
Hank Childs, University of OregonMay 11, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 11: ModelView



Office	Hours



Quiz	Thursday

• Phong shading
• Personalized	quiz
• Open	book,	open	notes
• Calculator	OK



Questions	on	2A?



Project	2A
• Assigned	Tuesday,	due	in	5	days	(Tuesday	

May	11)
• Worth	8%	of	your	grade
• Implementing	Project	1	within	OpenGL
• 5	phases

– Phase	1:	install	GLFW
– Phase	2:	run	example	program
– Phase	3:	modify	VBO/VAO
– Phases	4	&	5:	shader programs

• Please	start	ASAP	on	Phase	1-3
• Thursday’s	lecture	will	be	on	Phase	4	&	5



ModelView and Projection 
Matrices

New for us Familiar for us

¨ ModelView idea: two purposes … model and view
¤ Model: extra matrix, just for rotating, scaling, and 

translating geometry.
n How could this be useful?

¤ View: Cartesian to Camera transform



“Model” Part of ModelView

World space:
Triangles in native Cartesian coordinates
Camera located anywhere

O

Camera space:
Camera located at origin, looking down -Z
Triangle coordinates relative to camera frame

O

Image space:
All viewable objects within 
-1 <= x,y,z <= +1

x

y

z

Screen space:
All viewable objects within
-1 <= x, y <= +1

Device space:
All viewable objects within
0<=x<=width, 0 

<=y<=height

Add additional 
transforms here….



How does ModelView work in GL?

¨ Determine the matrix
¤ Determine model part
¤ Determine view part
¤ Combine them

¨ Tell OpenGL about the matrix
¨ Vertex shader uses the matrix



How does ModelView work in GL?

¨ Determine the matrix
¤ Determine model part
¤ Determine view part
¤ Combine them

¨ Tell OpenGL about the matrix
¨ Vertex shader uses the matrix



Determining the Model Transform

¨ Typical plan:
¤ Have geometric model

n Came from a file, centered at origin

¤ Need to “move” it into position
n Done with a 4x4 matrix 

¤ Specifics are the focus of today’s lecture



How does ModelView work in GL?

¨ Determine the matrix
¤ Determine model part
¤ Determine view part
¤ Combine them

¨ Tell OpenGL about the matrix
¨ Vertex shader uses the matrix



Determining the View Transform

¨ Set up same matrices we did for 1E
¨ Now we use “glm” – a library for OpenGL matrices



How does ModelView work in GL?

¨ Determine the matrix
¤ Determine model part
¤ Determine view part
¤ Combine them

¨ Tell OpenGL about the matrix
¨ Vertex shader uses the matrix



Combining Model and View

¨ (4x4 matrix) times (4x4 matrix) à 4x4 matrix



Combining Model and View: 
Conventions

¨ For a vertex P
¨ For a model transformation M
¨ For a view transformation V
¨ Two conventions

¤ P*M*V = P’
¤ P’ = V*M*P

¨ We are using the second convention
¤ This is important, more detail later



How does ModelView work in GL?

¨ Determine the matrix
¤ Determine model part
¤ Determine view part
¤ Combine them

¨ Tell OpenGL about the matrix
¨ Vertex shader uses the matrix



Game Plan

¨ Make a uniform for the ModelView

¨ OpenGL does not know this matrix is “special”
¨ Set the uniform every time time ModelView changes

¨ Vertex shader knows to look for the uniform and use it



How does ModelView work in GL?

¨ Determine the matrix
¤ Determine model part
¤ Determine view part
¤ Combine them

¨ Tell OpenGL about the matrix
¨ Vertex shader uses the matrix



Vertex Shader Uses the Matrix



New Topic: 
Types of Model Transforms

¨ Three main types
¤ Rotate
¤ Translate
¤ Scale

¨ Each can be 
represented as a 
4x4 matrix

Convenience routines in 2B
(which use convenience routines from glm)



Combining Model Transforms

¨ You don’t have to choose just 1
¨ Assume you have a model for a 

chess rook
¤ Possibly need to scale it
¤ Almost certainly need to translate it
¤ Likely don’t need to rotate it

¨ And: a different transform for each 
chess piece

¨ Game plan: use multiple matrices, 
combine to make one big operation

¨ But: order matters



Which of two of these three are 
the same?

