O

UNIVERSITY OF OREGON ‘ I S 3 3 O []
[]

/1717 O /7 71 17 _ 7.
/117 NI Il T N1 I I
AV VAV VA YIS A Y A A AR A AN A A R I A A A Y I
__ /1L I N, LS IN_] N N___ I T

Lecture 8: enum, structs, and unions

April 23, 2018 Hank Childs, University of Oregon

Announcements: Plan This Week (1/2)

* Hank out of town: Monday night->Thursday
night
* Brent covers Hank’s OH on Tuesday

 Wednesday class is ON.

— Brent does lab #2, which includes parts of lecture
7

 Hank does lecture on Friday

Announcements: Plan This Week (2/2)

e 2B: due today
» 2C: assigned today, due Saturday, 4/28/18
* 3A: assigned today due Tuesday, 5/1/18

— NOTE: Lecture 9 is online

— Corrections on Piazza

Outline

* Review

* Project 2B
* Enum

* Struct

* Unions

* Project 2C

UNIVERSITY OF OREGON

O

File 1/0: streams and file descriptors

 Two ways to access files:

— File descriptors:
e Lower level interface to files and devices

— Provides controls to specific devices

* Type: small integers (typically 20 total)

— Streams:
* Higher level interface to files and devices

— Provides uniform interface; easy to deal with, but less
powerful

e Type: FILE *

(,
Streams are more portable, and more accessible
to beginning programmers. (| teach streams here.)

O

UNIVERSITY OF OREGON

File 1/O

* Process for reading or writing
— Open a file
 Tells Unix you intend to do file I/O

* Function returns a “FILE *
— Used to identify the file from this point forward

* Checks to see if permissions are valid
— Read from the file / write to the file
— Close the file

Opening a file

* FILE *handle = fopen(filename, mode);

The argument mode points to a string beginning with one of the following
sequences (Additional characters may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning

of the file.

““r+'' Open for reading and writing. The stream is positioned at the begin-
ning of the file.

Example: FILE *h = fopen(“/tmp/330”, “wb”);

exist, otherwise it is truncated. The stream is positioned at the
beginning of the file.

Close when you are done with “fclose”

“Yat

Open for reading and writing. The file is created if it does not
exist. The stream is positioned at the end of the file. Subsequent
writes to the file will always end up at the then current end of file,
irrespective of any intervening fseek(3) or similar.

Note: #include <stdio.h>

UNIVERSITY OF OREGON

O

Unix and Windows difference

* Unix:
— “\n”: goes to next line, and sets cursor to far left
* Windows:

— “\n”: goes to next line (cursor does not go to left)
— “A\m”: sets cursor to far left

e Text files written in Windows often don’t run
well on Unix, and vice-versa

— There are more differences than just newlines

vi: “set ff=unix” solves this

UNIVERSITY OF OREGON

O

Example

CO2LNOOGFD58:330 hank$ cat rw.c
#include <stdio.h>
#include <string.h>

int main(int argc, char xargvl[])
{
char xhello = "hello world: file edition\n";
FILE xf = fopen("330", "w");
fwrite(hello, sizeof(char), strlen(hello), f);
fclose(f);
¥
CO2LNOOGFD58:330 hank$ gcc rw.c
CO2LNOOGFD58:330 hank$./a.out
CA2LNOOGFD58:330 hank$ cat 330
hello world: file edition

#include <stdio.h>
#include <printf.h>

#include <stdlib.h>

int main(int argc, char *argvl[])

{

FILE *xf_in, *f_out;
int buff_size;
char xbuffer;

if (argc != 3)

{
printf("Usage: %s <filel> <file2>\n", argv[0]);
exit (EXIT_FAILURE);

}

f_in = fopen(argvI[1l, "r");
fseek(f_in, @, SEEK_END);
buff_size = ftell(f_in);
fseek(f_in, @, SEEK_SET);

buffer = malloc(buff_size);
fread(buffer, sizeof(char), buff_size, f_in);

printf("Copying %d bytes from %s to %s\n", buff_size, argv[1], argv[2]);

f_out = fopen(argv([2], "w");
fwrite(buffer, sizeof(char), buff_size, f_out);

fclose(f_in);
fclose(f_out);

return 0;

Printing to terminal and
reading from terminal

* |n Unix, printing to terminal and reading from
terminal is done with file I/O

* Keyboard and screen are files in the file
system!
— (at least they were ...)

