given

vertex
– Use the decimation criterion to decide if the vertex can be

deleted
– If the point is deleted, re-triangulate the resulting hole.

­ This vertex removal process repeats, with possible
adjustment of the decimation criteria, until some
termination condition is met.

Feature Edge
­ A feature edge exists if the angle

between the surface normals of two
adjacent triangles is greater than a
user-specified “feature angle”.

Characterize Local
Geometry and Topology
­ Each vertex is assigned one of five

possible classifications:
– Simple vertex
– Complex vertex
– Boundary vertex
– Interior edge vertex
– Corner vertex

Evaluate the
Decimation Criteria

­ Complex vertices are not deleted from
the mesh.

­ Use the distance to plane criterion for
simple vertices.

­ Use the distance to edge criterion for
boundary and interior edge vertices.

­ Corner vertex?

Criterion for Simple
Vertices

­ Use the distance to plane criterion.
­ If the vertex is within the specified

distance to the average plane, it can
be deleted. Otherwise, it is retained.

Overview
­ A multiple-pass algorithm

­ During each pass, perform the following three basic
steps on every vertex:
– Classify the local geometry and topology for this given

vertex
– Use the decimation criterion to decide if the vertex can be

deleted
– If the point is deleted, re-triangulate the resulting hole.

­ This vertex removal process repeats, with possible
adjustment of the decimation criteria, until some
termination condition is met.

Continuous LoD

¨ Continuous LOD (CLoD)
¤ considers the polygon mesh being rendered as a

function which must be evaluated requiring to avoid
excessive errors which are a function of some heuristic
(usually distance) themselves.

¤ The given "mesh" function is then continuously evaluated
and an optimized version is produced according to a
tradeoff between visual quality and performance.

Terrain Rendering

Terrain rendering

¨ Wikipedia:
¤ Terrain rendering covers a variety of methods of

depicting real-world or imaginary world surfaces.
n Most common terrain rendering is the depiction of Earth's

surface. ß Hank disagrees when it comes to CG

¨ Used in various applications to give an observer a
frame of reference

Terrain rendering structure

¨ Actors:
¤ terrain database,
¤ a central processing unit (CPU),
¤ a dedicated graphics processing unit (GPU),
¤ a display.

¨ Software application is configured to start at initial
location in the world space.

¨ The output of the application is screen space
representation of the real world on a display.

Terrain rendering details

¨ CPU identifies and loads terrain data
corresponding to initial location from the terrain
database

¨ CPU applies the required transformations to build a
mesh of points that can be rendered by the GPU

¨ Data sent to GPU and GPU completes geometrical
transformations, creating screen space objects (i.e.,
polygons) that create a picture closely resembling
the location of the real world.

Generation

¨ The main tension is between the # of processed
polygons and the # of rendered polygons.
¤ A very detailed picture of the world might use billions

of data points.

¨ Virtually all terrain rendering applications use level
of detail to manage number of data points
processed by CPU and GPU.
¤ There are several modern algorithms for terrain

surfaces generating.

Example: ROAM

¨ ROAM: Real-time optimally adapting mesh.
¤ Continuous level of detail algorithm that optimizes

terrain meshes.
¤ Premise: sometimes it is more effective to send a small

amount of unneeded polygons to the GPU, rather than
burden the CPU with LOD (Level of Detail) calculations.

¤ Result: produce high quality displays while being able
to maintain real-time frame rates.

¤ ROAM provides control over scene quality versus
performance in order to provide HQ scenes while
retaining real-time frame rates on hardware.

ROAM in action

ROAM internals

Spatial Search Structures

Spatial Search Data Structures

¨ Organize geometry so you can quickly find
geometry in a given region.

¨ Examples:
¤ Octree
¤ k-d tree
¤ Binary space partitioning

¨ Usages:
¤ Collision detection
¤ Culling
¤ Ray tracing

Octrees

¨ Oct + tree = octree (one ‘t’)
¨ Tree data structure

¤ Internal node: has eight children, corresponding to 8
octants

¤ Leaf node: contains some number of points

k-d trees

¨ k-d = k-dimensional tree
¤ We are interested in k=3

¨ Node roles:
¤ Every leaf node is a point
¤ Every internal node divides space into two parts using

a plane. Also contains a point.
n Each plane is axis-aligned, i.e., X=a, Y=b, or Z=c.
n Alternate between axes as you descend the tree

k-d tree

k-d tree

Binary Space Partitioning

¨ General form of k-d trees, using arbitrary planes,
not just X=a, Y=b, Z=c

¨ Associated tree (BSP trees) can be used for spatial
searches.

