
CIS	410/510:	Project	#8	
Due	February	22,	2022	
(which	means	submitted	by	6am	on	February	23,	2022)	
Worth	8	points	toward	your	grade	
	
Assignment:	

1) Download	skeleton	code	proj8.cxx	
2) Download	data	file	noise.vtk	
3) Compile	and	run	(using	your	CMakeLists.txt	from	previous	projects)	and	

make	sure	it	runs	correctly	
	
You	will	do	a	series	of	seven	tasks	to	learn	VTK.		Each	time	you	complete	a	task,	you	
should	make	a	copy	of	your	source.		You	will	be	handing	in	your	source	code	for	
each	task.		They	should	be	named	proj8A.cxx,	proj8B.cxx,	proj8C.cxx,	...	proj8G.cxx.			
What	to	upload?		A	tarball	with	8	files:	proj8A.cxx-proj8G.cxx	+	one	screenshot	
showing	proj8F.cxx	working.	
	
What	are	the	seven	tasks?:	
	
A)		Make	the	visualization	window	be	768x768	when	the	program	is	first	invoked.	 	
B)		Add	a	contour	filter	to	the	pipeline,	with	isovalues	at	2.4	&	4.	 	
C)		Remove	the	contour	filter	and	instead	slice	by	Z=0	 	
D)		Modify	the	vtkLookupTable	so	that	it	smoothly	interpolates	from	blue	at	the	
minimum	to	red	at	the	maximum,	with	purple	in	between.	 	
E)		Modify	your	program	to	have	both	a	contour	and	a	slice	filter.	You	will	need	to	
have	two	networks.	 	
F)		Add	two	renderers.	Place	the	slice	in	the	left	renderer	and	the	contour	in	the	
right.	 	
G)		Modify	your	program	to	iterate	over	isovalues.	Start	with	1.0	and	add	0.02	all	the	
way	up	to	6	(a	total	of	250	isovalues).	Render	each	new	value.	This	will	make	an	
animation.	 	
	
Hints:	
	
First,	the	execution	model	appears	to	be	a	little	buggy,	meaning	that	it	doesn’t	
always	automatically	execute	the	filters.		I	found	I	needed	to	add	many	“Update()”	
calls	to	make	modules	update.		My	advice	is	to	call	“Update()”	whenever	you	feel	you	
have	a	filter	that	is	ready	to	execute.		(This	is	different	than	how	I	lectured.)	
	
===	8C	===		
There	is	no	module	for	slicing.	Instead,	you	use	the	module	“vtkCutter”	and	then	set	
up	a	vtkPlane	and	assign	it	as	the	vtkCutterʼs	“CutFunction”.		
	
===	8D	===		

The	vtkLookupTable	has	256	entries.	You	want	to	set	the	color	for	each	of	these	256	
entries,	manually	interpolating	from	blue	to	red.		
	
===	8E	===		
The	output	from	the	slice	and	the	output	from	the	cutter	will	each	need	to	have	its	
own	mapper	and	actor	(so	two	mappers	and	two	actors).		
	
===	8F	===		
You	will	need	two	vtkRenderers	and	to	add	them	to	the	vtkRenderWindow.	Also,	
youʼll	need	a	SetViewport	command.		
	
===	8G	===		
Never	call	vtkRenderWindowInteractor::Start(). 	
Your	program	should	just	end	after	the	250	iterations.		
I	found	that	the	camera	wasn’t	setting	itself	correctly.		Each	time	I	updated	the	
isovalue,	I	did:	
							cf->Update();	
							ren2->GetActiveCamera()->ShallowCopy(ren->GetActiveCamera());	
	
Note:	this	screenshot	refers	to	the	parts	as	1A,	1B,	etc.,	instead	of	8A,	8B,	etc.				

	

	
VTK	bug:	for	some	operating	systems,	your	8G	code	will	not	show	up.		It	should	be	
that	“vtkRenderWindow::Render()”	causes	the	window	to	appear	on	the	screen.		But	
the	bug	is	that	the	window	will	not	appear	until	
“vtkRenderWindowInteractor::Start()”	is	called.		Of	course,	I	am	telling	you	not	to	
call	Start	in	8G.	
	
Here	is	a	work-around	to	the	bug.		The	idea	is	that	you	go	ahead	and	use	
vtkRenderWindowInteractor::Start(),	but	that	you	add	a	callback.		The	callback	does	
the	part	of	the	isosurface	animation.		With	this	mode,	you	start	the	program	and	you	
see	the	slice	on	the	left.		If	you	press	'a'	at	the	keyboard,	then	my	changes	below	will	
call	your	callback,	which	can	do	the	animation.		There	is	also	some	yuckiness	with	
global	variables.	
	
	
First,	here	are	the	global	variables	I	needed.	

vtkRenderWindow *renwin = NULL;
vtkContourFilter *cf = NULL;
vtkRenderer *ren2 = NULL;
vtkRenderer *ren = NULL;

(your mileage may vary)

Be	*very*	careful	as	you	set	them	up	to	not	do	“shadowing.”		For	example,	if	your	
main	code	has	
		vtkContourFilter	*cf	=	vtkContourFilter::New();	
then	you	would	need	to	change	it	to:	
		cf	=	vtkContourFilter::New();	
The	reason	you	need	the	change	is	to	make	sure	you	don’t	have	two	variables	called	
“cf”	–	one	in	main	and	one	a	global	variable.		Further,	if	your	global	variable	does	
“shadow”	the	variable	in	main	(i.e.,	has	the	same	name),	then	the	global	variable	will	
never	be	set	and	you	will	be	working	with	a	NULL	pointer.	
	
Second,	here	is	a	function	you	need	for	the	animation:	

void Animate(vtkObject*caller, unsigned long eid, void* clientdata, void *calldata)
{
 vtkRenderWindowInteractor *iren =
 static_cast<vtkRenderWindowInteractor*>(caller);
 if (iren->GetKeySym()[0] != 'a')
 return;
 // code to animate goes here...
}

Third, I added these lines of code to main:

vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renwin);
renwin->Render();

// Here's the new code
vtkSmartPointer<vtkCallbackCommand> keypressCallback =
 vtkSmartPointer<vtkCallbackCommand>::New();
keypressCallback->SetCallback(Animate);
iren->AddObserver(vtkCommand::KeyPressEvent, keypressCallback);

iren->Start();

	