Standard Streams

* Wikipedia: “preconnected input and output
channels between a computer program and
its environment (typically a text terminal)
when it begins execution”

 Three standard streams:
— stdin (standard input)
— stdout (standard output)

— stderr (standard error)

—_—
What mechanisms in C allow you to access standard streams?

printf

* Print to stdout
— printf(“hello world\n”);
— printf(“Integers are like this %d\n”, 6);
— printf(“Two floats: %f, %f”, 3.5, 7.0);

fprintf

e Just like printf, but to streams

 fprintf(stdout, “helloworld\n”);
— = same as printf

* fprintf(stderr, “helloworld\n”);

— prints to “standard error”
o fprintf(f _out, “helloworld\n”);
— prints to the file pointed to by FILE *f out.

UNIVERSITY OF OREGON

O

buffering and printf

* Important: printf is buffered
* So:
— printf puts string in buffer

— other things happen
— buffer is eventually printed

 But what about a crash?
— printf puts string in buffer

— other things happen ... including a crash
buffer is never printed!

—
Solutions: (1) fflush, (2) fprintf(stderr) always flushed

Outline

* Review

* Project 2B
* Enum

* Struct

* Unions

* Project 2C

O

UNIVERSITY OF OREGON

Project 2B

Worth 4% of your grade

Assignment: Write a program that reads the file “2B_binary_file”. This file contains a
two-dimensional array of 100 integers (indices 0 to 99); that is, 10x10. You are to
read in the 5x5 top left corner of the array. That is, the values at indices 0-4, 10-14,
20-24, 30-34, and 40-44. You may only read 25 integers total. Do not read all 100
and throw some out. You will then write out the new 5x5 array to the output file,
which is one of the command line arguments. Please write one integer per line (25
lines total). You should be able to “cat” the file afterwards and see the values.

Use only C file stream functions for file reading and writing in this project: fopen,
fread, fseek, fprintf, fclose (consider ftell for debugging). Each of these functions
needs a “FILE *” pointer as input. Your program will be checked for good

programming practices. (Close your file streams, use memory correctly, variable
initialization, etc.)

Also, add support for command line arguments (argc and argv) in the main function.

Your program should run as:
./proj2B <input_name> <output_name>

Outline

* Review

* Project 2B
* Enum

* Struct

* Unions

* Project 2C

O

UNIVERSITY OF OREGON

Enums

* Enums make your own type
— Type is “list of key words”

 Enums are useful for code clarity

— Always possible to do the same thing with
Integers

e Be careful with enums

— ... you can “contaminate” a bunch of useful words

O

UNIVERSITY OF OREGON

enum example

C keyword —*
“enum” —
means enum
definition is
coming

enum StudentType

{
HighSchool,
Freshman, &————This enum
Sophomore, contains 6
g:z;g;: different
GradStL’Jdent student
}s types

\

semi-colon!!!

UNIVERSITY OF OREGON

O

enum example

int AverageAge(enum StudentType st)
{
if (st == HighSchool)
return 16;
if (st == Freshman)
return 18;
if (st == Sophomore)
return 19;
if (st == Junior)
return 21;
if (st == Senior)
return 23;
if (st == GradStudent)
return 26;

return -1;

UNIVERSITY OF OREGON

enums translate to integers ... and you
can set their range

128-223-223-72-wireless:330 hank$ cat enum2.c
#include <stdio.h>

O

enum StudentType

{
HighSchool = 105,
Freshman,
Sophomore,
Junior,
Senior,
GradStudent

b

int main()

{

}

128-223-223-72-wireless:330 hank$ gcc enum2.c
128-223-223-72-wireless:330 hank$./a.out
HighSchool = 105, GradStudent = 110

printf("HighSchool = %d, GradStudent = %d\n", HighSchool, GradStudent);

UNIVERSITY OF OREGON

O

But enums can be easier to maintain
than integers

enum StudentType

{
HighSchool,
Freshman,
Sophomore,
Junior,
Senior,
PostBacc,
GradStudent

};

[If you had used integers, then this is a bigger change and

likely to lead to bugs.