View Frustum Culling

View Frustum Culling

¨ Viewing frustum culling: the process of removing
objects that lie completely outside the viewing
frustum from the rendering process.
¤ Rendering these objects would be a waste of time since

they are not directly visible.

View Frustum Culling

¨ Spatial search structures (octree, k-d, BSP) can
dramatically accelerate view frustum culling.
¤ Need correct granularity though.

¨ Speedups are very application-dependent
¤ Best case scenario: you are zoomed in on very complex

scene
¤ Worst case scenario: you are zoomed out on simple

scene

Collision Detection

Collision Detection

¨ Collision detection: as objects in the scene move,
figure out when they collide and perform
appropriate action (typically bouncing)

¨ Game setting: 30 FPS, meaning 0.033s to figure out
what to render and render it.
¤ Use spatial structures to accelerate searching

Collision Detection

¨ Two flavors:
¤ A priori

n before the collision occurs
n calculate the trajectory of each object and put in collision

events right before they occur

¤ A posteriori
n after the collision occurs
n with each advance, see if anything has hit or gotten close

¨ Both use spatial search structures (octree, k-d tree to
identify collisions)

Shaders

Shaders

¨ Shader: computer program used to do “shading”
¨ “Shading”: general term that covers more than just

shading/lighting
¤ Used for many special effects

¨ Increased control over:
¤ position, hue, saturation, brightness, contrast

¨ For:
¤ pixels, vertices, textures

Motivation: Bump Mapping

¨ Idea:
¤ typical rasterization, calculate fragments
¤ fragments have normals (as per usual)
¤ also interpolate texture on geometry & fragments

n use texture for “bumps”
n take normal for fragment and displace it by “bump” from texture

image from wikipedia

Bump Mapping Example

credit: http://www.fabiensanglard.net/bumpMapping/

Bump Mapping Example

How to do Bump Mapping?

¨ Answer: easy to imagine doing it in your Project 1A-
1F infrastructure
¤ You have total control

¨ But what OpenGL commands would do this?
¤ Not possible in V1 of the GL interface, which is what

we have learned

¨ It is possible with various extensions to OpenGL
¤ We will learn to do this with shaders

Shading Languages

¨ shading language: programming language for
graphics, specifically shader effects

¨ Benefits: increased flexibility with rendering
¨ OpenGL (as we know it so far): fixed

transformations for color, position, of pixels, vertices,
and textures.

¨ Shader languages: custom programs, custom effects
for color, position of pixels, vertices, and textures.

ARB assembly language

¨ ARB: low-level shading language
¤ at same level as assembly language

¨ Created by OpenGL Architecture Review Board
(ARB)

¨ Goal: standardize instructions for controlling GPU
¨ Implemented as a series of extensions to OpenGL
¨ You don’t want to work at this level, but it was an

important development in terms of establishing
foundation for today’s technology

GLSL:
OpenGL Shading Language

¨ GLSL: high-level shading language
¤ also called GLSLang
¤ syntax similar to C

¨ Purpose: increased control of graphics pipeline for
developers, but easier than assembly
¤ This is layer where developers do things like “bump

mapping”

¨ Benefits:
¤ Benefits of GL (cross platform: Windows, Mac, Linux)
¤ Support over GPUs (NVIDIA, ATI)
¤ HW vendors support GLSL very well

Other high-level shading
languages

¨ Cg (C for Graphics)
¤ based on C programming language
¤ outputs DirectX or OpenGL shader programs
¤ deprecated in 2012

¨ HLSL (high-level shading language)
¤ used with MicroSoft Direct3D
¤ analogous to GLSL
¤ similar to CG

¨ RSL (Renderman Shading Language)
¤ C-like syntax
¤ for use with Renderman: Pixar’s rendering engine

Relationship between GLSL
and OpenGL

Source: wikipedia

4 Types of Shaders

¨ Vertex Shaders
¨ Fragment Shaders
¨ Geometry Shaders
¨ Tessellation Shaders

¨ It is common to use multiple types of shaders in a
program and have them interact.

