
Hank Childs, University of OregonMay 6, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 10: OpenGL - Shaders

Office	Hours

Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render

The	remainder	of	this	lecture	and	
Thursday’s	lecture	are	made	up	of	4	parts
1) Set	up	windows
2) Doing	a	render
3) Set	up	things	to	render	(VBOs)
4) Set	up	how	to	render	(shaders)		(Thursday)

The	remainder	of	this	lecture	and	
Thursday’s	lecture	are	made	up	of	4	parts
1) Set	up	windows
2) Doing	a	render
3) Set	up	things	to	render	(VBOs)
4) Set	up	how	to	render	(shaders)		(Thursday)

How to Use Shaders

¨ You write a shader program: a tiny C-like program
¨ You write C/C++ code for your application
¨ Your application loads the shader program from a

text file (or just contains it as a string)
¨ Your application sends the shader program to the

OpenGL library and directs the OpenGL library to
compile the shader program

¨ If successful, the resulting GPU code can be
attached to your (running) application and used

¨ It will then supplant the built-in GL operations

OpenGL
library

How to Use Shaders:
Visual Version

Project2A’
C++ code

Project2A’
binary

g++

shader
program

reads
text
file

when
running

sends “char *”
version of
program to GL via
function call

shader
program is a

binary

OpenGL
compiles program,
binary made just for
the current
execution

Program is used
on GPU to support
Project2A’ binary

Compiling Shader

Compiling Shader: inspect if it
works

Compiling Multiple Shaders

Attaching Shaders to a
Program

Inspecting if program link
worked…

Starter Code Has 4 Shaders

¨ phase2VertexShader
¨ phase2FragmentShader
¨ phase345VertexShader
¨ phase345FragmentShader

¨ Phase 2 variants are complete and work
¨ Phase 345 variants are what you will implement

Reminder: How Shaders Fit Into
the Graphics Pipeline

Transform Vertices
from World Space
to Device Space

Rasterize
Contribute

Fragments to
Buffers

vertex shaders:
custom

implementation

fragment
shaders: custom
implementation

geometry & tessellation
shaders: create new

geometry before
rasterized

¨ You can have 0
or 1 of each
shader type

¨ Vertex &
fragment: very
common (2A)

¨ Geometry &
tessellation:
less common
¤ adaptive

meshing

4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {

C-like code that operates
on inputs to make outputs

}

4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {

C-like code that operates
on inputs to make outputs

}

Declare GLSL version

• Syntax: #version 400
• Old versions: may be deprecated
• New versions: may not be available
• 400 is a good choice – works everywhere

• And what we use for this class

From: Khronos.org

4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {

C-like code that operates
on inputs to make outputs

}

Declare Inputs to Program

layout (location = 0) in vec3 vertex_position;

• In words:
• The array that was placed in location 0 is a vector of 3

floats
• In my code, I will refer to this array as vertex_position
• Regarding placement:

• The placement was already done before the shader
program executes

• The program must accept the placement made by the VAO
or shader program that proceeded it

Type Names

From: Khronos.org

Declare Inputs to Program

layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;

• In words:
• The array that was placed in location 0 is a vector of 3

floats
• In my code, I will refer to this array as vertex_position
• The array that was placed in location 1 is also a vector

of 3 floats
• In my code, I will refer to this array as vertex_color

Declare Outputs of Program

out vec3 color;