{
if

if
if
if

if

(St ==
return
(st ==
return
(st =
return
(St ==
return
(st ==
return
(st =
return

int AverageAge(enum StudentType st)

HighSchool)
16;
Freshman)
18;
Sophomore)
19;

Junior)

21;

Senior)

23;

PostBac)

24;
GradStudent)
26;

Outline

* Grade 4A
* Review

* Project 2B
* Enum

* Struct

* Unions

* Project 2C

Data types

* float

* double

* Int

e char

* unsigned char

—_—
All of these are simple data types

Structs: a complex data type

e Structs: mechanism provided by C
programming language to define a group of
variables

— Variables must be grouped together in contiguous
memory

* Also makes accessing variables easier ... they
are all part of the same grouping (the struct)

O

UNIVERSITY OF OREGON

C keyword —*
“struct” —

means struct
definition is
coming

o

struct syntax

struct Ray
{
double origin[3]; €—————This struct
double direction[3]; contains 6
b S semi-colon!!! doubles,

int main()

{
L

. accesses data members for a struct

meaning it is
48 bytes

struct Ray r; €————Declaring an
.origin[@] instance

.origin[1]
.origin[2]
.direction[0]
.direction[1]
.direction[2]

T

0
0
0

|| || || -e wE wa
[IO Y]
- wn

-

2 I B B Bl B |

O

UNIVERSITY OF OREGON

Nested structs
struct Origin

{ int main()

double originX; {
double originY; struct Ray r;

double originZ; r.ori.originX = 0;

}: r.ori.originY = 0;

r.ori.originZ = 0,

struct Direction r.dir.directionX = 0;

{ r.dir.directionY = 0;
double directionX; r.dir.directionZ = 0;
double directionY; //7
double directionZ;

b accesses dir accesses directionZ

struct Ray part of Ray part of Direction

{ (part of Ray)

struct Origin ori;
struct Direction dir;

};

UNIVERSITY OF OREGON

O

typedef

e typedef: tell compiler you want to define a

new type

struct Ray typedef struct

{ 1
double origin[3]; double origin[3];
double direction[3]; double direction[3];

b } Ray;

int main() int main()

{ {
struct Ray r: Ray r;

" r.origin[@] = 0; r.origin[0] = 0;
r.origin[1l] = 0; r.origin[1l] = 0;
r.origin[2] = 0; r.origin[2] = 0;
r.direction[0] = 1; r. d1rect10n[0] = 1;
r.directjentl =0 -~ direcectinnl s 0;
r.direct 9;

saves you from having to type “struct”
every time you declare a struct.

O

UNIVERSITY OF OREGON

Other uses for typedef

* Declare a new type for code clarity

— typedef int MilesPerHour;
* Makes a new type called MilesPerHour.
* MilesPerHour works exactly like an int.

 Also used for enums & unions

— same trick as for structs ... typedef saves you a
word

Outline

* Grade 4A
* Review

* Project 2B
* Enum

* Struct

* Union

* Project 2C

UNIVERSITY OF OREGON

O

Unions

* Union: special data type

— store many different memory types in one
memory location

typedef union

{
float x; When dealing with this union, you
int : . .
éﬂar 32’[4]; can treat it as a float, as an int, or as
} cis330_union; 4 characters.

This data structure has 4 bytes

UNIVERSITY OF OREGON

O

Unions

128-223-223-72-wireless:330 hank$ cat union.c
#include <stdio.h>

typedef union
float x;

{
int Y;

char zI[4]: Why are unions useful?
} cis330_union;

int main()

{
cis330_union u;
u.Xx = 3.5; /% u.x 1is 3.5, u.y and u.z are not meaningful *x/
u.y = 3; /* u.y 1is 3, now u.X and u.z are not meaningful x/
printf("As u.x = %f, as u.y = %d\n", u.x, u.y);

}

128-223-223-72-wireless:330 hank$ gcc union.c
128-223-223-72-wireless:330 hank$./a.out
As u.x = 0.000000, as u.y = 3

UNIVERSITY OF OREGON

O

Unions Example

typedef struct

{
int firstNum;
char letters[3];
int endNums[3];

} CA_LICENSE_PLATE;

typedef struct

{
char letters[3];
int nums[3];

