(X1S'441/541: Intro to Computer Graphics
Lecture 10: OpenGL - Shaders

May 6, 2021 Hank Childs, University of Oregon

0 UNIVERSITY OF OREGON

Office Hours
A Edit

How to access Office Hours Apr 4 at 2:02pm
Hank Childs

All Sections

Hi Everyone,

We currently have an asymmetry for accessing Hank and Abhishek's Office Hours.
And Hank's are accessible via the Zoom Meetings area in Canvas.

Let's chat on Tuesday about the most standard way to do this.

Finally, here is the OH schedule again:

Monday (Abhishek): 10am-11am
Tuesday (Abhishek): 945am-1045am
Wednesday (Hank): 230pm-330pm
Thursday (Abhishek): 945am-1045am

Best,
Hank

Layout of Simple OpenGL Program

* Set up windows
e Set up things to render (VBOs)
e Set up how to render (shaders)
* While (1)

— Accept events, make changes

 New camera positions, new geometry, etc.

— Render

The remainder of this lecture and
Thursday’s lecture are made up of 4 parts

1) Set up windows

2) Doing a render

3) Set up things to render (VBOs)

4) Set up how to render (shaders) (Thursday)

The remainder of this lecture and
Thursday’s lecture are made up of 4 parts

1) Set up windows

2) Doing a render

3) Set up things to render (VBOs)

4) Set up how to render (shaders) (Thursday)

How to Use Shaders O

0 You write a shader program: a tiny C-like program

0 You write C/C++ code for your application

0 Your application loads the shader program from a
text file (or just contains it as a string)

0 Your application sends the shader program to the
OpenGlL library and directs the OpenGL library to
compile the shader program

O If successful, the resulting GPU code can be
attached to your (running) application and used

0 It will then supplant the built-in GL operations

How to Use Shaders:
Visual Version

sends “char *”

version of
program to GL via
Project2A’ g++ Project2A function call
C++ code binary
Bl oo s oot reads OpenGL OpenGL
- text lib\ary compiles program,
file binary made just for
when \ the current
running execution

Program is used
on GPU to support
Project2A’ binary

shader
program is a
binary

shader
program

Compiling Shader

GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);

std::string vertexProgram = loadFileToString("vs.glsl");

const char xvertex_shader_source = vertexProgram.c_str();

GLint const vertex_shader_length = strlen(vertex_shader_source);
glShaderSource(vertexShader, 1, &vertex_shader_source, &vertex_shader_length);
glCompileShader(vertexShader);

GLint isCompiledVS = 0;

glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &isCompiledVS);

Compiling Shader: inspect if it

works

if(isCompiledVS == GL_FALSE)
{

cerr << "Did not compile VS" << endl;

GLint maxLength = 0;
glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength);

// The maxLength includes the NULL character

std::vector<GLchar> errorLog(maxLength);
glGetShaderInfoLog(vertexShader, maxLength, &maxLength, &errorLog[@]);
cerr << "Vertex shader log says " << &(errorLog[@]) << endl;

exit (EXIT_FAILURE);

Compiling Multiple Shaders

GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);

std::string vertexProgram = loadFileToString("vs.glsl");

const char xvertex_shader_source = vertexProgram.c_str();

GLint const vertex_shader_length = strlen(vertex_shader_source);
glShaderSource(vertexShader, 1, &vertex_shader_source, &vertex_shader_length);
glCompileShader(vertexShader);

GLint isCompiledVS = 0;

glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &isCompiledVS);

if(isCompiledVS == GL_FALSE)
{

cerr << "Did not compile VS" << endl;

GLint maxLength = 0;
glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength);

// The maxLength includes the NULL character
std::vector<GLchar> errorLog(maxLength);
glGetShaderInfoLog(vertexShader, maxLength, &maxLength, &errorLog([@]);
cerr << "Vertex shader log says " << &(errorLog[@]) << endl;
exit (EXIT_FAILURE);

}

GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER) ;

std::string fragmentProgram = loadFileToString("fs.gls1");

const char xfragment_shader_source = fragmentProgram.c_str();

GLint const fragment_shader_length = strlen(fragment_shader_source);
glShaderSource(fragmentShader, 1, &fragment_shader_source, &fragment_shader_length);
glCompileShader(fragmentShader);

GLint isCompiledFS = 0;

glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &isCompiledFS);

Attaching Shaders to o O
Program

GLuint program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);

glLinkProgram(program);

glDetachShader(program, vertexShader);
glDetachShader(program, fragmentShader);

Inspecting if program link
worked...