How Shaders Fit Into the
Graphics Pipeline

Transform Vertices
from World Space
to Device Space

Rasterize
Contribute

Fragments to
Buffers

vertex shaders:
custom

implementation

fragment
shaders: custom
implementation

geometry & tessellation
shaders: create new

geometry before
rasterized

¨ You can 0 or
1 of each
shader type

¨ Vertex &
fragment:
very common

¨ Geometry &
tessellation:
less common
¤ adaptive

meshing

Vertex Shader

¨ Run once for each vertex
¨ Can: manipulate position, color, texture
¨ Cannot: create new vertices
¨ Primary purpose: transform from world-space to

device-space (+ depth for z-buffer).
¤ However: A vertex shader replaces the transformation,

texture coordinate generation and lighting parts of
OpenGL, and it also adds texture access at the vertex
level

¨ Output goes to geometry shader or rasterizer

Geometry Shader

¨ Run once for each geometry primitive
¨ Purpose: create new geometry from existing

geometry.
¨ Output goes to rasterizer
¨ Examples: glyphing, mesh complexity modification
¨ Formally available in GL 3.2, but previously

available in 2.0+ with extensions

¨ Tessellation Shader: doing some of the same things
¨ Available in GL 4.0

Fragment Shader

¨ Run once for each fragment
¨ Purpose: replaces the OpenGL 1.4 fixed-function

texturing, color sum and fog stages
¨ Output goes to buffers
¨ Example usages: bump mapping, shadows, specular

highlights
¨ Can be very complicated: can sample surrounding

pixels and use their values (blur, edge detection)
¨ Also called pixel shaders

How to Use Shaders

¨ You write a shader program: a tiny C-like program
¨ You write C/C++ code for your application
¨ Your application loads the shader program from a

text file
¨ Your application sends the shader program to the

OpenGL library and directs the OpenGL library to
compile the shader program

¨ If successful, the resulting GPU code can be
attached to your (running) application and used

¨ It will then supplant the built-in GL operations

OpenGL
library

How to Use Shaders:
Visual Version

Project2B’
C++ code

Project2B’
binary

g++

shader
program

reads
text
file

when
running

sends “char *”
version of
program to GL via
function call

shader
program is a

binary

OpenGL
compiles program,
binary made just for
the current
execution

Program is used
on GPU to support
Project2B’ binary

Compiling Shader

Compiling Shader: inspect if it
works

Compiling Multiple Shaders

Attaching Shaders to a
Program

Inspecting if program link
worked…

BUT: this doesn’t work in VTK…

¨ VTK has its own shader handling, and it doesn’t play
well with the GL calls above…

note: VTK6.1 much better for shaders than 6.0

Simplest Vertex Shader

Many built-in variables.
Some are input.
Some are required output (gl_Position).

Simplest Vertex Shader
(VTK version)

VTK uses special names
propFuncVS: vertex shader
propFuncFS: fragment shader

somehow it changes these into “main” just in time…

Bump-mapping with GLSL

bump map texture

output

Will need to load a texture…

Need to put 2D textures on our
triangles…

Need to set up shaders and
textures…

So what is the vertex shader
program?...

And what is the fragment
shader program?...

Rotations

Improved rotations

¨ Project 2A/2B:

Click here
à
Small rotations
around up axis
for as long as
you hold button
down.

Click here
à
Large rotations
around up axis
for as long as
you hold button
down.

Click here
à
Large rotations
around “up
cross view” for
as long as you
hold button
down.

Click here
à
Medium rotations
around
combination of up
& “up cross view”
for as long as you
hold button down.

Improved rotations: trackball

Only rotates
while trackball is
spun

Improved rotations: trackball

¨ Idea: approximate trackball interface with
traditional mouse interface

¨ Camera movement occurs when the mouse is moving
¨ The camera does not move when the button is

clicked, but the mouse does not move

Improved rotations: trackball

¨ Imagine your scene is contained within a sphere.
¨ When you push the mouse button, the cursor is over

a pixel and the ray corresponding to that pixel
intersects the sphere.

¨ Idea: every subsequent mouse movement (while the
button is pushed) should rotate the intersection of
the sphere so that it is still under the cursor.

Improved rotations: trackball

Click here Move mouse here Then sphere
should move too

How to do the rotations?

¨ Best way: use quaternions
¤ Number system that extends complex numbers
¤ Applies to mechanics to 3D space
¤ Would be a very long lecture!

