(X1S'441/541: Intro to Computer Graphics
Lecture 11: Even More OpenGL!

February 21, 2019 Hank Childs, University of Oregon

Office Hours: Week 7

* Monday: 1-2 (Roscoe)
e Tuesday: 1230-115 (Hank)
* Tuesday: 1-2 (Roscoe)

 Wednesday: 1-3 (Roscoe)
 Thursday: 1130-1230 (Hank)
* Friday: 1130-1230 (Hank)

Timeline (1/2)
* 1F: assigned Feb 7t", due Feb 19t
— =2 not as tough as 1E

e 2A: posted now, due Feb215-Feb 23rd

* - you need to work on both 1F and 2A during
Week 6 (Feb 11-15)

e 2B: posted now, due Feb 27t
* YouTube lectures for Feb 12t" and 14t"

UNIVERSITY OF OREGON

O

Timeline (2/2)

. “"

Feb 5 Feb 6 Feb 7 Feb 8 Feb 9
Lec 8 1E due Begin 1F,
begin 2A

Feb 10 Feb 11 YouTube Feb 13 YouTube?? Feb 15 Feb 16

; »\,‘

Feb 17 Feb 18 Feb 19 Feb 20 Feb 21 Feb 22 Feb 23
1F due 2A-due, 2A due
begin 2B

UNIVERSITY OF OREGON

Midterm

e Date: Tues Feb 26th
Cunmdcnng dlpe p an-—25&5
il no feedbac o
* Midterm worth 30 points, no quiz on Week 10
e Details:

— No notes.

— Not expected to memorize Phong shading
equation.

— Will be derived directly from 1A-1F, 2A. Not 2B.

O

UNIVERSITY OF OREGON

Midterm

* Questions will mostly derive from Project 1A,
1B, 1C, 1D, 1E, 1F, 2A

e Example: here’s a triangle, what pixels does it
contribute to?

— Example: write GL program to do something

* errors in syntax will receive minor deductions

 No notes, closed book, no calculators,
Internet, etc.

Questions on 2A7?

Source

Data

Y

Mapper

Y

Actor

Y

Renderer

Y

Window

Y

Interactor

We will replace these and write our own GL calls.

Cone.py Pipeline Diagram (type "python Cone.py" to run)

Either reads the data from a
file or creates the data from
scratch.

Moves the data from VTK
into OpenGL.

For setting colors, surface
properties, and the position
of the object.

The rectangle of the
computer screen that
VTK draws into.

The window, including title
bar and decorations.

Allows the mouse to be used
to interact wth the data.

We will re-use these.

from vtkpython import *

cone = vtkConeSource()
cone.SetResolution(10)

coneMapper = vtkPolyDataMapper()
coneMapper.SetInput(cone.GetOutput())

coneActor = vtkActor()
coneActor.SetMapper(coneMapper)

ren = vtkRenderer()
ren.AddActor(coneActor)

renWin = vtkRenderWindow()
renWin.SetWindowName("Cone")
renWin.SetSize(300,300)
renWin.AddRenderer(ren)

iren = vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
iren.Initialize()

iren. Start()

Project #2A (8%), Due Feb. 23rd()

0 Goal: OpenGL program that does regular colors and
textures

0 New VTK-based project2A.cxx

0 New CMakelists.txt (but same as old ones)

Hints

0 | recommend you “walk before you run” & “take
small bites”. OpenGL can be very punishing. Get a
picture up and then improve on it. Make sure you
know how to retreat to your previously working
version at every step.

0 OpenGL “state thrashing” is common and tricky to
debug.

O Get one window working perfectly.
O Then make the second one work perfectly.

O Then try to get them to work together.

® Things often go wrong, when one program leaves the
OpenGL state in a way that doesn’t suit another renderer.

Hints O

0 MAKE MANY BACKUPS OF YOUR PROGRAM

o USE VTIK 6

0 If you are having issues on your laptop with a GL
program, then use Room 100

O (There’s only 2 of these projects)

How to do colors (’rrc:di’rionc:l).o

0 The Triangle class now has a “fieldValue” data

member, which ranges between O and 1.

