
#### CIS 441/541: Intro to Computer Graphics Lecture 14: Collisions and Level-of-Detail



May 25, 2021

#### Hank Childs, University of Oregon



#### **Office Hours**

- Now only 1 OH per week
  Hank, Weds 230-330
- Abhishek still doing a lot...



3A

CIS 441

 If you make mistakes uploading textures, OpenGL often just defaults to the first texture



Wanted: colored by texture1 and tiger striped by texture 2 Got: colored by texture1 and tiger striped by texture 1

#### Project 3.X



- B (collisions) and 3C (level-of-detail) will be released today
- □ Other projects are in progress

## Plan – Parentheticals Are Likely to Change



#### □ This went well before, let's do it again

| Week           | Sun | Mon    | Tues                                                                                           | Weds | Thurs                                            | Fri | Sat |
|----------------|-----|--------|------------------------------------------------------------------------------------------------|------|--------------------------------------------------|-----|-----|
| 8              |     | 2B due | Lec13<br>( <del>mouse+camera)</del><br>(textures)<br>3A avail<br>Proposals due                 |      | Lec14<br><del>(ray tracing)</del><br>Quiz 4 (GL) |     |     |
| 9              |     |        | <del>Lec15 (textures)</del><br>Live code<br>3B, 3C, avail                                      |      | Quiz 5<br>(project 1D)                           |     |     |
| 10             |     |        | More lecture                                                                                   |      | Quiz makeup                                      |     |     |
| Finals<br>Week |     |        | Final Projects due<br>All other work<br>due: 1A-1F, 2A-<br>2B not accepted<br>after this point |      |                                                  |     |     |

#### Plan for Thursday

- Start at 9am
- □ 9am-915am: Q&A on miscellaneous topics
- 915am-945am: Quiz 4
- Arrive no later than 910am



#### Quiz 4

- This quiz will test what you learned in Project 1D.
- Sorry to be reaching back to a project from a month ago, but there is a concept there I want to do the quiz on



#### 3.X

- 3B: collisions
- 3C: level of detail

UNIVERSITY OF OREGON

#### **Collision Detection**



#### **Collision Detection**

- Collision detection: as objects in the scene move, figure out when they collide and perform appropriate action (typically bouncing)
- Game setting: 30 FPS, meaning 0.033s to figure out what to render and render it.
  →Need to do this quickly!

## **Collision Detection**

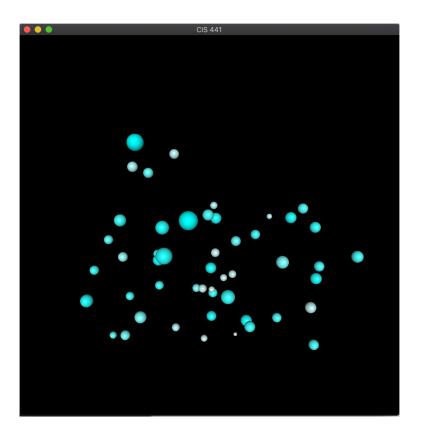
- Two flavors:
  - A priori
    - before the collision occurs
    - calculate the trajectory of each object and put in collision events right before they occur
  - A posteriori
    - after the collision occurs
    - with each advance, see if anything has hit or gotten close



#### How to Do Collision Detection: Brute Force

- For each object X
  - For each other object Y
    - Check if X and Y collide
- → O(n^2)




#### How to Do Collision Detection: Spatial Search Structures

- Divide volume into many cubes
- Place each object into its cube
- For each cube
  - Check to see if objects in cube have collided
- $\rightarrow$  O(n)
  - … Sort of / kind of / not really
    - How many cubes?
    - What is they all end up in the same cube
    - So maybe expected run time is O(n).

#### UNIVERSITY OF OREGON

## 3B

- Brute force on collision detection
  - Few enough objects that spatial search structures are not needed
- But nice effects for colliding balls

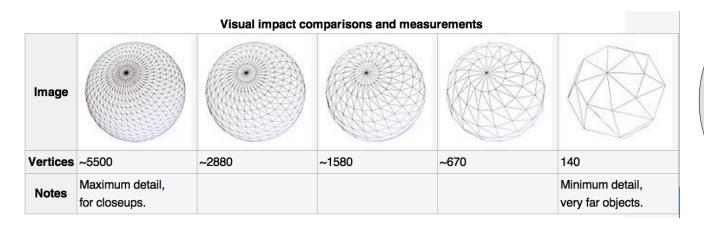


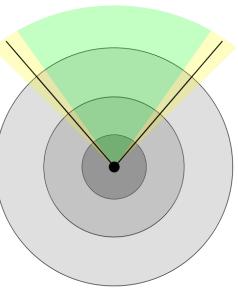
Level of detail (LOD) techniques

- <u>level of detail</u>: decreasing the complexity of some
  3D object representations, because they
  - are far away
  - **a**re moving fast
  - are not important
- increases the efficiency of rendering by decreasing the workload on graphics pipeline stages
  - reduced visual quality of the model is often unnoticed because of the small effect on object appearance when distant or moving fast

