
Hank Childs, University of OregonFebruary 21, 2019

CIS 441/541: Intro to Computer Graphics
Lecture 11: Even More OpenGL!

Office	Hours:	Week	7

• Monday:	1-2	(Roscoe)
• Tuesday:	1230-115	(Hank)
• Tuesday:	1-2	(Roscoe)
• Wednesday:	1-3	(Roscoe)
• Thursday:	1130-1230	(Hank)
• Friday:	1130-1230	(Hank)

Timeline	(1/2)
• 1F:	assigned	Feb	7th,	due	Feb	19th

– à not	as	tough	as	1E
• 2A:	posted	now,	due	Feb	21st Feb	23rd	
• à you	need	to	work	on	both	1F	and	2A	during	
Week	6	(Feb	11-15)

• 2B:	posted	now,	due	Feb	27th

• YouTube	lectures	for	Feb	12th and	14th

Timeline	(2/2)
Sun Mon Tues Weds Thurs Fri Sat

Feb	3 Feb	4 Feb	5	
Lec 8

Feb	6
1E due

Feb	7
Begin	1F,	
begin 2A

Feb	8 Feb	9

Feb 10 Feb	11 YouTube Feb	13 YouTube?? Feb	15 Feb	16

Feb	17 Feb	18 Feb	19
1F	due

Feb	20 Feb	21
2A due,	
begin	2B

Feb	22 Feb	23
2A	due

Midterm

• Date:	Tues	Feb	26th
• Considering	different	plan:	25	&	5

– Still	no	feedback	received
• Midterm	worth	30	points,	no	quiz	on	Week	10
• Details:

– No	notes.
– Not	expected	to	memorize	Phong shading	
equation.

– Will	be	derived	directly	from	1A-1F,	2A. Not	2B.

Midterm

• Questions	will	mostly	derive	from	Project	1A,	
1B,	1C,	1D,	1E,	1F,	2A

• Example:	here’s	a	triangle,	what	pixels	does	it	
contribute	to?
– Example:	write	GL	program	to	do	something

• errors	in	syntax	will	receive	minor	deductions

• No	notes,	closed	book,	no	calculators,	
internet,	etc.

Questions	on	2A?

We will replace these and write our own GL calls.

We will re-use these.

Project #2A (8%), Due Feb. 23rd

¨ Goal: OpenGL program that does regular colors and
textures

¨ New VTK-based project2A.cxx
¨ New CMakeLists.txt (but same as old ones)

Hints
¨ I recommend you “walk before you run” & “take

small bites”. OpenGL can be very punishing. Get a
picture up and then improve on it. Make sure you
know how to retreat to your previously working
version at every step.

¨ OpenGL “state thrashing” is common and tricky to
debug.
¤ Get one window working perfectly.
¤ Then make the second one work perfectly.
¤ Then try to get them to work together.

n Things often go wrong, when one program leaves the
OpenGL state in a way that doesn’t suit another renderer.

Hints

¨ MAKE MANY BACKUPS OF YOUR PROGRAM

¨ USE VTK 6
¨ If you are having issues on your laptop with a GL

program, then use Room 100
¤ (There’s only 2 of these projects)

How to do colors (traditional)…

¨ The Triangle class now has a “fieldValue” data
member, which ranges between 0 and 1.

¨ You will map this to a color using the GetColorMap
function.

n GetColorMap returns 256 colors.

¨ Mappings
¤ A fieldValue value of 0 should be mapped to the first color
¤ A fieldValue value of 1 should be mapped to the 255th

color.
¤ Each fieldValue in between should be mapped to the closest

color of the 256, but interpolation of colors is not required.

How to do colors (texture)…

¨ Same idea, but use texture infrastructure
¨ (easier)

Final Projects

¨ 541: everyone should do a self-defined project
¨ 441: your choice

¤ Do a self-defined project
¤ Do a pre-defined project

(DRAFT) Pre-defined projects

¨ Hoping to have prompts up by Thursday Feb 28th

¨ Likely topics:
¤ 2 WebGL projects
¤ 3 shader programs
¤ GPU programming
¤ Blender

¨ Possible topics:
¤ Vulcan
¤ Computer vision (?)

Self-defined projects

¨ Write a screen saver
¨ Write a SIMPLE video game
¨ Make a movie
¨ Model something
¨ Advanced computer graphics effects

¤ Example: collision detection
¤ Example: ray tracing
¤ Example: volume rendering
¤ Example: physics-based rendering

Process

¨ Send me a proposal by Saturday March 2nd

¨ The proposal should be for ~24 hours of work
¨ I will send feedback (too much, too little)
¨ If you don’t send a proposal, then it is assumed that

you are doing the pre-defined projects

Transforms in GL

ModelView and Projection
Matrices

New for us Familiar for us

¨ ModelView idea: two purposes … model and view
¤ Model: extra matrix, just for rotating, scaling, and

translating geometry.
n How could this be useful?