0 You will map this to a color using the GetColorMap
function.
m GetColorMap returns 256 colors.
0 Mappings
O A fieldValue value of O should be mapped to the first color

O A fieldValue value of 1 should be mapped to the 255th
color.

O Each fieldValue in between should be mapped to the closest
color of the 256, but interpolation of colors is not required.

How to do colors (’rex’rure)...O

0 Same idea, but use texture infrastructure

0 (easier)

Final Projects O

0 541: everyone should do a self-defined project

0 441: your choice
O Do a self-defined project
O Do a pre-defined project

(DRAFT) Pre-defined proiec’rs()

0 Hoping to have prompts up by Thursday Feb 28"
O Likely topics:

O 2 WebGL projects

O 3 shader programs

O GPU programming

O Blender
0 Possible topics:

O Vulcan

O Computer vision (2)

Self-defined projects O

0 Write a screen saver
0 Write a SIMPLE video game

0 Make a movie

0 Model something

0 Advanced computer graphics effects
O Example: collision detection
O Example: ray tracing
O Example: volume rendering

O Example: physics-based rendering

Process O

0 Send me a proposal by Saturday March 2

0 The proposal should be for ~24 hours of work
0 | will send feedback (too much, too little)

0 If you don’t send a proposal, then it is assumed that
you are doing the pre-defined projects

Transforms in GL O

ModelView and Projection

Matrices
r IIIIIII I ._ IIIIIIIIIIIIIIIIIIIIIIIIIII I
——— ;!

[ModelView . Projection Divide by Viewport l

Vertex - Matrix . ™ Matrix ” w ; Transform -
Data Object Evd Clip Norma_llzed Window *
Coor‘inates Coc}dinates Coordinates Device Coordinates I

: Coordinates
L n _— n n _— n J I IIIIIIIIIII || ._ IIIIIIIIIIIII —_——
7‘ OpenGL vertex transforTatlon
New for us Familiar for us

0 ModelView idea: two purposes ... model and view

O Model: extra matrix, just for rotating, scaling, and
translating geometry.

® How could this be useful?

O View: Cartesian to Camera transform

0 (We will focus on the model part of the modelview
matrix now & come back to others later)

SLIDE REPEAT: Our goal

Add additional

transforms here....

A

World space:

Camera space:

Triangles in native Cartesian coordinates Camera located at origin, looking down -Z

Camera located anywhere

X

Image space:

All viewable objects within
-1 <= x,y,z <= +1

Triangle coordinates relative to camera frame

>
Screen space: Device space:
All viewable objects within All viewable objects within
-1 <=x,y <= +1 0<=x<=width, O

P e LN Y

ModelView and Projection

Matrices
r IIIIIII I ._ IIIIIIIIIIIIIIIIIIIIIIIIIII I
——— ;!

[ModelView . Projection Divide by Viewport l

Vertex - Matrix . ™ Matrix ” w ; Transform -
Data Object Evd Clip Norma_llzed Window *
Coor‘inates Coc}dinates Coordinates Device Coordinates I

: Coordinates
L n _— n n _— n J I IIIIIIIIIII || ._ IIIIIIIIIIIII —_——
7‘ OpenGL vertex transforTatlon
New for us Familiar for us

0 ModelView idea: two purposes ... model and view

O Model: extra matrix, just for rotating, scaling, and
translating geometry.

® How could this be useful?

O View: Cartesian to Camera transform

0 (We will focus on the model part of the modelview
matrix now & come back to others later)

Common commands for modifying

model Eqr’r of ModelView matrix

0 glTranslate

0 glRotate

0 glScale

glTranslate

glTranslated, glTranslatef - multiply the current matrix by a translation matrix

C SPECIFICATION
void glTranslated(GLdouble x,
GLdouble ¥y,
GLdouble z)
void glTranslatef(GLfloat x,

GLfloat ¥,
GLfloat z)
PARAMETERS
X, ¥, £
Specify the x, y, and z coordinates of a translation vector.
DESCRIPTION

glTranslate produces a translation by (xX,y,z). The current matrix (see
glMatrixMode) is multiplied by this translation matrix, with the product replacing the current
matrix, as if glMultMatrix were called with the following matrix for its argument:

(SR
S O = O
(SR S
= N~ X

Note: this matrix transposed
from what we did earlier

glRotate

glRotated, glRotatef - multiply the current matrix by a rotation matrix

C SPECIFICATION

void glRotated(GLdouble angle,
GLdouble x,
GLdouble y,
GLdouble z)

void glRotatef(GLfloat angle,
GLfloat x,
GLfloat ¥,
GLfloat z)

PARAMETERS
angle Specifies the angle of rotation, in degrees.