} OR_LICENSE_PLATE;

typedef struct

{
int nums[6];
} WY_LICENSE_PLATE;

typedef union

{
CA_LICENSE_PLATE ca; K¢ 9 ! &
OR_LICENSE_PLATE or; o VP W
WY_LICENSE_PLATE wy; enaarmsihe . S op

} LicensePlate;

A Nl
3 ‘ VR S

typedef enum

UNIVERSITY OF OREGON

O

{
CA,
Unions Example | &
} US_State;

typedef struct

{
int firstNum; typedef struct

char letters[3]; {]
int endNums[3]; char xcarMake;
} CA_LICENSE_PLATE; char xcarModel;
US_State state;
typedef struct LicensePlate 1p;
{ } CarInfo;
char Tletters[3]; '
int nums[3]; int main()
} OR_LICENSE_PLATE; {

CarInfo c;
.carMake = "Chevrolet";
.carModel = "Camaro";
.state = OR;

typedef struct

{
int nums[6];
} WY_LICENSE_PLATE;

.lp.or.letters[0] = 'X"';
typedef union .or.letters[1] = 'S’;
{ .lp.or.letters[2] = 'Z"';

CA_LICENSE_PLATE ca;
OR_LICENSE_PLATE or;
WY_LICENSE_PLATE wy;
} LicensePlate;

.lp.or.nums[0]
. lp.or.nums[1]
.lp.or.nums[2]

OO0 000O0O 00
'—l
©

0
7;
5

Outline

* Grade 4A
* Review

* Project 2B
* Enum

* Struct

* Unions

* Project 2C

UNIVERSITY OF OREGON

O

Project 2C

Worth 4% of your grade

Assignment: You will implement 3 structs and 9 functions. The prototypes for the
functions are located in the file prototypes.h (available on the website).

The three structs are Rectangle, Circle, and Triangle, and are described below.
The 3 structs refer to 3 different shapes: Triangle, Circle, and Rectangle.

For each shape, there are 3 functions: Initialize, GetArea, and GetBoundingBox.
You must implement 9 functions total (3*3).

The prototypes for these 9 functions are available in the file prototypes.h

There is also a driver program, and correct output for the driver program.

UNIVERSITY OF OREGON

O

Project 3A

Worth 4% of your grade

Please read this entire prompt!

Assignment: You will begin manipulation of images

1) Write a struct to store an image.

2) Write a function called ReadImage that reads an image from a file

3) Write a function called YellowDiagonal, which puts a yellow diagonal across
an image.

4) Write a function called WriteImage that writes an image to a file.

Note: I gave you a file (3A_c.c) to start with that has interfaces for the functions.

Note: your program should be run as:
./proj3A <input image file> <output image file>

Function Pointers

UNIVERSITY OF OREGON

O

Function Pointers

* |dea:
— You have a pointer to a function
— This pointer can change based on circumstance

— When you call the function pointer, it is like calling
a known function

UNIVERSITY OF OREGON

O

Function Pointer Example

128-223-223-72-wireless:cli hank$ cat function_ptr.c
#include <stdio.h>
int doubler(int x) { return 2xx; }
int tripler(int x) { return 3xx; }
int main()
{
int (kmultiplier) (int);
multiplier = doubler;
printf("Multiplier of 3 = %d\n", multiplier(3));
multiplier = tripler;
printf("Multiplier of 3 = %d\n", multiplier(3));

Iy
128-223-223-72-wireless:cli hank$ gcc function_ptr.c

128-223-223-72-wireless:cli hank$./a.out
Multiplier of 3 =
Multiplier of 3

6
9

UNIVERSITY OF OREGON

O

Function Pointers vs Conditionals

128-223-223-72-wireless:cli hank$ cat function_ptr2.c #include <stdio.h>
#include <stdio.h> int doubler(int x) { return 2xx; }
int doubler(int x) { return 2xx; } int tripler(int x) { return 3xx; }
int tripler(int x) { return 3xx; } int main()
int main() {
{ int val;
int (xmultiplier) (int);
int condition = 1; if (condition)
val = doubler(3);
if (condition) else
multiplier = doubler; val = tripler(3);
else
multiplier = doubler; printf("Multiplier of 3 = %d\n", val);
}
printf("Multiplier of 3 = %d\n", multiplier(3));
}

What are the pros and cons of each approach?