¨ Choice A:
¤ Scale(2, 2, 2);
¤ Translate(1, 0, 0);

¨ Choice B:
¤ Translate(1, 0, 0);
¤ Scale(2, 2, 2);

¨ Choice C:
¤ Translate(2, 0, 0);
¤ Scale(2, 2, 2);



SLIDE REPEAT:
Combining Model and View: Conventions

¨ For a vertex P
¨ For a model transformation M
¨ For a view transformation V
¨ Two conventions

¤ P*M*V = P’
¤ P’ = V*M*P

¨ We are using the second convention
¤ This is important, more detail later



Multiple Model Transforms

¨ Let M1 be the first transform
¨ Let M2 be the second transform
¨ Then the combined model transform should be M2*M1

¤ And not M1*M2

¨ In all:
¤ V * M2 * M1 * P à P’

¨ Make sure you think about order when you do 2B!



Project 2B



Project #2B (7%), Due 
Monday May 17th

¨ Goal: modify ModelView
matrix to create dog out 
of spheres and cylinders

¨ New code skeleton: 
“project2B.cxx”

¨ No geometry file needed
¨ You will be able to do this 

by rendering ~20 
spheres and cylinders, 
each with their own 
transform 



What is the correct answer?

¨ The correct answer is:
¤ Something that looks like a dog

n No obvious problems with output geometry

¤ Something that uses the sphere and cylinder classes
n If you use something else, please clear it with me first

n I may reject your submission if I think you are using outside 
resources that make the project too easy

¤ Something that uses rotation
n For me: the neck and tail

¤ Something that animates

¨ Aside from that, feel free to be as creative as you 
want … color, breed, etc.











For your reference: my dog



New Topic: the Amazing GPU



“First”	computer:	ENIAC
• Year:	1946
• Location:	Pennsylvania
• Purpose:	military
• Cost:	$487K	

– ($6.9M	today)

• Technology:	
– very	different	than	today
– … but	still	the	same	



Vacuum	Tubes
• Vacuum	tubes:

– Glass	tubes	with	no	gas
– Used	to	control	electron	flow	in	early	computers

• Occasionally,	a	bug	would	get	stuck	in	the	
tube	and	cause	the	program
to	malfunction

• We	no	longer	have	vacuum
tubes,	but	the	term	bug	has
remained	with	us…

Vacuum	tubes	in	ENIAC
Image	source:	wikipedia



An	ENIAC	Computation

• Used	for	military	calculations:
– A-bomb	design
– Missile	delivery

• ENIAC	could	do	~5000	calculations	in	one	
minute

• In	one	case:
– ENIAC	did	a	calculation	in	30	seconds
– Human	being	took	20	hours
– 2400x	increase	in	speed

source:	wikipedia



Hertz	(Hz)	=	unit	of	measurement	for	
how	fast	you	do	something

• 1	Hertz	=	do	something	once	per	second
• KHz	=	1024	Hz
• MHz	=	1024	KHz
• GHz	=	1024	MHz

• The	ENIAC	machine	ran	at	5000Hertz,	or	about	
5KHz.
– Vocab	term:	“clock	speed”	à the	number	of	cycles	
per	second

• the	clock	speed	of	the	ENIAC	was	5KHz



Today’s	Desktop	Computers	Are	Fast!

¨ Most computers run at ~1-3 
GHz

¨ i.e., operates billions of 
instructions each second

¨ This is about one million times 
faster than the ENIAC
¨ … and the ENIAC was 2400X 

faster than humans
¨ (at least at tasks computers are 

good at)



What	does	a	million-fold	increase	
mean?

Distance:	a	2”	map	of	Oregon	is	1:1,000,000	scale

Time:	1	second	to	277	hours	is	1:1,000,000	scale

Time:	1	minute	to	694	days	is	1:1,000,000	scale

Time:	1	hour	to	114	years	is	1:1,000,000	scale

Time:	1	day	to	2738	years	is	1:1,000,000	scale

and	
back

10X



1	million-fold	increase!		
How	does	this	happen?