Xy, ¥y 2
Specify the x, ¥, and z coordinates of a vector, respectively.
DESCRIPTION
glRotate produces a rotation of angle degrees around the vector (x, y, z). The current matrix (see
glMatrixMode) is multiplied by a rotation matrix with the product replacing the current matrix, as if
glMultMatrix were called with the following matrix as its argument:

XM2(1-C)+C xy(1-c)-zs xz{(1-C)+ys 0
yx{1-c)+zs yA2(1-C)+C yz{1-C)-xs (0]
xz{(1-c)-ys yz{(1-C)+xs z"2(1-C)+cC 0
0 0 0 1

Where ¢ = cos J{(angle), s = sin (angle), and |1 {x, y, z)I| =1 (if not, the GL will normalize this

vector).

glScale

NAME
glScaled, glScalef - multiply the current matrix by a general scaling matrix

C SPECIFICATION
void glScaled(GLdouble x,
GLdouble vy,
GLdouble z)
void glScalef(GLfloat x,

GLfloat ¥y,
GLfloat z)
PARAMETERS
X, ¥y Z
Specify scale factors along the x, y, and z axes, respectively.
DESCRIPTION

glScale produces a nonuniform scaling along the x, y, and z axes. The three parameters indicate the

desired scale factor along each of the three axes.

The current matrix (see glMatrixMode) is multiplied by this scale matrix, and the product replaces
the current matrix as if glScale were called with the following matrix as its argument:

S O O
SN &
e OO

e O O X

How do transformations combine?O

glScale(2, 2, 2)
glTranslate(1, O, 0)
glRotate(45, O, 1, O)

> Rotate by 45 degrees around (0,1,0), then translate
in X by 1, then scale by 2 in all dimensions.

> (the last transformation is applied first)

Which of two of these three are O

the same®¢

0 Choice A:
O glScalef(2, 2, 2);
O glTranslate(1, O, O);
0 Choice B:
O glTranslate(1, O, 0);
O glScalef(2, 2, 2);
0 Choice C:
O glTranslate(2, O, 0);
O glScalef(2, 2, 2);

Q © ©Q © © © QO o

ModelView usage ()

= GenerateTireGeometry();

CallList(dl); // place tire at (0, O, 0)

Translatef(10, O,

CallList(dl); // p
Translatef(0, O,
CallList(dl); // p

Translatef(-10, O,
CallList(dl); // pl

0);
ace tire at (10, O, 0)
0)

° Each glTranslatef call

updates the state of the
ModelView matrix.

glPushMatrix, glPopMatrix

. glPushMatrix, glPopMatrix - push and pop the current matrix
stack

C SPECIFICATION
void glPushMatrix(void)

C SPECIFICATION
void glPopMatrix(void)

DESCRIPTION
There is a stack of matrices for each of the matrix modes.
In GL_MODELVIEW mode, the stack depth is at least 32. 1In
the other two modes, GL_PROJECTION and GL_TEXTURE, the depth
is at least 2. The current matrix in any mode is the matrix
on the top of the stack for that mode.

glPushMatrix pushes the current matrix stack down by one,
duplicating the current matrix. That is, after a
glPushMatrix call, the matrix on top of the stack is
identical to the one below it.

glPopMatrix pops the current matrix stack, replacing the
current matrix with the one below it on the stack.

Initially, each of the stacks contains one matrix, an
identity matrix.