UNIVERSITY OF OREGON

O

Function Pointer Example #2

128-223-223-72-wireless:cli hank$ cat array_fp.c
#include <stdio.h>

void doubler(int xX) { X[0]lx=2; X[1]%x=2; };

void tripler(int xX) { X[0]%=3; X[11x=3; };

int main() F t int Part of f t [t
unction pointer art or runcuaon signature
{ / p / g

void (kmultiplier) (int x);
int A[2] =1{ 2, 3 };
multiplier = doubler;
multiplier(A);
printf("Multiplier of 3
multiplier = tripler;
multiplier(A);
printf("Multiplier of 3 = %d, %d\n", A[Q], A[1l]);

%d, %d\n", A[0], Al[1]);

+
128-223-223-72-wireless:cli hank$ gcc array_fp.c

128-223-223-72—-wireless:cli hank$./a.out

| Don't be scared of extra ‘*’s ... they just come about because of

pointers in the arguments or return values.

Simple-to-Exotic Function Pointer
Declarations

void (*foo)(void);
void (*foo)(int **, char **%*);
char ** (*foo)(int **, void (*)(int));

These sometimes come up on interviews.

UNIVERSITY OF OREGON

O

Callbacks

e Callbacks: function that is called when a
condition is met

— Commonly used when interfacing between
modules that were developed separately.

— ... libraries use callbacks and developers who use
the libraries “register” callbacks.

O CHIVERSHTY OF ORECON 128-223-223-72-wireless:callback hank$ cat mylog.h
void RegisterErrorHandler(void (xeh)(char x));

double mylogarithm(double x);
Callback

128-223-223-72-wireless:callback hank$ cat mylog.c
#include <mylog.h>

example

#include <stdlib.h>
#include <math.h>

/* NULL is an invalid memory location.

* Useful for setting to something known, rather than
leaving uninitialized */

void (xerror_handler)(char %) = NULL;

void RegisterErrorHandler(void (xeh)(char x))

{
error_handler = eh;
}
void Error(char xmsg)
{
if (error_handler != NULL)
error_handler(msg);
}
double mylogarithm(double x)
{
if (x <= 0)
{
char msg[1024];
sprintf(msg, "Logarithm of a negative number: %f !!", x);
Error(msg);
return 9;

}

return log(x);

128-223-223-72-wireless:callback hank$ cat program.c
#include <mylog.h>
#include <stdio.h>

Ca I I baCk |FILE *F1 = NULL;

'void HanksErrorHandler(char *msg)

example C it k= o

UNIVERSITY OF OREGON

O

{
F1 = fopen("error", "w");
}
fprintf(F1, "Error: %s\n", msg);
}
int main()
{
RegisterErrorHandler(HanksErrorHandler);
mylogarithm(3);
mylogarithm(Q);
mylogarithm(-2);
mylogarithm(5);
if (F1 !'= NULL)
fclose(F1);
}
128-223-223-72-wireless:callback hank$
128-223-223-72-wireless:callback hank$./program
128-223-223-72-wireless:callback hank$
128-223-223-72-wireless:callback hank$ cat error

Error: Logarithm of a negative number: 0.000000 '!
Error: Logarithm of a negative number: -2.000000 !'!
128-223-223-72-wireless:callback hank$ l

Function Pointers

 We are going to use function pointers to
accomplish “sub-typing” in Project 2D.

Subtyping

O

UNIVERSITY OF OREGON

Subtyping

* Type: a data type (int, float, structs)
* Subtype / supertype:

— Supertype: the abstraction of a type
* (not specific)

— Subtype: a concrete implementation of the
supertype
* (specific)

The fancy term for this is “subtype polymorphism”

Subtyping: example

e Supertype: Shape
* Subtypes:

— Circle

— Rectangle

— Triangle

Subtyping works via interfaces

* Must define an interface for supertype/
subtypes

— Interfaces are the functions you can call on the
supertype/subtypes

* The set of functions is fixed

— Every subtype must define all functions

UNIVERSITY OF OREGON

O

Subtyping

e | write my routines to the supertype interface

* All subtypes can automatically use this code

— Don’t have to modify code when new supertypes are
added

* Example:
— | wrote code about Shapes.