• Moore’s	Law	(old	timer’s	version)
– Clock	speed	doubles	every	18	months

• Moore’s	Law	(newer	version	but	still	for	old	
timers)
– Clock	speed	doubles	every	24	months



Moore’s	Law

• Moore’s	Law	(actual	version)
– Number	of	transistors	doubles	every	24	months
– And	clock	speed	is	a	reflection	of	number	of	
transistors

• So	what	is	a	transistor?
– Semiconductor	device	for	amplifying	or	switching	
electronic	signals/power

– Fundamental	building	block	of	modern	electronics
– Replacement	for	vacuum	tube





But	actually…

• The	part	about	clock	speed	increasing	with	#	
of	transistors	stopped	about	fifteen	years	ago

Source:	maximumpc.com



The	reason	is	power

• Desktop	computer	takes	~200W
– There	are	multiple	components	that	consume	the	
power:

• CPU
• Monitor
• Disk
• Memory

• 200W	*	1	year	à ~$70



Relationship	Between	
Power	and	Clock	Speed

• Clock	goes	twice	as	fast	à Power	goes	up	by	
factor	of	8
– (Increase	of	X	in	clock	speed	à Increase	of	X3 in	
power)

• Clock	speeds	haven’t	changed	in	12	years
• What	if	they	had	doubled	every	2	years?
• Then	64X	faster

– à 262144X	more	power	(for	the	CPU)
– à power	bill	now	$18M



New	vocab	term:	“core”	
à lightweight	version	of	

a	CPU

What	Changed?

• We	are	getting	double	the	transistors	every	
two	years

• …	but	clock	speed	is	the	same
• …	so	what	is	changing?



How	To	Use	Multiple	Cores?

• Answer:	parallel	programming
– Write	computer	programs	that	use	all	the	cores
– Ideally	the	coordination	between	the	cores	is	
minimal



Parallel	Programming	Concepts

• Usual	goal:	
– if	program	takes	N	seconds	to	run	with	one	core
– then	take	N/2	seconds	to	run	with	two	cores
– and	N/M	seconds	to	run	with	M	cores

Let’s	consider	an	example	outside	of	computers



Example:	paint	a	house

• One	person:	6	days	(1	day	=	10	hours)
• Two	people:	3	days
• Three	people:	2	days
• Six	people:	1	day

• Sixty	people:	1	hour?
• Six	hundred	people:	6	minutes?



Example:	paint	a	house,	plan	#2

• One	person:	paint	one	house	in	6	days
• Two	people:	paint	two	houses	in	6	days
• Three	people:	paint	three	houses	in	6	days
• One	thousand	people:	paint	1000	houses	in	6	
days?

Parallel	programming	is	hard,	
and	smart	people	spend	their	
whole	careers	figuring	out	

how	to	make	parallel	
programs	be	efficient



GPUs:	Graphical	Processing	Units	
(graphics	cards)

• Historical:
– Introduced	to	accelerate	graphics	(gaming!)
– Boom	with	desktop	PCs	– late	90s	onward
– Mid-2000’s:	people	start	“hacking”	interface	to	
program	a	GPU	to	make	it	do	things	besides	graphics

– Late	2000’s:	GPU	makers	jump	on	board	and	start	
encouraging	folks	to	program	GPUs	directly

• GPGPU:	General-purpose	GPU	programming
– Mid	2010’s:	GPUs	used	for	*lots*	of	computing	
problems.

• Machine	learning	workhorse!



Why	Are	GPUs	So	Good?

• NVIDIA:	company	that	makes	GPUs
• NVIDIA	Volta:	latest	type	of	NVIDIA	GPU
• Volta	facts:

– 5120	cores
– 1200MHz	clock	speed
– à can	do	2000X	more	operations	than	my	laptop
– Price	on	Amazon:	$3,999.00

This	level	of	increase	in	
computation	is	not	just	a	
quantitative	change,	it	is	a	

qualitative	one	too.



Graphics	and	GPUs

• Graphics	are	very	parallelizable
– How	many	people	can	paint	a	house?	<100
– How	many	cores	can	paint	a	screen?	>5000

• GPUs	have	special	support	for	graphics
– (Of	course	they	do!	...	Graphics	processing	units!)