Q ©Q © © ©@ © @ © QO o

glPushMatrix and glPopMatrix O

= GenerateTireGeometry();

CallList(dl); // place tire at (0, O, 0)
PushMatrix();

Translatef(10, O, 0);

CallList(dl); // place tire at (10, 0, O)
PopMatrix();

PushMatrix(); Why is this useful?
Translatef(0, O, 10);

Calllist(dl); // place tire at +6,-0,30} (0, 0, 10)
PopMatrix();

Matrices in OpenGL O

0 OpenGL maintains matrices for you and provides

functions for setting matrices.

O There are four different modes you can use:
O Modelview
O Projection
O Texture

O Color (rarely used, often not supported)

0 You control the mode using glMatrixMode.

Matrices in OpenGL (con’r’d)O

0 The matrices are the identity matrix by default and
you can modify them by:

O 1) setting the matrix explicitly

O 2) using OpenGL commands for appending to the
matrix

0 You can have >= 32 matrices for modelview, >=2
for others

The Camera Transformation

8.010 How does the camera work in OpenGL?

As far as OpenGL is concerned, there is no camera. More specifically, the camera is always
located at the eye space coordinate (0.,0.,0.). To give the appearance of moving the camera, your
OpenGL application must move the scene with the inverse of the camera transformation.

8.020 How can I move my eye, or camera, in my scene?

OpenGL doesn't provide an interface to do this using a camera model. However, the GLU library
provides the gluLookAt() function, which takes an eye position, a position to look at, and an up
vector, all in object space coordinates. This function computes the inverse camera transform
according to its parameters and multiplies it onto the current matrix stack.

Source: www.opengl.org/archives/resources/faq/technical /viewing.htm

The Camera Transformation

8.030 Where should my camera go, the ModelView or Projection matrix?

The GL_PROJECTION matrix should contain only the projection transformation calls it needs to
transform eye space coordinates into clip coordinates.

The GL_MODELVIEW matrix, as its name implies, should contain modeling and viewing
transformations, which transform object space coordinates into eye space coordinates. Remember
to place the camera transformations on the GL_MODELVIEW matrix and never on the
GL_PROJECTION matrix.

Think of the projection matrix as describing the attributes of your camera, such as field of view,
focal length, fish eye lens, etc. Think of the ModelView matrix as where you stand with the camera
and the direction you point it.

Source: www.opengl.org/archives/resources/faq/technical /viewing.htm

How do you put the Camera Transfor

L0,

in the ModelView matrix?

0 No single GL call.

0 Options are:

O (1) you do it yourself (i.e., calculate matrix and load it
into OpenGl)

O (2) you use somebody’s code, i.e., gluLookAt

O (3) you use a combination of glRotatef, glScalef, and
glTranslatef commands.

glMatrixMode

glMatrixMode - specify which matrix is the current matrix

C SPECIFICATION
void glMatrixMode(GLenum mode)

PARAMETERS
mode Specifies which matrix stack is the target for subsequent matrix operations. Three values are
accepted: GL_MODELVIEW, GL_PROJECTION, and GL_TEXTURE. The initial value is GL_MODELVIEW.

Additionally, if the GL_ARB_imaging extension is supported, GL_COLOR is also accepted.

DESCRIPTION
glMatrixMode sets the current matrix mode. mode can assume one of four values:

GL_MODELVIEW Applies subsequent matrix operations to the modelview matrix stack.
GL_PROJECTION Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE Applies subsequent matrix operations to the texture matrix stack.
GL_COLOR Applies subsequent matrix operations to the color matrix stack.

To find out which matrix stack is currently the target of all matrix operations, call glGet with
argument GL_MATRIX _MODE. The initial value is GL_MODELVIEW.

How do you put the projection O
transformation in GL__ PROJECTIONZ?

0 Two options:

O glFrustum() (perspective projection)

O glOrtho() (orthographic projection)

(L.t.f) (r.t. f)
" T

u.r.,:)r,_-,.--"""'-' i)
.y by

“'-, - . b.
/ rtn) /)
(I.b.n)

< |
\ -
x N

Ar.b.n)

OpenGL Orthographic Frustum

NAME
glFrustum - multiply the

C SPECIFICATION

void glFrustum(GLdouble
GLdouble
GLdouble
GLdouble
GLdouble
GLdouble

PARAMETERS
left,

glFrustum

current matrix by a perspective matrix

left,
right,
bottom,
t_OEI
zNear,
zFar)

right Specify the coordinates for the left and right

vertical clipping planes.

bottom, top Specify the coordinates for the bottom and top horizontal clipping planes.

zNear, zFar Specify the distances to the near and far depth clipping planes.