• In words:
• My program will create a vector of3 floats
• I will refer to this vector as color
• It is at location 0, since I declared this first
• The next shader program needs to know that color is

placed in location 0 and is a vec3

4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {

C-like code that operates
on inputs to make outputs

}

C-like code

void main() {
color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

• gl_Position is a mandatory output of a vertex
shader
• And this did a bad job! – should have done matrix

transform and did not
• Had to make a variable called color to send color

info along to fragment shader

Vertex Shader From Starter Code

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

Shader Overview

VAO

Uniforms

VBO1

VBO2

VBO3

VBO4

U1 U2

U3 U4

U5 U6

Vertex Shader

L0

L1

L2

L3

U1
U4

Code

Fragment Shader

Rasterizer

gl_Position
N0

N1

N2

N0

N1

N2 Code

frag_color

U6

Shader Overview

VAO

Uniforms

VBO1

VBO2

VBO3

VBO4

U1 U2

U3 U4

U5 U6

Vertex Shader

L0

L1

L2

L3

U1
U4

Code

Fragment Shader

Rasterizer

gl_Position
N0

N1

N2

N0

N1

N2 Code

frag_color

U6

Vertex Shader From Starter Code

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

These must match up. VAO is putting arrays in “locations.”
Shader program must honor the VAO’s ordering.

Location 0 contains “points_vbo” no matter what name it is given.

Shader Overview

VAO

Uniforms

VBO1

VBO2

VBO3

VBO4

U1 U2

U3 U4

U5 U6

Vertex Shader

L0

L1

L2

L3

U1
U4

Code

Fragment Shader

Rasterizer

gl_Position
N0

N1

N2

N0

N1

N2 Code

frag_color

U6

“Uniform” Means “Constant”

¨ You can set constants in your GL code
¤ You set the name
¤ You set the type
¤ You set the value

¨ The shader program can then access those constants

Syntax for creating a uniform
(in main GL code)

GLuint param = glGetUniformLocation(
shader_programme, "cis441”

);
glUniform1f(param, 0.5);

“Get Uniform Location” means “make a new uniform”
glUniform1f: the value of the constant will be a single
float

Syntax for using a uniform

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
uniform float cis441;
out vec3 color;
void main() {

color = vertex_color;
// gl_Position = vec4(vertex_position, 1.0);
gl_Position = vec4(vertex_position.x,

vertex_position.y-cis441, vertex_position.z, 1.0);
}

Original New

Note: this vertex shading is not typical.
Normal vertex shader: transform points from world space to image space
This vertex shader: assume they are already in image space

Shader Overview

VAO

Uniforms

VBO1

VBO2

VBO3

VBO4

U1 U2

U3 U4

U5 U6

Vertex Shader

L0

L1

L2

L3

U1
U4

Code

Fragment Shader

Rasterizer

gl_Position
N0

N1

N2

N0

N1

N2 Code

frag_color

U6

This picture is misleading

¨ Vertex shader
called once per
vertex

¨ Fragment shader
called once per
fragment

¨ One triangle has 3
vertices, but may
have thousands of
fragments

¨ Not one-to-one!

Shader Overview

VAO

Uniforms

VBO1

VBO2

VBO3

VBO4

U1 U2

U3 U4

U5 U6

Vertex Shader

L0

L1

L2

L3

U1
U4

Code

Fragment Shader

Rasterizer

gl_Position
N0

N1

N2

N0

N1

N2 Code

frag_color

U6

One Shader’s Output Is
Another Shader’s Input

¨ It is your job to arrange the output’s of one shader
to be the input’s to the next

¨ Output of vertex shader is input to fragment shader
¨ If VAO sends in arrays that you want in the

fragment shader, then the vertex shader needs to
do work to pass them through (see next slide)

Vertex Shader à Fragment Shader

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

#version 400
in vec3 color;
out vec4 frag_color;
void main() {

frag_color = vec4(color, 1.0);
}

Project 2A

¨ Assigned today, due in one week
(Tuesday May 11)

¨ Worth 8% of your grade
¨ Implementing Project 1 within OpenGL
¨ 5 phases

¤ Phase 1: install GLFW
¤ Phase 2: run example program
¤ Phase 3: modify VBO/VAO
¤ Phases 4 & 5: shader programs

¨ Please start ASAP on Phase 1-3
¨ Thursday’s lecture will be on Phase 4 & 5

Rest of This Lecture

¨ Have fun with shaders
¨ Look at project 2A

RED GREEN

BLUE

x

1
y