— | don’t care about details of subtypes (Triangle,
Rectangle, Circle)

— When new subtypes are added (Square), my code
doesn’t change

More Unix

UNIVERSITY OF OREGON

O

ll.” and ll..”

e Unix convention:

o

— “.” 1 the current directory

o ”n

— “..” 1 the parent directory

Quiz: you in /path/to/dir
and issue “cd ./.././]..”.
Where do you end up?

‘ Answer: “/path”

O

UNIVERSITY OF OREGON

pwd and SPWD

pwd: unix command that
returns the “present working
directory”

SPWD : environment variable
that contains the present
working directory

SOLDPWD : environment
variable that contains the
previous present working
directory

“-” : shortcut for the previous
PWD

CO2LNOOGFD58:~ hank$ echo $PWD
/Users/hank

CO2LNOOGFD58:~ hank$ pwd
/Users/hank

CO2LNOOGFD58:~ hank$ cd 330
CO2LNOOGFD58:330 hank$ echo $0OLDPWD
/Users/hank

CO2LNOOGFD58:330 hank$ cd -
/Users/hank

CO2LNOOGFD58:~ hank$ echo $0LDPWD
/Users/hank/330

CO2LNOOGFD58:~ hank$ [

UNIVERSITY OF OREGON

O

PATH environment variable

128-223-223-72-wireless:Documents hank$ echo $PATH
/opt/local/bin:/opt/local/sbin:/usr/bin:/bin:/usr/sbin:/sbin:/us
r/local/bin:/opt/X11/bin:/usr/texbin
128-223-223-72-wireless:Documents hank$ echo $PATH | tr : '\n'
/opt/local/bin
/opt/local/sbin
/usr/bin

/bin “tr”: Unix command for replacing

;utS)'_”/Sbin characters (translating characters).
sSD1n

/usr/local/bin
/opt/X11/bin
/usr/texbin
128-223-223-72-wireless:Documents hank$

When the shell wants to invoke a
command, it searches for the
command in the path

UNIVERSITY OF OREGON

O

which

CO2LNOOGFD58:330 hank$ which 1s

/bin/1s

CO2LNOOGFD58:330 hank$ which tr
/usr/bin/tr

CO2LNOOGFD58:330 hank$ which bad_command
CO2LNOOGFD58:330 hank$ echo $?

1

which: tells you the directory the
shell is finding a command in.

UNIVERSITY OF OREGON

O

Invoking programs in current directory

CO2LNOOGFD58:330 hank$ echo "echo hello world" > my_script
CO2LNOOGFD58:330 hank$ chmod 755 my_script
CO2LNOOGFD58:330 hank$ my_script

—bash: my_script: command not found

CO2LNOOGFD58:330 hank$./my_script

hello world

shell works with ./prog_name since
it views this as a path. Hence SPATH
is ignored.

UNIVERSITY OF OREGON

O

Invoking programs in current directory

CO2LNOOGFD58:330 hank$ echo "echo hello world" > my_script
CO2LNOOGFD58:330 hank$ chmod 755 my_script
CO2LNOOGFD58:330 hank$ my_script

—bash: my_script: command not found

CO2LNOOGFD58:330 hank$./my_script

hello world

CO2LNOOGFD58:330 hank$ export PATH=$PATH:.
CO2LNOOGFD58:330 hank$ my_script

hello world

CO2LNOOGFD58:330 hank$ |

UNIVERSITY OF OREGON

O

Trojan Horse Attack

e export PATH=.:SPATH
— why is this a terrible idea?

CO2LNOOGFD58:330 hank$ echo "rm -Rf ~" > 1s
CO2LNOOGFD58:330 hank$ export PATH=.:$PATH
CO2LNOOGFD58:330 hank$ chmod 755 1s
CO2LNOOGFD58:330 hank$ 1s # this would be bad...