DESCRIPTION

glFrustum describes a perspective matrix that produces a perspective projection.

Both distances must be positive.

The current matrix (see glMatrixMode) is multiplied by this matrix

and the result replaces the current matrix, as if glMultMatrix were called with the following matrix as its argument:

2 zNear
------------) A)
right - left
2 zNear
8 B)
top - bottom
']) C D
']] -1 %]
A = (right + left) / (right - left)
B = (top + bottom) / (top - bottom)
C = - (zFar + zNear) / (zFar - zNear)
D = - (2 zFar zNear) / (zFar - zNear)

-zNear) specify the points on the near clipping plane that

Typically, the matrix mode is GL_PROJECTION, and (left, bottom, -zNear) and (right, top,
-zFar specifies the location of

are mapped to the lower left and upper right corners of the window, assuming that the eye is located at (0, 0, 0).
the far clipping plane. Both zNear and zFar must be positive.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

glOrtho

glOrtho - multiply the current matrix with an orthographic matrix

NAME

C SPECIFICATION
void glOrtho(GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble zNear,
GLdouble zFar)

PARAMETERS
left, right Specify the coordinates for the left and right vertical clipping planes.

bottom, top Specify the coordinates for the bottom and top horizontal clipping planes.

zNear, zFar Specify the distances to the nearer and farther depth clipping planes. These values are negative if the plane is to be behind the
viewer.

DESCRIPTION
glOrtho describes a transformation that produces a parallel projection. The current matrix (see glMatrixMode) is multiplied by this matrix and the
result replaces the current matrix, as if glMultMatrix were called with the following matrix as its argument:

2
------------ 0 0 tx
right - left
2
e 0 ty
top - bottom
-2
%) e —— tz
zFar-zNear
) 4] %] 1
where
tx = - (right + left) / (right - left)
ty = - (top + bottom) / (top - bottom)
tz = - (zFar + zNear) / (zFar - zNear)

Typically, the matrix mode 1is GL_PROJECTION, and (left, bottom, -zNear) and (right, top, -zNear) specify the points on the near clipping plane
that are mapped to the lower left and upper right corners of the window, respectively, assuming that the eye is located at (@, @, 8). -zFar speci-
fies the location of the far clipping plane. Both zNear and zFar can be either positive or negative.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

glMatrixMode(GL_TEXTURE)

virtual void RenderPiece{vtkRenderer *ren, vt

i
RemoveVTKOpenGLStateSideEffects();

Setuplight{);

——>glMatrixMode(GL_TEXTURE);

L s glPushMatrix{); |
L S glScalef(3, 2.5, 1); esnlindera '.';

glEnable{GL_TEXTURE_2D);

glTexImage2D{GL_TEXTURE_2D, @, GL_RGE,
@, GL_RGB, GL_UNSIGNED_BYT]
glTexParameterf(GL_TEXTURE_2D, GL_TEXTUI
glTexParameterf(GL_TEXTURE_2D, GL_TEXTUI
glTexParameterf{GL_TEXTURE_2D, GL_TEXTUI
glBegin(GL_QUADS);
glTexCoord2f(0,0);
glVertex3f{10, -10, -19);

Project 2B O

Project #2B (7%), Due Weds O
Feb 2/th

0 Goal: modify ModelView
matrix to create dog out

of spheres and cylinders

0 New code skeleton:
“project2B.cxx”

0 No geometry file needed.

0 You will be able to do this
w/ glPush /PopMaitrix,
glRotatef, glTranslatef,
and glScalef.

Project #2B (7%), Due Weds O
Feb 2/th

Contents of project2B.cxx O

0 Routine for generating spheres

0 Routine for generating cylinders

0 Routine for generating head, eyes, and pupils

What is the correct answer?

0 The correct answer is:
O Something that looks like a dog
B No obvious problems with output geometry.

O Something that uses the sphere and cylinder classes.

m |If you use something else, please clear it with me first.