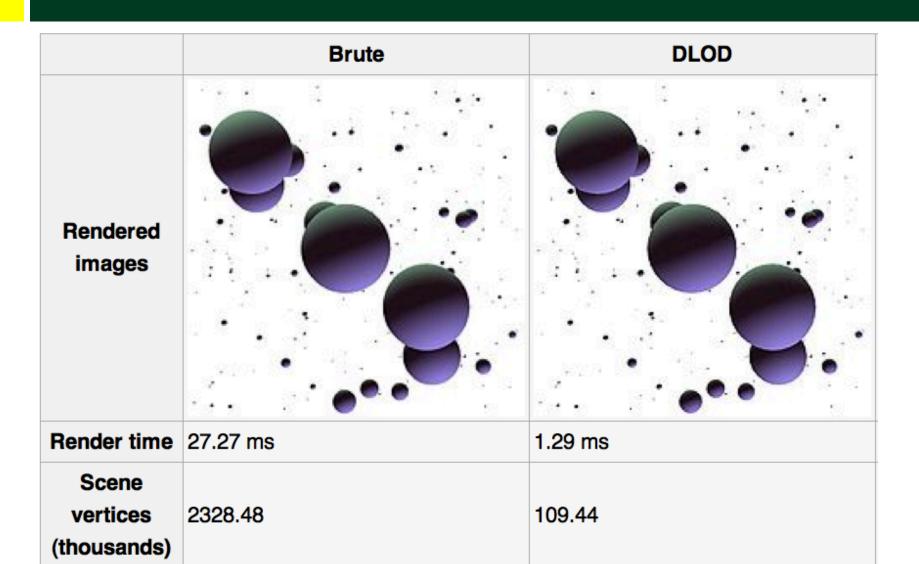
#### Types of LOD



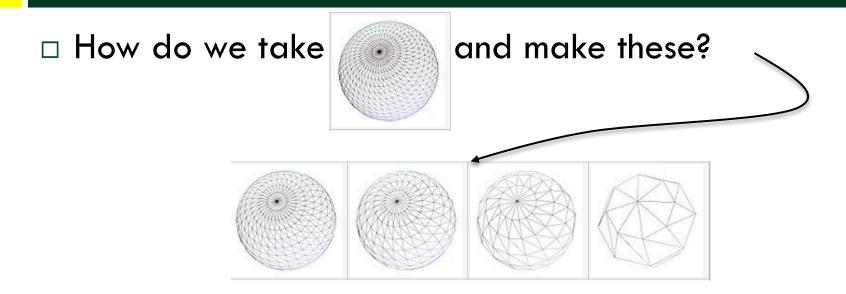

Two types:
 Discrete LoD (DLoD)
 Continuous LoD (CLoD)


## Discrete LoD (DLOD)




Make a fixed amount of models, ranging from highest quality to coarse approximation & render appropriate one based on importance factor

Fastest in practice, but leads to "popping"

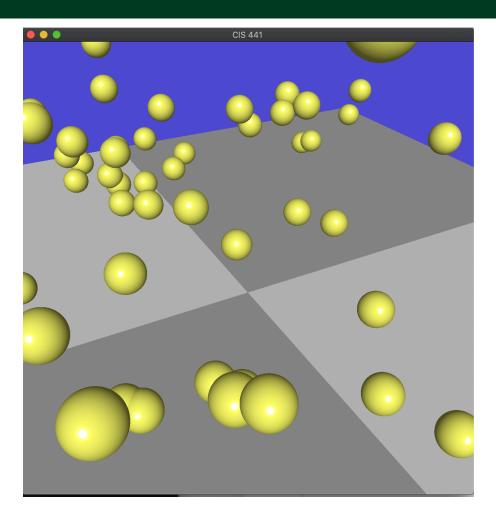









# OK, how do we create coarse versions?




Answer: surface decimation (can lecture on this later)

#### 3C



- Have 3 levels of details for spheres
- Render closer spheres at high LOD, further away at low LOD