¤ View: Cartesian to Camera transform

¨ (We will focus on the model part of the modelview
matrix now & come back to others later)

SLIDE REPEAT: Our goal

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0

<=y<=height

Add additional
transforms here….

ModelView and Projection
Matrices

New for us Familiar for us

¨ ModelView idea: two purposes … model and view
¤ Model: extra matrix, just for rotating, scaling, and

translating geometry.
n How could this be useful?

¤ View: Cartesian to Camera transform

¨ (We will focus on the model part of the modelview
matrix now & come back to others later)

Common commands for modifying
model part of ModelView matrix

¨ glTranslate
¨ glRotate
¨ glScale

glTranslate

Note: this matrix transposed
from what we did earlier

glRotate

glScale

How do transformations combine?

glScale(2, 2, 2)
glTranslate(1, 0, 0)
glRotate(45, 0, 1, 0)

à Rotate by 45 degrees around (0,1,0), then translate
in X by 1, then scale by 2 in all dimensions.

à (the last transformation is applied first)

Which of two of these three are
the same?

¨ Choice A:
¤ glScalef(2, 2, 2);
¤ glTranslate(1, 0, 0);

¨ Choice B:
¤ glTranslate(1, 0, 0);
¤ glScalef(2, 2, 2);

¨ Choice C:
¤ glTranslate(2, 0, 0);
¤ glScalef(2, 2, 2);

ModelView usage

dl = GenerateTireGeometry();
glCallList(dl); // place tire at (0, 0, 0)
glTranslatef(10, 0, 0);
glCallList(dl); // place tire at (10, 0, 0)
glTranslatef(0, 0, 10);
glCallList(dl); // place tire at (10, 0, 10)
glTranslatef(-10, 0, 0);
glCallList(dl); // place tire at (0, 0, 10)

Each glTranslatef call
updates the state of the

ModelView matrix.

glPushMatrix, glPopMatrix

glPushMatrix and glPopMatrix

dl = GenerateTireGeometry();
glCallList(dl); // place tire at (0, 0, 0)
glPushMatrix();
glTranslatef(10, 0, 0);
glCallList(dl); // place tire at (10, 0, 0)
glPopMatrix();
glPushMatrix();
glTranslatef(0, 0, 10);
glCallList(dl); // place tire at (10, 0, 10) (0, 0, 10)
glPopMatrix();

Why is this useful?

Matrices in OpenGL

¨ OpenGL maintains matrices for you and provides
functions for setting matrices.

¨ There are four different modes you can use:
¤ Modelview
¤ Projection
¤ Texture
¤ Color (rarely used, often not supported)

¨ You control the mode using glMatrixMode.

Matrices in OpenGL (cont’d)

¨ The matrices are the identity matrix by default and
you can modify them by:
¤ 1) setting the matrix explicitly
¤ 2) using OpenGL commands for appending to the

matrix

¨ You can have >= 32 matrices for modelview, >=2
for others

The Camera Transformation

Source: www.opengl.org/archives/resources/faq/technical/viewing.htm

The Camera Transformation

Source: www.opengl.org/archives/resources/faq/technical/viewing.htm

How do you put the Camera Transform
in the ModelView matrix?

¨ No single GL call.
¨ Options are:

¤ (1) you do it yourself (i.e., calculate matrix and load it
into OpenGL)

¤ (2) you use somebody’s code, i.e., gluLookAt
¤ (3) you use a combination of glRotatef, glScalef, and

glTranslatef commands.

glMatrixMode

How do you put the projection
transformation in GL_PROJECTION?

¨ Two options:
¤ glFrustum() (perspective projection)
¤ glOrtho() (orthographic projection)

glFrustum

glOrtho

glMatrixMode(GL_TEXTURE)

Project 2B

Project #2B (7%), Due Weds
Feb 27th

¨ Goal: modify ModelView
matrix to create dog out
of spheres and cylinders

¨ New code skeleton:
“project2B.cxx”

¨ No geometry file needed.
¨ You will be able to do this

w/ glPush/PopMatrix,
glRotatef, glTranslatef,
and glScalef.

Project #2B (7%), Due Weds
Feb 27th

¨ Goal: modify ModelView
matrix to create dog out
of spheres and cylinders

¨ New code skeleton:
“project2B.cxx”

¨ No geometry file needed.
¨ You will be able to do this

w/ glPush/PopMatrix,
glRotatef, glTranslatef,
and glScalef.