® | may fail your project if | think you are using outside resources
that make the project too easy.

O Something that uses rotation for the neck and tail.

0 Aside from that, feel free to be as creative as you
want ... color, breed, etc.

Visualization Toolkit - Cocoa #1

Visualization Toolkit - Cocoa #1

~
~

To find out which matrix stack is
- : ume

Visualization Toolkit - Cocoa #1
ode is not an accepted value.

—~

Visualization Toolkit - Cocoa #1

Visualization Toolkit - Cocoa #1

fawcett:project2B childs$./project2B.app/Contents/Mac0S/project2B
~Z

[3]+ Stopped ./project2B.app/Contents/Mac0S/project2B
fawcett:project2B childs$ bg

[3]1+ ./project2B.app/Contents/Mac0S/project2B &

fawcett:project2B childs$ vi project2B.cxx

fawcett:project2B childs$ make

Scanning dependencies of target project2B

[100%] Bui X ™ 2B. .
Linking CXX executable project2B.app/Contents/Mac0S/project2B
[100%] Built target project2B

fawcett:project2B childs$./project2B.app/Contents/Mac0S/project2B
~Z

[4]1+ Stopped ./project2B.app/Contents/Mac0S/project2B
fawcett:project2B childs$ bg

[4]+ ./project2B.app/Contents/Mac0S/project2B &

fawcett:project2B childs$ vi project2B.cxx

fawcett:project2B childs$ make

Scanning dependencies of target project2B

[100%] Build CXX t M 28B. 2B.cx
Linking CXX executable project2B.app/Contents/Mac0S/project2B
[100%] Built target project2B

fawcett:project2B childs$./project2B.app/Contents/Mac0S/project2B

Beige 45245220 Sfsde [
Wheat 245222179 [fSdeb3 [|
[SandyBrown [p44-164-96 [fad0 [
fan [p10-180-140 Jazbdsc [
[Chocolate _ [210-10530 _ [d2691c |
[Firebrick [178-343¢ [b22220 ||
Brown Ji654242 [pS2a2a |

Color Name [RGB CODE

P -—
Visualization Toolkit - Cocoa #1

al — less — 105x33

mode can assume one of four
nt matrix operations to the
stack.

ent matrix operations to the
x stack.

nt matrix operations to the
tack.

ent matrix operations to the
ck.

ly the target of all matrix
MATRIX_MODE. The initial value

Visualization Toolkit - Cocoa #1

ERRORS

ASSOCIATED G
glGet

SEE ALSO
gllLoa

Visualization Toolkit - Coca

Visualization Toolkit - Cocoa #1

Visualization Toolkit - Cocoa #1

[2]+ .
fawcet

| fawcet
s Scanni

[100%]
Linkin
[100%]

fawcet
fawcet
Scanni
[100%]
/Users,
, vikA
/Users,
make [2
make [1
make:

fawcet
fawcet
[100%]

% Linkin

[100%]

| fawcet'

~Z

[4]+ !
fawcet
[4]1+ ..

fawcet
© et
ih:

et
ni
%]
in(
%]
et

Visualization Toolkit - Cocoa #1

Visualization Toolkit - Cocoa #1 Screen shot Screen shot Screen shot Screen shot Screen shot Screen shot Screen shot, Screen shot Comcast Screer

2013-...50 PM 2013-...31 PM 2013-...01 PM 2013-...49 PM 2013-....03 PM 2013-...19 PM 2013=8:38 AM 2013=5536'AM Email.url 2012-2

Visualization Toolkit - Cocoa #1 Yo) € Visualization Toolkit - Cocoa #1

Screen €T
2013-.... v %

L
e

is GL_MODELVIEW.