O

UNIVERSITY OF OREGON

Wild Cards

« “* (asterisk) serves as a wild card that does
pattern matching

CO2LNOOGFD58:330 hank$ 1ls *.c

330cp.cC heap_stack.c struct3.c
copy.cC purify.c struct4.c
copy2.cC recursive.c t.cC
doubler.c rw.C t2.c
doubler_example.c scope.cC typedef.c
enum. C stack.c union.c
enum2.c struct.c union2.c
heap.cC ~struct2.c

O

UNIVERSITY OF OREGON

Wild Cards

* You can use multiple asterisks for complex
patterns

CO2LNOOGFD58:~ hank$ ls -1 x/%*.C
330/binary.C

330/c1s330.C
Downloads/avtConnComponentsExpression.C

UNIVERSITY OF OREGON

O

if / then / else / fi

e Advanced constructs:

CO2LNOOGFD58:~ hank$ cat script
export X=hank
if [[$X == "childs" 1] ; then
echo "matches"
else
echo "doesn't match"
fi
CO2LNOOGFD58:~ hank$./script
doesn't match

UNIVERSITY OF OREGON

O

for / do / done

CO2LNOOGFD58:330 hank$ cat script
for i in sx.c ; do
echo $1i
wc -1 $1
done
CO2LNOOGFD58:330 hank$./script
scope.cC
8 scope.cC
stack.c
18 stack.c
struct.c
16 struct.c
struct2.c
19 struct2.c
struct3.c
33 struct3.c
struct4.c
16 structd.c
C02LNOOGFD58:330 hank$ |

-f and -d

e -f:does a file exist?
* -d: does a directory exist?

example:
if [[!-dinclude]]; then mkdir include ; fi

O

UNIVERSITY OF OREGON

Why are Unions useful?

* Allows you to represent multiple data types
simultaneously

— But only if you know you want exactly one of
them

* Benefit is space efficiency, which leads to
performance efficiency

Unions are also useful for abstracting type.
We will re-visit this when we talk about C++’s
templates.

Bonus Material

UNIVERSITY OF OREGON

O

Problem with C...

CO2LNOOGFD58:330 hank$ cat doubler.c

float doubler(float f) { return 2xf; }
CA2LNOOGFD58:330 hank$ gcc —c doubler.c
CO2LNOOGFD58:330 hank$ cat doubler_example.c
#include <stdio.h>

int doubler(int);

int main()

{

}
CO2LNOOGFD58:330 hank$ gcc —c doubler_example.c

CA2LNOOGFD58:330 hank$ gcc —o doubler_example doubler.o doubler_example.o
CO2LNOOGFD58:330 hank$./doubler_example
Doubler of 10 is 2

printf("Doubler of 10 is %d\n", doubler(10));

Problem with C...

CO2LNOOGFD58:330 hank$ nm doubler.o
0000000000000048 s EH_frame0
0000000000000000 T _doubler =
0000000000000060 S _doubler.eh

CO2LNOOGFD58:330 hank$ nm doubler

doubler.c doubler_example doubler_example.o
doubler.o doubler_example.c doubler_user.o
CO2LNOOGFD58:330 hank$ nm doubler_example.o
0000000000000068 s EH_framed

0000000000000032 s L_.str

U _doubler =
0000000000000000 T _main
0000000000000080 S main.eh

U _printf

‘ No checking of type...

UNIVERSITY OF OREGON

O

Problem is fixed with C++...

CO2LNOOGFD58:330 hank$ cat doubler.c

float doubler(float f) { return 2xf; }

CO2LNOOGFD58:330 hank$ g++ —c doubler.c

clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated
CO2LNOOGFD58:330 hank$ cat doubler_example.c

#include <stdio.h>

int doubler(int);

int main()

{

}
CO2LNOOGFD58:330 hank$ g++ —c doubler_example.c
clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated
CO2LNOOGFD58:330 hank$ g++ -0 doubler_example doubler_example.o doubler.o
Undefined symbols for architecture x86_64:

"doubler(int)", referenced from:

_main in doubler_example.o

1d: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
CO2LN@OGFD58:330 hank$ |

printf("Doubler of 10 is %d\n", doubler(10));

O

UNIVERSITY OF OREGON

Problem is fixed with C++...