GLint isLinked = 0;
glGetProgramiv(program, GL_LINK_STATUS, (int *)&isLinked);
if(isLinked == GL_FALSE)
{
GLint maxLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);

//The maxLength includes the NULL character

std::vector<GLchar> infolLog(maxLength);
glGetProgramInfoLog(program, maxLength, &maxLength, &infolLog[Q]);
cerr << "Couldn't link" << endl;

cerr << "Log says " << &(infolLog[@]) << endl;

exit (EXIT_FAILURE);

Starter Code Has 4 Shaders O

0 phase2VertexShader
0 phase2FragmentShader

0 phase345VertexShader

0 phase345FragmentShader

0 Phase 2 variants are complete and work

0 Phase 345 variants are what you will implement

Reminder: How Shaders Fit Into
the Graphics Pipeline

Transform Vertices
from World Space
to Device Space

Rasterize

vertex shaders:
custom
implementation

geometry & tessellation
shaders: create new
geometry before
rasterized

0 You can have O
or 1 of each

Contribute
Fragments to
Buffare shader type
0 Vertex &
fragment: very
fragment common (2A)

shaders: custom
implementation [Geomefry &

tessellation:
less common

O adaptive
meshing

4 Elements to a Shader Program O

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {
C-like code that operates
on inputs to make outputs

J

4 Elements to a Shader Program O

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {
C-like code that operates
on inputs to make outputs

J

Declare GLSL version

* Syntax: #version 400
* Old versions: may be deprecated
* New versions: may not be available

* 400 is a good choice — works everywhere
* And what we use for this class

OpenGL Version GLSL Version

2.0 1.10
2.1 1.20
3.0 1.30
3.1 1.40
3.2 1.50

For all versions of OpenGL 3.3 and above, the corresponding GLSL
version matches the OpenGL version. So GL 4.1 uses GLSL 4.10.

From: Khronos.org

4 Elements to a Shader Program O

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {
C-like code that operates
on inputs to make outputs

J

Declare Inputs to Program

layout (location = Q) in vec3 vertex_position;

* |In words:

* The array that was placed in location O is a vector of 3
floats

* In my code, | will refer to this array as vertex_position
* Regarding placement:

* The placement was already done before the shader
program executes

* The program must accept the placement made by the VAO
or shader program that proceeded it

Type Names

Scalars

The basic non-vector types are:

¢ bool: conditional type, values may be either true or false
e int: a signed, two's complement, 32-bit integer
e uint: an unsigned 32-bit integer

float: an IEEE-754 & single-precision floating point number

double: an IEEE-754 double-precision floating-point number
Warning: The specific sizes and formats for integers and floats in GLSL are only for GLSL 1.30 and above. Lower
versions of GLSL may not use these exact specifications.

Vectors

Each of the scalar types, including booleans, have 2, 3, and 4-component vector equivalents. The n digit below can be 2,
3, or 4:

¢ bvecn: a vector of booleans

e ivecn: a vector of signed integers

e uvecn: a vector of unsigned integers

e vecn: a vector of single-precision floating-point numbers

e dvecn: a vector of double-precision floating-point numbers

Vector values can have the same math operators applied to them that scalar values do. These all perform the component-
wise operations on each component. However, in order for these operators to work on vectors, the two vectors must have
the same number of components.