ERRORS

GL_INVALID_ENUM is generated if mode is not an accepted value.

visualization Toolkit - Cocoa #1 Misualization Toolkit=Cocoa £1

roject2B childs$ vi project2B.cxx
hilds$ make
CXX ob MakeFiles/pr

Visualization Toolkit - Cocoa #1

Visualization Toolkit - Cocoa #1

Screer

e e N ‘ Visualization Toolkit - Cocoa #1 Visualization Toolkit - Cocoa #1 Visualization Toolkit - Cocoa #1
Visualization Toolkit - Cocoa #1

Visualization Toolkit - Cocoa #1 Visualization Toolkit - Cocoa #1

[Slele) Visualizatio Tool

Visualization Toolkit - Cocoa #1

Transparent Geometry O

COMPOSITING AND
BLENDING

Ed Angel

Professor of Computer Science, Electrical
and Computer Engineering, and Media Arts

University of New Mexico

B 0000

Opacity and TransparenCO

o Opaque surfaces permit no light to pass through

o Transparent surfaces permit all light to pass

o Translucent surfaces pass some light
translucency = 1 — opacity (a)

>

opaque surface a =1

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009 53

Transparency O

O If you have an opaque red square in front of a blue

square, what color would you see?
O Red

0 If you have a 50% transparent red square in front
of a blue square, what color would you see?
O Purple

0 If you have a 100% transparent red square in front
of a blue square, what color would you see?
O Blue

(One) Formula For Trcmspc:renO

0 Front = (Fr,Fg,Fb,Fa)
O a = alpha, transparency factor

B Sometimes percent
m Typically 0-255, with 255 = 100%, 0 = 0%

0 Back = (Br,Bg,Bb,Ba)

0 Equation = (Fa*Fr+(1-Fa)*Br,
Fa*Fg+(1-Fa)*Bg,
Fa*Fb+(1-Fa)*Bb,
Fa+(1-Fa)*Ba)

Transparency O

O If you have an 25% transparent red square
(255,0,0) in front of a blue square (0,0,255), what
color would you see (in RGB)?
0(192,0,64)

0 If you have an 25% transparent blue square

(0,0,255) in front of a red square (255,0,0), what
color would you see (in RGB)?

O (64,0,192)

Implementation O

0 Per pixel storage:
O RGB: 3 bytes
O Alpha: 1 byte
O Z: 4 bytes

0 Alpha used to control blending of current color and
new colors

Vocab term reminder:

fragment

0 Fragment is the contribution of a triangle to a single
pixel

* Determine rows of pixels triangles can
possibly intersect

Almost certain to use

* rowMax: floor of biggest Y value

term “fragment” on midterm
and expect that you know
what it means

Examples O

0 Imagine pixel (i,) has:
o RGB = 255/255/255
o Alpha=255
O Depth = -0.5
0 And we contribute fragment:
o RGB=0/0/0
o Alpha=128
O Depth = -0.25
0 What do we get?
0 Answer: 128/128/128,Z = -0.25

0 What’s the alpha?

Examples O

0 Imagine pixel (i,) has:
o RGB = 255/255/255
o Alpha=128
O Depth = -0.25
0 And we contribute fragment:
o RGB=0/0/0
o Alpha=255
O Depth = -0.5
0 What do we get?
0 Answer: (probably) 128/128/128,Z = -0.25

0 What’s the alpha?

System doesn’t work well for O
f

I‘CInSECI rencz

0 Contribute fragments in this order:
o Z=-0.1
OZ=-0.9
0Z=-0.5
0Z=-0.4
OZ=-0.6

0 Model is too simple. Not enough info to resolve!

Order Dependency O

o Is this image correct?
o Probably not
o Polygons are rendered
In the order they pass
down the pipeline
o Blending functions
are order dependent

Angel: Interactive Computer Graphics SE © Addison-Wesley 2009 62

How do you sort? O

0 1) Calculate depth of each triangle center.

0 2) Sort based on depth
O Not perfect, but good

0 In practice: sort along X, Y, and Z and use
“dominant axis” and only do “perfect sort” when
rotation stops

But there is a problem... O

(0, 1.5, -0.4)

(-2, -1.5, -0.5) (2,-1.5,-0.3)

Depth Peeling O

0 a multi-pass technique that renders transparent
polygonal geometry without sorting

0 Pass #1:

O render as opaque, but note opacity of pixels placed on
top

O treat this as “top layer”

O save Z-buffer and treat this as “max”
0 Pass #2:
O render as opaque, but ignore fragments beyond “max”

O repeat, repeat...