¨ Simple way:
¤ Take “dx” and “dy” in pixels, and then do

n RotateAroundUp(dy*factor);
n RotateAroundUpCrossView(dx*factor);

¤ Factors vary based on level of zoom
¤ Can create weird effects based on order of rotations

n Users rarely notice in practice

Parallel Renderin

Large Scale Visualization
with Cluster Computing

Linux Cluster Institute Workshop
October 1, 2004

Kenneth Moreland
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

The Graphics Pipeline
Points Lines Polygons

Rendering Hardware

Geometric Processing
Translation

Lighting
Clipping

Rasterization
Polygon Filling

Interpolation
Texture Application

Hidden Surface Removal

Frame Buffer
Display

Rendering Hardware

Parallel Graphics Pipelines

Geometric Processing
Translation

Lighting
Clipping

Rasterization
Polygon Filling

Interpolation
Texture Application

Hidden Surface Removal

Frame Buffer
Display

Each loaded/calculated individually
Points Lines Polygons

FB

FB

FB

FB

Parallel Graphics Pipelines

G R

G R

G R

G R

FBFB

FB FB

Sort Middle Parallel Rendering

G R

G R

G R

G R
Sorting N

etw
ork

FBFB

FB FB

Sort First Parallel Rendering

G R

G R

G R

G R

Sorting N
etw

ork

FB

Sort Last Parallel Rendering

G R

G R

G R

G R

Sorting N
etw

ork

Sort-First Bottleneck

Rendere
r

Rendere
r

Rendere
r

Rendere
r

Polygon
Sorter

Polygon
Sorter

Polygon
Sorter

Polygon
Sorter

Networ
k

Sort-Last Bottleneck

Compositio
n Network

Rendere
r

Rendere
r

Rendere
r

Rendere
r

Clockwise / Counter-Clockwise

What is going on here?

Details:
Diffuse = 0.8, ambient = 0.2
Default GL normal is (0,0,1)

But wait…

If you have an open surface,
then there is a “back face”.
The back face has the
opposite normal.

How can we deal with this
case?

Idea #1: encode all triangles
twice, with different normals
Idea #2: modify diffuse
lighting model

Diffuse light = abs(L.N)
This is called two-sided lighting

Reminder: open surface,
closed surface

¨ Closed surface:
¤ you could drop it in water and it would float (i.e., no

way for water to get inside)
¤ no way to see the inside

¨ Open surface:
¤ water can get to any part of the surface
¤ you can see the inside

Front face / back face

¨ Front face: the face that is “facing outward”
¨ Back face: the face that is “facing inward”
¨ These distinctions are meaningful for closed surfaces
¨ They are not meaningful for open surfaces

¤ This is why we did “two-sided lighting”

What is going on here?
Answer:
OpenGL is giving us diffuse+ambient
on the left, but only ambient on the
right (rather, diffuse == 0).
Why? … it is interpreting the left side
as a “front face” and the right side as
a “back face”.
(if we spun the camera, the left would
be gray, and the right would be
white)

Determining Front Face and
Back Face

¨ The front face and back face is determined by
convention

¨ Convention #1:

V1

V2

V3

Front-face

Back-face

V1, V2, and V3 are arranged
counter-clockwise around the
front-face

Determining Front Face and
Back Face

¨ The front face and back face is determined by
convention

¨ Convention #1:

V3

V1

V2

Front-face

Back-face

Which vertex is specified first
doesn’t matter, as long as they
are arranged counter-clockwise
around the front-face

Determining Front Face and
Back Face

¨ The front face and back face is determined by
convention

¨ Convention #2:

V1

V3

V2

Front-face

Back-face

V1, V2, and V3 are arranged
clockwise around the front-face

Determining Front Face and
Back Face

¨ The front face and back face is determined by
convention

¨ Convention #1: Convention #2:

V1

V3

V2

Front-face

Back-face

V1

V2

V3

Front-face

Back-face

glFrontFace

Why front face / back face is
important

¨ Reason #1:
¤ Need to know this if you are doing lighting calculations

¨ Reason #2:
¤ Culling

Culling

¨ Idea: some triangles can’t affect the picture, so don’t
render them.

¨ Question: how can this happen?
¨ Answer #1: geometry outside [0->width, 0->height]

in device space
¨ Answer #2: closed surface, and the back face is

facing the camera

Something you should know about:
Left- and right-handed coordinates

OpenGL: right-handed
DirectX: left-handed