• GPUs	also	have	support	for	general	
programming
– Example:	Nvidia CUDA



CS 535

Introduction to Ray 
Tracing

Dr. Xiaoyu Zhang
Cal State U., San Marcos



CS 535

Classifying Rendering 
Algorithms
l One way to classify rendering algorithms is 

according to the type of light interactions they 
capture

l For example: The OpenGL lighting model captures:
l Direct light to surface to eye light transport
l Diffuse and rough specular surface reflectance
l It actually doesn’t do light to surface transport correctly, 

because it doesn’t do shadows
l We would like a way of classifying interactions: light 

paths



CS 535

Classifying Light Paths
l Classify light paths according to where they come 

from, where they go to, and what they do along the 
way

l Assume only two types of surface interactions:
l Pure diffuse, D
l Pure specular, S

l Assume all paths of interest:
l Start at a light source, L
l End at the eye, E

l Use regular expressions on the letters D, S, L and E 
to describe light paths
l Valid paths are L(D|S)*E



CS 535

Simple Light Path Examples
l LE

l The light goes straight from the source to the 
viewer

l LDE
l The light goes from the light to a diffuse surface 

that the viewer can see
l LSE

l The light is reflected off a mirror into the 
viewer’s eyes

l L(S|D)E
l The light is reflected off either a diffuse surface 

or a specular surface toward the viewer
l Which do OpenGL (approximately) support?



CS 535

Radiosity Cornell box, 
due to Henrik wann 
Jensen,
http://www.gk.dtu.dk/
~hwj, rendered with 
ray tracer

More Complex Light Paths
l Find the 

following:
l LE
l LDE
l LSE
l LDDE
l LDSE
l LSDE
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More Complex Light Paths
LE LDDE

LDE

LSDE

LSE
LDSE
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The OpenGL Model
l The “standard” graphics lighting model captures 

only L(D|S)E
l It is missing:

l Light taking more than one diffuse bounce: LD*E
l Should produce an effect called color bleeding, 

among other things
l Approximated, grossly, by ambient light

l Light refracted through curved glass
l Consider the refraction as a “mirror” bounce: LDSE

l Light bouncing off a mirror to illuminate a diffuse surface: 
LS+D+E

l Many others
l Not sufficient for photo-realistic rendering
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PCKTWTCH by 
Kevin Odhner, 
POV-Ray

Raytraced Images
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Kettle, Mike 
Miller, POV-
Ray



CS 535



The previous slides now look 
like amateur hour…
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Graphics Pipeline Review
l Properties of the Graphics Pipeline 

l Primitives are transformed and projected (not depending on display 
resolution)

l Primitives are processed one at a time 
l Forward-mapping from geometrical space to image space
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Alternative Approaches: Ray 
CASTING (not Ray TRACING)

Ray-casting searches along lines of sight, or rays, to determine the 
primitive that is visible along it. 

Properties of ray-casting: 
n Go through all primitives at each pixel 
n Image space sample first 
n Analytic processing afterwards 



CS 535

Ray Casting Overview

n For every pixel shoot a ray from 
the eye through the pixel. 

n For every object in the scene 
n Find the point of intersection 

with the ray closest to (and in 
front of) the eye 

n Compute normal at point of 
intersection 

n Compute color for pixel based on 
point and normal at intersection 
closest to the eye (e.g. by Phong 
illumination model). t

0
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Ray Casting
l Ray Cast ( Point R, Ray D ) {

foreach object in the scene
find minimum t>0 such that R + t D hits object

if ( object hit )
return object
else return background object

}
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Raytracing
l Cast rays from the eye point the same way as ray casting

l Builds the image pixel by pixel, one at a time

l Cast additional rays from the hit point to determine the pixel color
l Shoot rays toward each light. If they hit something, then the 

object is shadowed from that light, otherwise use “standard”
model for the light

l Reflection rays for mirror surfaces, to see what should be 
reflected in the mirror

l Refraction rays to see what can be seen through transparent 
objects

l Sum all the contributions to get the pixel color
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Raytracing