From: Khronos.org

Declare Inputs to Program

layout (location = Q) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;

* In words:
* The array that was placed in location O is a vector of 3
floats
* In my code, | will refer to this array as vertex_position
* The array that was placed in location 1 is also a vector
of 3 floats
* In my code, | will refer to this array as vertex_color

Declare Outputs of Program O

out vec3 color;

* |n words:
* My program will create a vector of3 floats
* | will refer to this vector as color
* |t is at location O, since | declared this first

* The next shader program needs to know that color is
placed in location O and is a vec3

4 Elements to a Shader Program O

Declare GLSL version (GL Shader Language)
Declare inputs to program
Declare outputs of program
void main() {
C-like code that operates
on inputs to make outputs

J

C-like code O

color = vertex_color;

void main() {

gl_Position = vec4(vertex_position, 1.0);

J

* gl_Position is a mandatory output of a vertex
shader

* And this did a bad job! — should have done matrix
transform and did not

* Had to make a variable called color to send color
info along to fragment shader

Vertex Shader From Starter Code O

Hversion 400
layout (location = Q) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;
out vec3 color;
void main() {

color = vertex_color;

gl_Position = vec4(vertex_position, 1.0);

J

Shader Overview O

Shader Overview O

Vertex Shader From Starter Code

Hversion 400
layout (location

0) in vec3 vertex_position;

layout (location = 1) in vec3 vertex_color;

out vec3 color;

These must match up. VAO is putting arrays in “locations.”
void mCIIn() { Shader program must honor the VAO'’s ordering.
Location O contains “points_vbo” no matter what name it is given.

color = vertex_coror,
gl_Position = vec4(vertex_position, 1.0);

} GLuint vao = 9;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer (GL_ARRAY_BUFFER, points_vbo);

glVertexAttribPointer(9, 3, GL_FLOAT, GL_FALSE, ©, NULL);
gl1BindBuffer (GL_ARRAY_BUFFER, colors_vbo);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, ©, NULL);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_vbo);

Shader Overview O

“Uniform” Means “Constant” O

0 You can set constants in your GL code
O You set the name
O You set the type

O You set the value

0 The shader program can then access those constants

Syntax for creating a uniform O

‘in main GL code'

GLuint param = glGetUniformLocation(
shader_programme, "cis441”

)i
glUniform1f(param, 0.5);

“Get Uniform Location” means “make a new uniform”
glUniform1f: the value of the constant will be a single
float

Syntax for using a uniform O

Hversion 400
layout (location = Q) in vec3 vertex_position;

layout (location = 1) in vec3 vertex_color;
uniform float cis441;
out vec3 color;
void main() {
color = vertex_color;
// gl_Position = vec4(vertex_position, 1.0);
gl_Position = vec4(vertex_position.x,
vertex_position.y-cis441, vertex_position.z, 1.0);

J

CIs 441 Cls a4

Original New

Note: this vertex shading is not typical.
Normal vertex shader: transform points from world space to image space
This vertex shader: assume they are already in image space

Shader Overview

This picture is misleading

0 Vertex shader
called once per
vertex

0 Fragment shader
called once per
fragment

0 One triangle has 3
vertices, but may
have thousands of
fragments

0 Not one-to-onel

Y
/ Rasterizer
b\ ¢
Vertex Shade Fragment Shader
N N ~ NO frqg_color
(NO - -"—"~ (
~] \ i / N-I S T L A » N] \ ’ /
- 2 \ Code & N2 - -=-=:ms=emi =T * N2 \ Code &

A TV

~ U4

Shader Overview

One Shader’s Output Is O
Another Shader’s Input

O It is your job to arrange the output’s of one shader

to be the input’s to the next
0 Output of vertex shader is input to fragment shader

o If VAO sends in arrays that you want in the
fragment shader, then the vertex shader needs to
do work to pass them through (see next slide)

Vertex Shader =2 Fragment Shader

Hversion 400
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_color;

out vec3 color;
void main() {
color = vertex_color;
gl_Position = vec4(vertex_position, 1.0);

}

#version 400

—— in vec3 color;

out vec4 frag_color;
void main() {
frag_color = vec4(color, 1.0);

}

Project 2A ()

0 Assigned today, due in one week
(Tuesday May 11)

0 Worth 8% of your grade
0 Implementing Project 1 within OpenGL

0 5 phases
O Phase 1: install GLFW
O Phase 2: run example program
O Phase 3: modify VBO/VAO
O Phases 4 & 5: shader programs

0 Please start ASAP on Phase 1-3
0 Thursday’s lecture will be on Phase 4 & 5

Rest of This Lecture O

0 Have fun with shaders

0 Look at project 2A

RED GREEN

BLUE

