
Hank Childs, University of OregonMay 18, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 12: Textures and Ray Tracing

Office	Hours

Discuss	Quiz	3

Two Choices for Final Project

¨ Custom final project
¤ You define the project, should be ~25 hours of work
¤ Present project to class/judges on Finals Week

¨ Pre-defined projects
¤ Pick three 8-hour projects from a menu of 4-6 projects

¨ Whether you do custom or pre-defined, you must
attend the final period and watch the presentations
¤ -4 points if you skip

Pre-Defined Projects

¨ Planning on having 4-6 pre-defined projects
¨ You choose 3
¨ On Tuesday May 18th, we will release project 2C 3A

¤ Likely: view manipulation from keyboard events

¨ On Tuesday May 25th, we will release the rest of the
projects
¤ (possibly called 2D, 2E, 2F, etc.) (called 3B, 3C, 3D, etc.)
¤ These projects are TBD, but likely to include topics such

as: texturing, physically based rendering, mirrors

Custom Project Ideas

¨ Implement a game
¨ Implement a screen saver
¨ Build a model of something
¨ Implement a neat rendering effect

¤ Many folks try ray tracing (will discuss this later this lecture)

¨ ... Will show examples in a few slides

Custom Project Proposals

¨ If you want to do a custom project, please send me
a proposal

¨ “Deadline”: ideally Tuesday May 18th (today)
¨ Why?

¤ Get the scope right
¤ Make an agreement early on

n Protects you and me

¨ Important concept: minimum viable deliverable
¨ Proposal can be whatever length you see fit

¤ One paragraph is fine

Remaining Lectures

¨ In support of project 3A/3B/3C/...
¨ In support of custom projects

¤ (Ray tracing lecture)

Plan – Parentheticals Are
Likely to Change

¨ This went well before, let’s do it again
Week Sun Mon Tues Weds Thurs Fri Sat

8 2B due Lec13
(mouse+camera)
(textures)
3A avail
Proposals due

Lec14
(ray tracing)
Quiz 4 (GL)

9 Lec15 (textures)
3B, 3C, ... avail

Lec16
Quiz 5
(rasterization)

10 Live code Quiz makeup

Finals
Week

Final Projects due
All other work
due: 1A-1F, 2A-
2B not accepted
after this point

Plan for Thursday

¨ 830-900: 541 students only (discussion of project G)
¨ 900am-915am: general class discussion
¨ 915am: Quiz 4 starts

¨ Note: 441 students join at 9am

Textures

Textures

¨ “Textures” are a mechanism in OpenGL
¨ Mechanism is useful for many things

¤ One of these is add “texture” to a surface, hence the
name

¨ There are “1D”, “2D”, and “3D” textures
¤ Most common is 2D, and placing “texture” on surfaces

Motivation

¨ Making a video game
¨ Have a brick wall in the

background
¨ Want it to look like a brick wall
¨ But do not want to make a huge

amount of geometry
¤ Why not?

¨ Textures can help
¨ Value proposition: better look with

less geometry

How Do Textures Work?

Step 1: new fields on your geometry
Called “texture coordinates”

(0,0) (0.7,0)

(1.0,1.0)

(1.0,1.0)

(0.3,1.0)(0,1.0)

Step 2: textures are loaded onto
GPU

GPU memory

Step 3: texture coordinates and texture data are available during rasterization
Lots of ways to make graphics effects

Most common: use texture coordinates to look up pixel color in texture data and
then assign fragment that color

Textures for Fragment Color

(0,0) (0.7,0)

(1.0,1.0)

(1.0,1.0)

(0.3,1.0)(0,1.0)

Assume a fragment lies here

Texture coordinates are a field and
will be LERP’ed like any other field
à (0.3, 0.45)

A fragment shader can then go to the
image and find the corresponding
color

The color at that pixel becomes the
color of the fragment

Observation #1

(0,0) (0.7,0)

(1.0,0.8)

(1.0,1.0)

(0.3,0.8)(0,0.8)

Assume a fragment lies here

Texture coordinates are a field and
will be LERP’ed like any other field
à (0.3, 0.35)

A fragment shader can then go to the
image and find the corresponding
color

The color at that pixel becomes the
color of the fragment

Did not use top 20% of the texture.
No problem. Maybe other triangles will.
Maybe not. Not an issue either way.