Shadow rays

Reflection ray

refracted ray
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Recursive Ray Tracing
l When a reflected or refracted ray hits a surface, 

repeat the whole process from that point
l Send out more shadow rays
l Send out new reflected ray (if required)
l Send out a new refracted ray (if required)
l Generally, reduce the weight of each additional ray when 

computing the contributions to surface color
l Stop when the contribution from a ray is too small to notice 

or maximum recursion level has been reached
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Raytracing Implementation
l Raytracing breaks down into two tasks:

l Constructing the rays to cast
l Intersecting rays with geometry

l The former problem is simple vector arithmetic
l Intersection is essentially root finding (as we will 

see)
l Any root finding technique can be applied

l Intersection calculation can be done in world 
coordinates or model coordinates
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Constructing Rays
l Define rays by an initial point and a direction: x(t)=x0+td
l Eye rays: Rays from the eye through a pixel

l Construct using the eye location and the pixel’s location on the 
image plane. X0 = eye

l Shadow rays: Rays from a point on a surface to the light.
l X0 = point on surface

l Reflection rays: Rays from a point on a surface in the reflection 
direction
l Construct using laws of reflection. X0 = surface point

l Transmitted rays: Rays from a point on a transparent surface 
through the surface
l Construct using laws of refraction. X0 = surface point
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From Pixels to Rays
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Ray Tracing Illumination
Recursive
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Check for shadowing (intersection with object along ray (P,L))
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The Ray Tree
R

2

R
1

R
3

L2

L1
L3N1

N2

N3

T1

T3

Ni surface normal 
Ri reflected ray 
Li shadow ray 

Ti transmitted (refracted) ray
Psuedo-code

Viewpoint

L1

T3R
3

L3L2

T1R
1

R
2

Eye
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Reflection
l Reflection angle = view angle
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Reflection
l The maximum depth of the tree affects the handling of refraction
l If we send another reflected ray from here, when do we stop? 2 

solutions (complementary)
l Answer 1: Stop at a fixed depth. 
l Answer 2: Accumulate product of reflection coefficients and stop when 

this product is too small. 
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Reflection



CS 535

Refraction
Snell’s Law sin

sin
t i

r
i t

q h h
q h
= =

N̂
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Î
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tq

IN i
ˆcosˆ -q

iN qcosˆ

Note that I is the negative of 
the incoming ray
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Pseudo Code for Ray Tracing
rgb lsou; // intensity of light source 
rgb back; // background intensity 
rgb ambi; // ambient light intensity 

Vector L // vector pointing to light source
Vector N // surface normal
Object objects [n] //list of n objects in scene 
float Ks [n] // specular reflectivity factor for each object
float Kr [n] //  refractivity index for each object 
float Kd [n] // diffuse reflectivity factor for each object 
Ray r;

void raytrace() {
for (each pixel P of projection viewport in raster order) {

r = ray emanating from viewer through P
int depth = 1; // depth of ray tree consisting of multiple paths
the pixel color at P = intensity(r, depth)

}
} 
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rgb intensity (Ray r, int depth) {
Ray  flec, frac;
rgb   spec, refr, dull, intensity;

if (depth >= 5) intensity = back;
else {

find the closest intersection of r with all objects in scene
if (no intersection) { 

intensity =back;
} else { 

Take closest intersection which is object[j]
compute normal N at the intersection point
if (Ks[j] >0)   {  // non-zero specular reflectivity 

compute reflection ray flec; 
refl = Ks[j]*intensity(flec, depth+1);

} else refl =0;
if (Kr[j]>0)  { // non-zero refractivity 

compute refraction ray frac;
refr = Kr[j]*intensity(frac, depth+1);

} else refr =0;
check for shadow;
if (shadow) direct = Kd[j]*ambi
else direct = Phong illumination computation;
intensity = direct + refl +refr;

} }
return intensity; }



CS 535

Ray-traced Cornell box, due 
to Henrik Jensen,
http://www.gk.dtu.dk/~hwj

Which paths 
are missing?

Raytraced Cornell Box
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Paths in RayTracing
l Ray Tracing 

l Captures LDS*E paths: Start at the eye, any number of specular 
bounces before ending at a diffuse surface and going to the light

l Raytracing cannot do:
l LS*D+E: Light bouncing off a shiny surface like a mirror and 

illuminating a diffuse surface
l LD+E: Light bouncing off one diffuse surface to illuminate others

l Basic problem: The raytracer doesn’t know where to send rays 
out of the diffuse surface to capture the incoming light

l Also a problem for rough specular reflection
l Fuzzy reflections in rough shiny objects

l Need other rendering algorithms that get more paths



CS 535

A Better Rendered Cornell Box