CO2LNOOGFD58:330
0000000000000048
0000000000000000
0000000000000060
CO2LNOOGFD58:330
0000000000000068
0000000000000032

0000000000000000
0000000000000080

C02LNOOGFD58: 330

hank$ nm double
s EH_frame@
T _ Z7doublerf

r-0

Pl
«

S __ Z7doublerf.eh

hank$ nm double
s EH_frame@

s L_.str

U __ Z7doubleri <
T _main

S _main.eh

U _printf

hank$ [

r_example.o

CA?21 NAAGFD58:330
0000000000000048
0000000000000000
0000000000000060
C02LNOOGFD58:330
doubler.c

doubler.o

CO2LNOOGFD58:330
0000000000000068
0000000000000032

0000000000000000
0000000000000080

hank$ nm doubler.o

s EH_frame®

T _doubler

S _doubler.eh

hank$ nm doubler
doubler_example C
doubler_example.c ¢

hank$ nm doubler_examg

s EH_frame®

s L_.str

U _doubler

T _main

S _main.eh

U _printf

O

UNIVERSITY OF OREGON

Mangling

 Mangling refers to combing information about
the return type and arguments and
“mangling” it with function name.

— Way of ensuring that you don’t mix up functions.
e Causes problems with compiler mismatches

— C++ compilers haven’t standardized.

— Can’t take library from icpc and combine it
with g++.

UNIVERSITY OF OREGON

C++ will let you overload functions
with different types

O

CO2LNOOGFD58:330 hank$ cat t.c

float doubler(float f) { return 2xf; }

int doubler(int f) { return 2xf; }
CO2LNOOGFD58:330 hank$ gcc —-c t.c

t.c:2:5: error: conflicting types for 'doubler’
int doubler(int f) { return 2xf; }

t.c:1:7: note: previous definition is here
float doubler(float f) { return 2xf; }

1 error generated.
CO2LNOOGFD58:330 hank$ g++ —c t.C
CO2LNOOGFD58:330 hank$ |

UNIVERSITY OF OREGON

C++ also gives you access to mangling
via “namespaces”

CO2LNOOGFD58:330 hank$ cat cis330.C
#include <stdio.h>

O

namespace CIS330 <

{
int GetNumberOfStudents(void) { return 56; };
}
namespace CIS610
{
int GetNumberOfStudents(void) { return 9; };
}
int main()
{
printf("Number of students in 330 is %d, but in 610 was %d\n",
—— (CIS330::GetNumber0fStudents(),
CIS610: :GetNumberOfStudents());
}

CO2LNOOGFD58:330 hank$ g++ cis330.C
CO2LNOOGFD58:330 hank$./a.out

Functions or variables within a namespace are accessed with “::”

UNIVERSITY OF OREGON

C++ also gives you access to mangling
via “namespaces”

CO2LNOOGFD58:330 hank$ cat cis330.C

O

The “using” keyword makes all functions and variables from a

“w,.n

namespace available without needing “::”.

And you can still access other namespaces.

namespace CIS610
{

by

int GetNumberOfStudents(void) { return 9; };

using namespace CIS330; *

int main()
{

printf("Number of students in 330 is %d, but in 610 was %d\n",

=t GetNumberOfStudents(),
CIS610: :GetNumber0fStudents());

}
CO2LNOOGFD58:330 hank$ g++ cis330.C
CO2LNOOGFD58:330 hank$./a.out
Number of students in 330 is 56, but in 610 was 9
CO2LNOOGFD58:330 hank$ |

UNIVERSITY OF OREGON

O

Backgrounding

e “&”:tell shell to run a job in the background

— Background means that the shell acts as normal,
but the command you invoke is running at the
same time.

e “sleep 60” vs “sleep 60 &”

When would backgrounding be useful?

UNIVERSITY OF OREGON

O

Suspending Jobs

* You can suspend a job that is running
Press “Ctrl-Z2”

* The OS will then stop job from running and not
schedule it to run.

* You can then:

— make the job run in the background.
* Type “bg”
— make the job run in the foreground.
* Type “fg”
— like you never suspended it at all!!

Web pages

e ssh —| <user name> ix.cs.uoregon.edu
* cd public_html

e put something in index.html

* = it will show up as

http://ix.cs.uoregon.edu/~<username>

UNIVERSITY OF OREGON

O

Web pages

* You can also exchange files this way

— scp file.pdf <username>@ix.cs.uoregon.edu:~/
public_html

— point people to http://ix.cs.uoregon.edu/
~<username>/file.pdf

Note that ~/public_html/dirl shows up as
http://ix.cs.uoregon.edu/~<username>/dirl

(“~/dirl” is not accessible via web)