Observation #2

(0,0) (0.7,0)

(1.0,1.0)

(1.0,1.0)

(0.3,1.0)(0,1.0)

Assume a fragment lies here

Texture coordinates are a field and
will be LERP’ed like any other field
à (0.3, 0.45)

A fragment shader can then go to the
image and find the corresponding
color

The color at that pixel becomes the
color of the fragment

Camera zoomed in one triangle? No problem.
Just get lots of fragments, which means lots of
nearby pixels in the texture image

Actual OpenGL Code

Step 1: new fields on your geometry
Called “texture coordinates”

(0,0) (0.7,0)

(1.0,1.0)

(1.0,1.0)

(0.3,1.0)(0,1.0)

Step 2: textures are loaded onto
GPU

GPU memory

Step 3: texture coordinates and texture data are available during rasterization
Lots of ways to make graphics effects

Most common: use texture coordinates to look up pixel color in texture data and
then assign fragment that color

Step 1: New Fields on Your
Geometry

¨ OpenGL is all set up for texture coordinates
¨ Just another VBO that goes within a VAO

(This is an image from Lecture 9 about making a VBO for points)
(With textures, there are 2 floats per vertex for 2D textures,
1 float per vertex for 1D textures, etc.)

Actual OpenGL Code

Step 1: new fields on your geometry
Called “texture coordinates”

(0,0) (0.7,0)

(1.0,1.0)

(1.0,1.0)

(0.3,1.0)(0,1.0)

Step 2: textures are loaded onto
GPU

GPU memory

Step 3: texture coordinates and texture data are available during rasterization
Lots of ways to make graphics effects

Most common: use texture coordinates to look up pixel color in texture data and
then assign fragment that color

Steps for Loading Texture to GPU

¨ 1) Generate the texture
¨ 2) Tell the shader program how to access the

texture

Steps for Loading Texture to GPU

¨ 1) Generate the texture
¨ 2) Tell the shader program how to access the

texture

Generating a Texture

¨ Very similar to VBOs

¨ Now:
¤ glGenTextures
¤ glBindTexture
¤ glTexImage2D (like glBufferData)

With 2 extra steps

Generating a Texture

¨ glGenTextures
¨ glActiveTexture
¨ glBindTexture
¨ glTexImage2D
¨ glGenerateMipmap

Generating a Texture

¨ glGenTextures
¨ glActiveTexture
¨ glBindTexture
¨ glTexImage2D
¨ glGenerateMipmap

glGenTextures

¨ Generates a handle.
¤ You to OpenGL: I want to make some textures
¤ OpenGL: let’s refer to your textures using the following

numbers

¨ Note: can generate multiple handles
¨ If you are doing multiple textures, then you call

glGenTextures one time total
¤ The rest of the calls are once per texture

¨ Example:
¤ GLuint textures[2]; glGenTextures(2, textures);

Generating a Texture

¨ glGenTextures
¨ glActiveTexture
¨ glBindTexture
¨ glTexImage2D
¨ glGenerateMipmap

glActiveTexture

¨ The GPU can support many textures
¨ Each texture is given an ID (texture0, texture1, etc.)
¨ This call tells the GPU which texture you will be

referring to
¨ Example:

¤ glActiveTexture(GL_TEXTURE0);
¤ Also:

n glActiveTexture(GL_TEXTURE1);
n glActiveTexture(GL_TEXTURE0+1);

Generating a Texture

¨ glGenTextures
¨ glActiveTexture
¨ glBindTexture
¨ glTexImage2D
¨ glGenerateMipmap

glBindTexture

¨ Two purposes:
¤ (1) make this texture be current

n Meaning subsequent calls refer to this texture

¤ (2) specify the texture type (1D, 2D, 3D)

¨ Example:
¤ glBindTexture(GL_TEXTURE_1D, textures[0]);

Generating a Texture

¨ glGenTextures
¨ glActiveTexture
¨ glBindTexture
¨ glTexImage2D
¨ glGenerateMipmap

glTexImage1D

¨ Sends texture data to GPU
¨ Example:

¤ glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, num, 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

¤ This example: 256 colors
n num is 256
n data: array of size 256*3 bytes
n GL_RGB means colors

n GL_RED when just a single value

¤ Other values are for data layouts we are not using
n Example: load one giant buffer with vertex position,

normals, texture coordinates, etc., and use offsets

Generating a Texture

¨ glGenTextures
¨ glActiveTexture
¨ glBindTexture
¨ glTexImage2D
¨ glGenerateMipmap

Mipmaps

¨ Mipmaps: pre-calculated, optimized collections of
images that accompany a main texture, intended to
increase rendering speed and reduce aliasing
artifacts

¨ Widely used in 3D computer games, flight
simulators and other 3D imaging systems

¨ In use, it is called “mipmapping”
¨ The letters "MIP" in the name are an acronym of the

Latin phrase multum in parvo, meaning "much in
little”

Mipmaps

glGenerateMipMap

¨ glGenerateMipmap(GL_TEXTURE_1D);

Steps for Loading Texture to GPU

¨ 1) Generate the texture <-- We just finished this part
¨ 2) Tell the shader program how to access the texture

Tell the Shader Program How
to Access the Texture

¨ GLuint texture1Location =
glGetUniformLocation(shader_program,

"texture1");
¨ glUniform1i(texture1Location, 0);

¨ The texture referred to as “texture1” is located in
the first texture location (i.e., GL_TEXTURE0)

Tell the Shader Program How
to Access the Texture

¨ GLuint texture1Location =
glGetUniformLocation(shader_program,

”random_name");
¨ glUniform1i(texture1Location, 5);

¨ The texture referred to as “random_name” is
located in the sixth texture location (i.e.,
GL_TEXTURE0+5)

Actual OpenGL Code

Step 1: new fields on your geometry
Called “texture coordinates”

(0,0) (0.7,0)

(1.0,1.0)

(1.0,1.0)

(0.3,1.0)(0,1.0)

Step 2: textures are loaded onto
GPU

GPU memory

Step 3: texture coordinates and texture data are available during rasterization
Lots of ways to make graphics effects

Most common: use texture coordinates to look up pixel color in texture data and
then assign fragment that color

Two New GLSL Constructs
for Shaders

¨ 1) Textures have their own type: sampler1D,
sampler2D, sampler3D
¤ Other types we know: float, vec4, etc.

¨ 2) There is a special function that does texture
lookups, called “texture”

¨ Example fragment shader:
in float tex_coord;
uniform sampler1D random_name;
void main() {

frag_color = texture(random_name, tex_coord);

}

Project 3A: 1D Textures

¨ Will use two 1D textures

Visualization use case

Why is there purple in this picture?

Two Ideas

¨ Plan #1: send colors through rasterization
¤ Problem: get “purple”

¨ Plan #2: send data values through rasterization
¤ Fragment shader map data value to texture coordinate,

then uses texture coordinate to look up color in 1D
texture

0.0 1.00.5

3A: why *two* 1D textures?

¨ One texture creates colors
¨ Second texture creates “tiger

stripe” effect
¨ Practice using multiple

textures

CS 535

Introduction to Ray
Tracing

Dr. Xiaoyu Zhang
Cal State U., San Marcos

CS 535

Classifying Rendering
Algorithms
l One way to classify rendering algorithms is

according to the type of light interactions they
capture

l For example: The OpenGL lighting model captures:
l Direct light to surface to eye light transport
l Diffuse and rough specular surface reflectance
l It actually doesn’t do light to surface transport correctly,

because it doesn’t do shadows
l We would like a way of classifying interactions: light

paths

CS 535

Classifying Light Paths
l Classify light paths according to where they come

from, where they go to, and what they do along the
way

l Assume only two types of surface interactions:
l Pure diffuse, D
l Pure specular, S

l Assume all paths of interest:
l Start at a light source, L
l End at the eye, E

l Use regular expressions on the letters D, S, L and E
to describe light paths
l Valid paths are L(D|S)*E

CS 535

Simple Light Path Examples
l LE

l The light goes straight from the source to the
viewer

l LDE
l The light goes from the light to a diffuse surface

that the viewer can see
l LSE

l The light is reflected off a mirror into the
viewer’s eyes

l L(S|D)E
l The light is reflected off either a diffuse surface

or a specular surface toward the viewer
l Which do OpenGL (approximately) support?

