
CIS	330:	Project	#3G	
Assigned:	May	25th,	2018	
“Due”	May	30th,	2018	
BUT:	this	is	not	submitted.		Will	be	graded	as	3H	is	graded.	
Worth	7%	of	your	grade	
	
Please	read	this	entire	prompt!	
	
Add	5	new	filters:	

1) Mirror	
2) Rotate	
3) Subtract	
4) Grayscale	
5) blue	

Add	1	new	source:	
1)	Constant	color	

Add	1	new	sink:	
	 1)	Checksum	
Also:	make	the	two	image	inputs	in	Sink	be	const	pointers.	
	
The	specifics	of	the	interfaces	for	filters,	source,	and	sink	are	specified	in	the	
main3G.C	file.		All	of	these	new	filters	should	work	within	our	existing	data	flow	
system	(Update/Execute/logging/exceptions/etc).	
	
Place	the	headers	for	all	of	these	new	modules	in	“filter.h”.		(Note	that	some	of	them	
aren’t	filters	…	that’s	OK.)	
	
==	Filter	1:	Mirror	==		
	
Mirror	performs	a	horizontal	(left	<->	right)	reflection	on	the	image.	That	is,	the	left-
most	column	of	the	input	will	be	the	right-most	column	of	the	output,	the	second-to-
left	column	of	the	input	will	be	the	second-to-right	column	of	the	output,	etc.	
	
==	Filter	2:	Rotate	==	
	
Crop	takes	a	range	of	pixels	in	width	and	a	range	of	pixels	in	height	and	extracts	the	
Rotate	performs	a	90	degree	clockwise	rotation	on	the	image.	That	is,	the	top	row	
of	the	input	will	be	the	right-most	column	of	the	output,	the	second-to-top	row	of	
the	input	will	be	the	second-to-right	column	of	the	output,	etc.	
	
If	the	input	has	width	W	and	height	H,	the	output	will	have	width	H	and	height	W.	
	
==	Filter	3:	Subtract	==	
	
Subtract	finds	the	difference	of	two	images:	input1	-	input2	
	



The	input	images	should	have	exactly	the	same	dimensions.	The	difference	is	taken		
over	each	color	channel.	No	color	channel	of	the	output	can	be	negative,	so	each		
subtraction	should	bottom	out	at	0.	As	an	example,	consider	the	red	color	channel	
of	the	output	at	pixel	(i,j):	
if	input1(i,j).r	>	input2(i,j).r		then	
					output(i,j).r	=	input1(i,j).r	-	input2(i,j).r	
else		
					0	
	
Be	careful	doing	arithmetic	with	unsigned	chars!	(See	the	note	for	CheckSum.)	
	
==	Filter	4:	Grayscale	==	
	
Grayscale	removes	the	color	from	an	image.	This	means	that	every	pixel	in	
the	output	image	has	the	same	"grayscale"	value	in	each	of	its	color	channels.	Of	
course,	different	pixels	will	have	different	grayscale	values.	The	exact	calculation	is:	
	
output(i,j)	=	input(i,j).r	/	5		+		input(i,j).g	/	2		+		input(i,j).b	/	4	
	
IMPORTANT:	Be	sure	that	you're	using	integer	division	for	this	...	your	
checksum	will	not	match	if	you	use	floating	point	division.	
	
	
==	Filter	5:	Blur	==	
	
Blur	will	"blur"	an	image.	This	means	that	a	pixel	in	the	output	image	is	a	sort	of		
average	of	its	neighbors	from	the	input	image.	As	an	example,	suppose	we	have	a	5		
by	5	image.	Here	is	the	exact	calculation	for	the	output	pixel	at	(2,3):	
output(2,3)	=	input(1,2)	/	8		+		input(2,2)	/	8		+		input(3,2)	/	8	
																			+	input(1,3)	/	8		+		input(3,3)	/	8	
																			+	input(1,4)	/	8		+		input(2,4)	/	8		+		input(3,4)	/	8	
This	calculation	should	be	performed	for	each	color	channel.	
	
Note	that	pixels	on	the	edge	of	the	image	have	a	different	number	of	neighbors.		
Rather	than	deal	with	this	using	a	different	formula,	the	pixels	on	the	edge	should		
just	be	copied	from	the	input	to	the	output.	The	above	formula	should	only	be		
applied	to	pixels	on	the	"inside"	of	the	image.	
	
IMPORTANT:	Be	sure	that	you're	using	integer	division	for	this	…	your	checksum		
will	not	match	if	you	use	floating	point	division.	Because	of	this,	dividing	each	value		
by	8	and	adding	them	up	is	different	than	adding	them	up	then	dividing	by	8.		
Implement	the	calculation	as	it's	given	above!	
	
==	Source	1:	ConstantColor	==	
	
This	takes	a	color	and	a	size.	and	produces	an	image	of	that	size	with	that	color	



	
==	Sink	1:	CheckSum	==	
	
This	sink	sums	up	the	total	value	of	the	red	channel,	the	blue	channel	and	the	green	
channel	and	outputs	it	a	file.		The	name	of	the	file	is	specified	as	a	command	line	
argument.	
	
VERY	IMPORTANT:	the	sum	is	to	be	taken	modulo	256.		So,	for	each	channel	(red,	
green,	blue),	it	will	output	a	number	between	0	and	255.	
	
NOTE:	if	you	sum	into	an	unsigned	char,	then	it	automatically	does	summing	modulo	
256.	
	
Also:	the	correct	output	for	3G	should	be	exactly:	
	
“CHECKSUM:	7,	2,	125\n”	
7	would	be	the	sum	of	the	red	values	(%	256)	
2	is	the	sum	of	the	green	values	(%256)	
125	is	the	sum	of	the	blue	values	(%256)	
	
==	const	pointers	==	
	
Your	Sink	has	two	pointers	two	images.		Assume	they	are	called	input1	and	input2.		
Their	declaration	in	Sink.h	likely	looks	like:	
	
Image	*input1;	
Image	*input2;	
	
You	should	change	them	to	be	const:	
	
const	Image	*input1;	
const	Image	*input2;	
	
Adding	the	const	is	the	easy	part	…	the	issue	is	dealing	with	any	compilation	issues.	
	
	
==	What	to	turn	in	==	
	
Nothing.		This	project	will	be	graded	as	3H	is	graded.	
	
	