Contents of project2B.cxx

¨ Routine for generating spheres
¨ Routine for generating cylinders
¨ Routine for generating head, eyes, and pupils

What is the correct answer?

¨ The correct answer is:
¤ Something that looks like a dog

n No obvious problems with output geometry.

¤ Something that uses the sphere and cylinder classes.
n If you use something else, please clear it with me first.

n I may fail your project if I think you are using outside resources
that make the project too easy.

¤ Something that uses rotation for the neck and tail.

¨ Aside from that, feel free to be as creative as you
want … color, breed, etc.

For your reference: my dog

Transparent Geometry

COMPOSITING AND
BLENDING

Ed Angel
Professor of Computer Science, Electrical
and Computer Engineering, and Media Arts
University of New Mexico

53Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Opacity and Transparency

¨ Opaque surfaces permit no light to pass through
¨ Transparent surfaces permit all light to pass
¨ Translucent surfaces pass some light

translucency = 1 – opacity (a)

opaque surface a =1

Transparency

¨ If you have an opaque red square in front of a blue
square, what color would you see?
¤ Red

¨ If you have a 50% transparent red square in front
of a blue square, what color would you see?
¤ Purple

¨ If you have a 100% transparent red square in front
of a blue square, what color would you see?
¤ Blue

(One) Formula For Transparency

¨ Front = (Fr,Fg,Fb,Fa)
¤ a = alpha, transparency factor

n Sometimes percent
n Typically 0-255, with 255 = 100%, 0 = 0%

¨ Back = (Br,Bg,Bb,Ba)
¨ Equation = (Fa*Fr+(1-Fa)*Br,

Fa*Fg+(1-Fa)*Bg,
Fa*Fb+(1-Fa)*Bb,
Fa+(1-Fa)*Ba)

Transparency

¨ If you have an 25% transparent red square
(255,0,0) in front of a blue square (0,0,255), what
color would you see (in RGB)?
¤ (192,0,64)

¨ If you have an 25% transparent blue square
(0,0,255) in front of a red square (255,0,0), what
color would you see (in RGB)?
¤ (64,0,192)

Implementation

¨ Per pixel storage:
¤ RGB: 3 bytes
¤ Alpha: 1 byte
¤ Z: 4 bytes

¨ Alpha used to control blending of current color and
new colors

Vocab term reminder:
fragment

¨ Fragment is the contribution of a triangle to a single
pixel

Almost certain to use
term “fragment” on midterm
and expect that you know
what it means

Examples

¨ Imagine pixel (i, j) has:
¤ RGB = 255/255/255
¤ Alpha=255
¤ Depth = -0.5

¨ And we contribute fragment:
¤ RGB=0/0/0
¤ Alpha=128
¤ Depth = -0.25

¨ What do we get?
¨ Answer: 128/128/128, Z = -0.25
¨ What’s the alpha?

Examples

¨ Imagine pixel (i, j) has:
¤ RGB = 255/255/255
¤ Alpha=128
¤ Depth = -0.25

¨ And we contribute fragment:
¤ RGB=0/0/0
¤ Alpha=255
¤ Depth = -0.5

¨ What do we get?
¨ Answer: (probably) 128/128/128, Z = -0.25
¨ What’s the alpha?

System doesn’t work well for
transparency

¨ Contribute fragments in this order:
¤ Z=-0.1
¤ Z=-0.9
¤ Z=-0.5
¤ Z=-0.4
¤ Z=-0.6

¨ Model is too simple. Not enough info to resolve!

62Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Order Dependency

¨ Is this image correct?
¤ Probably not
¤ Polygons are rendered
in the order they pass
down the pipeline
¤ Blending functions
are order dependent

How do you sort?

¨ 1) Calculate depth of each triangle center.
¨ 2) Sort based on depth

¤ Not perfect, but good

¨ In practice: sort along X, Y, and Z and use
“dominant axis” and only do “perfect sort” when
rotation stops

But there is a problem…

(-1,	-1,	-0.3)
(2,	-1.5,	-0.3)

(1,	-1,	-0.5)

(0,	1,	-0.4)

(-2,	-1.5,	-0.5)

(0,	1.5,	-0.4)

Depth Peeling

¨ a multi-pass technique that renders transparent
polygonal geometry without sorting

¨ Pass #1:
¤ render as opaque, but note opacity of pixels placed on

top
¤ treat this as “top layer”
¤ save Z-buffer and treat this as “max”

¨ Pass #2:
¤ render as opaque, but ignore fragments beyond “max”

¨ repeat, repeat…