CS 535

Radiosity Cornell box,
due to Henrik wann
Jensen,
http://www.gk.dtu.dk/
~hwj, rendered with
ray tracer

More Complex Light Paths
l Find the

following:
l LE
l LDE
l LSE
l LDDE
l LDSE
l LSDE

CS 535

More Complex Light Paths
LE LDDE

LDE

LSDE

LSE
LDSE

CS 535

The OpenGL Model
l The “standard” graphics lighting model captures

only L(D|S)E
l It is missing:

l Light taking more than one diffuse bounce: LD*E
l Should produce an effect called color bleeding,

among other things
l Approximated, grossly, by ambient light

l Light refracted through curved glass
l Consider the refraction as a “mirror” bounce: LDSE

l Light bouncing off a mirror to illuminate a diffuse surface:
LS+D+E

l Many others
l Not sufficient for photo-realistic rendering

CS 535

PCKTWTCH by
Kevin Odhner,
POV-Ray

Raytraced Images

CS 535

Kettle, Mike
Miller, POV-
Ray

CS 535

The previous slides now look
like amateur hour…

CS 535

Graphics Pipeline Review
l Properties of the Graphics Pipeline

l Primitives are transformed and projected (not depending on display
resolution)

l Primitives are processed one at a time
l Forward-mapping from geometrical space to image space

CS 535

Alternative Approaches: Ray
CASTING (not Ray TRACING)

Ray-casting searches along lines of sight, or rays, to determine the
primitive that is visible along it.

Properties of ray-casting:
n Go through all primitives at each pixel
n Image space sample first
n Analytic processing afterwards

CS 535

Ray Casting Overview

n For every pixel shoot a ray from
the eye through the pixel.

n For every object in the scene
n Find the point of intersection

with the ray closest to (and in
front of) the eye

n Compute normal at point of
intersection

n Compute color for pixel based on
point and normal at intersection
closest to the eye (e.g. by Phong
illumination model). t

0

CS 535

Ray Casting
l Ray Cast (Point R, Ray D) {

foreach object in the scene
find minimum t>0 such that R + t D hits object

if (object hit)
return object
else return background object

}

CS 535

Raytracing
l Cast rays from the eye point the same way as ray casting

l Builds the image pixel by pixel, one at a time

l Cast additional rays from the hit point to determine the pixel color
l Shoot rays toward each light. If they hit something, then the

object is shadowed from that light, otherwise use “standard”
model for the light

l Reflection rays for mirror surfaces, to see what should be
reflected in the mirror

l Refraction rays to see what can be seen through transparent
objects

l Sum all the contributions to get the pixel color

CS 535

Raytracing

Shadow rays

Reflection ray

refracted ray

CS 535

Recursive Ray Tracing
l When a reflected or refracted ray hits a surface,

repeat the whole process from that point
l Send out more shadow rays
l Send out new reflected ray (if required)
l Send out a new refracted ray (if required)
l Generally, reduce the weight of each additional ray when

computing the contributions to surface color
l Stop when the contribution from a ray is too small to notice

or maximum recursion level has been reached

CS 535

Raytracing Implementation
l Raytracing breaks down into two tasks:

l Constructing the rays to cast
l Intersecting rays with geometry

l The former problem is simple vector arithmetic
l Intersection is essentially root finding (as we will

see)
l Any root finding technique can be applied

l Intersection calculation can be done in world
coordinates or model coordinates

CS 535

Constructing Rays
l Define rays by an initial point and a direction: x(t)=x0+td
l Eye rays: Rays from the eye through a pixel

l Construct using the eye location and the pixel’s location on the
image plane. X0 = eye

l Shadow rays: Rays from a point on a surface to the light.
l X0 = point on surface

l Reflection rays: Rays from a point on a surface in the reflection
direction
l Construct using laws of reflection. X0 = surface point

l Transmitted rays: Rays from a point on a transparent surface
through the surface
l Construct using laws of refraction. X0 = surface point

CS 535

From Pixels to Rays
look upu
look up
look uv
look u

´
=

´

´
=

´

!

