
Hank Childs, University of OregonMay 6, 2021

CIS 441/541: Intro to Computer Graphics
Lecture 10: OpenGL - Shaders



Office	Hours



Layout	of	Simple	OpenGL	Program

• Set	up	windows
• Set	up	things	to	render	(VBOs)
• Set	up	how	to	render	(shaders)
• While	(1)

– Accept	events,	make	changes
• New	camera	positions,	new	geometry,	etc.

– Render



The	remainder	of	this	lecture	and	
Thursday’s	lecture	are	made	up	of	4	parts
1) Set	up	windows
2) Doing	a	render
3) Set	up	things	to	render	(VBOs)
4) Set	up	how	to	render	(shaders)		(Thursday)
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How to Use Shaders

¨ You write a shader program: a tiny C-like program
¨ You write C/C++ code for your application
¨ Your application loads the shader program from a 

text file (or just contains it as a string)
¨ Your application sends the shader program to the 

OpenGL library and directs the OpenGL library to 
compile the shader program

¨ If successful, the resulting GPU code can be 
attached to your (running) application and used

¨ It will then supplant the built-in GL operations
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Compiling Shader



Compiling Shader: inspect if it 
works



Compiling Multiple Shaders



Attaching Shaders to a 
Program



Inspecting if program link 
worked…



Starter Code Has 4 Shaders

¨ phase2VertexShader
¨ phase2FragmentShader
¨ phase345VertexShader
¨ phase345FragmentShader

¨ Phase 2 variants are complete and work
¨ Phase 345 variants are what you will implement



Reminder: How Shaders Fit Into 
the Graphics Pipeline

Transform Vertices 
from World Space 
to Device Space

Rasterize
Contribute 

Fragments to 
Buffers

vertex shaders: 
custom 

implementation

fragment 
shaders: custom 
implementation

geometry & tessellation 
shaders: create new 

geometry before 
rasterized

¨ You can have 0 
or 1 of each 
shader type

¨ Vertex & 
fragment: very 
common (2A)

¨ Geometry & 
tessellation: 
less common
¤ adaptive 

meshing



4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {

C-like code that operates
on inputs to make outputs

}
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Declare GLSL version

• Syntax: #version 400
• Old versions: may be deprecated
• New versions: may not be available
• 400 is a good choice – works everywhere

• And what we use for this class

From: Khronos.org



4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
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void main() {
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Declare Inputs to Program

layout (location = 0) in vec3 vertex_position;

• In words:
• The array that was placed in location 0 is a vector of 3 

floats
• In my code, I will refer to this array as vertex_position
• Regarding placement:

• The placement was already done before the shader
program executes

• The program must accept the placement made by the VAO 
or shader program that proceeded it



Type Names

From: Khronos.org



Declare Inputs to Program

layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;

• In words:
• The array that was placed in location 0 is a vector of 3 

floats
• In my code, I will refer to this array as vertex_position
• The array that was placed in location 1 is also a vector 

of 3 floats
• In my code, I will refer to this array as vertex_color



Declare Outputs of Program

out vec3 color;

• In words:
• My program will create a vector of3  floats
• I will refer to this vector as color
• It is at location 0, since I declared this first
• The next shader program needs to know that color is 

placed in location 0 and is a vec3



4 Elements to a Shader Program

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {

C-like code that operates
on inputs to make outputs

}



C-like code

void main() {
color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

• gl_Position is a mandatory output of a vertex 
shader
• And this did a bad job! – should have done matrix 

transform and did not
• Had to make a variable called color to send color 

info along to fragment shader



Vertex Shader From Starter Code

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}



Shader Overview
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Vertex Shader From Starter Code

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

These must match up.  VAO is putting arrays in “locations.”  
Shader program must honor the VAO’s ordering.

Location 0 contains “points_vbo” no matter what name it is given.
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“Uniform” Means “Constant”

¨ You can set constants in your GL code
¤ You set the name
¤ You set the type
¤ You set the value

¨ The shader program can then access those constants



Syntax for creating a uniform 
(in main GL code)

GLuint param = glGetUniformLocation(
shader_programme, "cis441”

);
glUniform1f(param, 0.5); 

“Get Uniform Location” means “make a new uniform”
glUniform1f: the value of the constant will be a single 
float



Syntax for using a uniform

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
uniform float cis441;
out vec3 color;
void main() {

color = vertex_color;
// gl_Position = vec4(vertex_position, 1.0);
gl_Position = vec4(vertex_position.x, 

vertex_position.y-cis441, vertex_position.z, 1.0);
}



Original New

Note: this vertex shading is not typical.
Normal vertex shader: transform points from world space to image space
This vertex shader: assume they are already in image space
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This picture is misleading

¨ Vertex shader
called once per 
vertex

¨ Fragment shader
called once per 
fragment

¨ One triangle has 3 
vertices, but may 
have thousands of 
fragments

¨ Not one-to-one!



Shader Overview

VAO

Uniforms

VBO1

VBO2

VBO3

VBO4

U1 U2

U3 U4

U5 U6

Vertex Shader

L0

L1

L2

L3

U1
U4

Code

Fragment Shader

Rasterizer

gl_Position
N0

N1

N2

N0

N1

N2 Code

frag_color

U6



One Shader’s Output Is 
Another Shader’s Input

¨ It is your job to arrange the output’s of one shader
to be the input’s to the next

¨ Output of vertex shader is input to fragment shader
¨ If VAO sends in arrays that you want in the 

fragment shader, then the vertex shader needs to 
do work to pass them through (see next slide)



Vertex Shader à Fragment Shader

#version 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

#version 400
in vec3 color;
out vec4 frag_color;
void main() {

frag_color = vec4(color, 1.0);
}



Project 2A

¨ Assigned today, due in one week 
(Tuesday May 11)

¨ Worth 8% of your grade
¨ Implementing Project 1 within OpenGL
¨ 5 phases

¤ Phase 1: install GLFW
¤ Phase 2: run example program
¤ Phase 3: modify VBO/VAO
¤ Phases 4 & 5: shader programs

¨ Please start ASAP on Phase 1-3
¨ Thursday’s lecture will be on Phase 4 & 5



Rest of This Lecture

¨ Have fun with shaders
¨ Look at project 2A
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