!
!

!

2 tan(/ 2)

2 tan(/ 2)

x

y

fovx u
W
fov

y v
H

D =

D =

! !

! !

(2 1) (2 1)(,)
2 2

look i W j Hd i j x y
look

+ - + -
= + D + D

! ! !

CS 535

Ray Tracing Illumination
Recursive

dtransmittereflecteddirect IIIVEI ++=),(

),(dtransmittetdtransmitte VPIkI =

() () úû
ù

êë
é ×-+×+= shinyn

sdlightambientadirect RVkLNkIIkI ˆˆˆˆ

I

V

E

P
reflectedI

reflectedV

dtransmitteI dtransmitteV

N̂

L R

directIVEI =),(reflecteddirect IIVEI +=),(

),(reflectedrreflected VPIkI =

Check for shadowing (intersection with object along ray (P,L))

CS 535

The Ray Tree
R

2

R
1

R
3

L2

L1
L3N1

N2

N3

T1

T3

Ni surface normal
Ri reflected ray
Li shadow ray

Ti transmitted (refracted) ray
Psuedo-code

Viewpoint

L1

T3R
3

L3L2

T1R
1

R
2

Eye

CS 535

Reflection
l Reflection angle = view angle

CS 535

Reflection
l The maximum depth of the tree affects the handling of refraction
l If we send another reflected ray from here, when do we stop? 2

solutions (complementary)
l Answer 1: Stop at a fixed depth.
l Answer 2: Accumulate product of reflection coefficients and stop when

this product is too small.

CS 535

Reflection

CS 535

Refraction
Snell’s Law sin

sin
t i

r
i t

q h h
q h
= =

N̂

N̂-

M̂

T̂

Î
iq

tq

IN i
ˆcosˆ -q

iN qcosˆ

Note that I is the negative of
the incoming ray

CS 535

Pseudo Code for Ray Tracing
rgb lsou; // intensity of light source
rgb back; // background intensity
rgb ambi; // ambient light intensity

Vector L // vector pointing to light source
Vector N // surface normal
Object objects [n] //list of n objects in scene
float Ks [n] // specular reflectivity factor for each object
float Kr [n] // refractivity index for each object
float Kd [n] // diffuse reflectivity factor for each object
Ray r;

void raytrace() {
for (each pixel P of projection viewport in raster order) {

r = ray emanating from viewer through P
int depth = 1; // depth of ray tree consisting of multiple paths
the pixel color at P = intensity(r, depth)

}
}

CS 535

rgb intensity (Ray r, int depth) {
Ray flec, frac;
rgb spec, refr, dull, intensity;

if (depth >= 5) intensity = back;
else {

find the closest intersection of r with all objects in scene
if (no intersection) {

intensity =back;
} else {

Take closest intersection which is object[j]
compute normal N at the intersection point
if (Ks[j] >0) { // non-zero specular reflectivity

compute reflection ray flec;
refl = Ks[j]*intensity(flec, depth+1);

} else refl =0;
if (Kr[j]>0) { // non-zero refractivity

compute refraction ray frac;
refr = Kr[j]*intensity(frac, depth+1);

} else refr =0;
check for shadow;
if (shadow) direct = Kd[j]*ambi
else direct = Phong illumination computation;
intensity = direct + refl +refr;

} }
return intensity; }

CS 535

Ray-traced Cornell box, due
to Henrik Jensen,
http://www.gk.dtu.dk/~hwj

Which paths
are missing?

Raytraced Cornell Box

CS 535

Paths in RayTracing
l Ray Tracing

l Captures LDS*E paths: Start at the eye, any number of specular
bounces before ending at a diffuse surface and going to the light

l Raytracing cannot do:
l LS*D+E: Light bouncing off a shiny surface like a mirror and

illuminating a diffuse surface
l LD+E: Light bouncing off one diffuse surface to illuminate others

l Basic problem: The raytracer doesn’t know where to send rays
out of the diffuse surface to capture the incoming light

l Also a problem for rough specular reflection
l Fuzzy reflections in rough shiny objects

l Need other rendering algorithms that get more paths

CS 535

A Better Rendered Cornell Box

