0 UNIVERSITY OF OREGON ‘ I S 3 3 o ([
[

/177) /1l
ARV R VY Y VY Y Y Y VA Y Y
AV VAV VA A SR I A Y A A AV Y Y A A A R Y A A A I
___ /I I N ST IN_ NI NI T

Lecture 7: file /O, more Unix

April 18™, 2018 Hank Childs, University of Oregon

UNIVERSITY OF OREGON

O

Announcements

* Projects
— 4A due IN CLASS Friday (no late)
— 2B assighed today, due Monday
— 3A, 2C to be assigned soon

 Next week:
— Lecture Monday and Friday
— Lab Wednesday

— Also, will be a YouTube short lecture

* (We are getting ahead of schedule ... trying hard to prevent
work from this class to be backloaded)

Outline

* Review

* Filel/O

* Project 2B
* Redirection

* Pipes

Outline

* Review

* Filel/O

* Project 2B
* Redirection

* Pipes

UNIVERSITY OF OREGON

O

Makefile example: multiplier lib

® OO (] code — bash — 80x26

CO2LNOOGFD58:code hank$ cat Makefile

lib: doubler.o tripler.o
ar r libmultiplier.a doubler.o tripler.o
cp libmultiplier.a ~/multiplier/1lib
cp multiplier.h ~/multiplier/include

doubler.o: doubler.c
gcc —-c doubler.c

tripler.o: tripler.c

gcc —c tripler.c
CO2LNOOGFD58: code hank$
CO2LNOOGFD58: code hank$
CO2LNOOGFD58: code hank$ make
ar r libmultiplier.a doubler.o tripler.o
cp libmultiplier.a ~/multiplier/1lib
cp multiplier.h ~/multiplier/include
CO2LNOOGFD58: code hank$
CO2LNOOGFD58:code hank$ touch doubler.c
CO2LNOOGFD58: code hank$ make
gcc —c doubler.c
ar r libmultiplier.a doubler.o tripler.o
cp libmultiplier.a ~/multiplier/lib
cp multiplier.h ~/multiplier/include
CO2LN@OGFD58: code hank$ [

Unix command: tar

e tar cvf 330.tar filel file2 file3
— puts 3 files (filel, file2, file3) into a new file called 330.tar

* scp 330.tar @ix:~™
e ssh ix
 tar xvf 330.tar
* |s
filel file2 file

UNIVERSITY OF OREGON

O

Memory Errors

* Array bounds read
int main()

{
int var;
int arr[3] ={ 0, 1, 2 };
var=arr([3];

}

* Array bounds write
int main()

{

int var = 2;
int arr[3]:

arr[3]=var;
¥

UNIVERSITY OF OREGON

O

Memory Errors

* Free memory read / free memory write

int main()
{
int xvar = malloc(sizeof(int)%*2);
var[0] = 0;
var[l] = 2;
free(var);
var[0] = varl1l];

‘ Vocabulary: “dangling pointer”: pointer that points to memory

that has already been freed.

Memory Errors

* Freeing unallocated memory

int main()

{
int xvar = malloc(sizeof(int)*2);
var[0] = 0;
var[l] = 2;
free(var);
free(var);
¥

Memory Errors

* Freeing non-heap memory

int main()

{
int var[2]
var[0] = 0;
var[l] = 2;

free(var);

UNIVERSITY OF OREGON

O

Memory Errors

* NULL pointer read / write
int main()

{
char xstr = NULL;

printf(str);
str[@] = 'H';
}
e NULL is never a valid location to read from or
write to, and accessing them results in a

“segmentation fault”
— remember those memory segments?

Memory Errors

* Uninitialized memory read

int main()

{
int *arr = malloc(sizeof(int)*10);
int V2=arr[3]:

|~

NEW: IPR, IPW

e int *X = OxDEADBEEF:
* intY = *X;

e what error code fits?

* | missed two:
— Invalid Pointer Read (IPR)
— Invalid Pointer Writer (IPW)

UNIVERSITY OF OREGON

O

Memory error in action

fawcett:error childs$ cat t.c
#include <stdio.h>

int main()

{
int %X = NULL;
printf("X is %d\n", *X);

}

fawcett:error childs$ gcc t.c
fawcett:error childs$%$./a.out
Segmentation fault
fawcett:error childss J

UNIVERSITY OF OREGON

O

Project 4A

* Posted now
* You will practice debugging & using a debugger

— There are 3 programs you need to debug

* In this case, “debug” means identify the bug
— Does not mean fix the bug

e Can use gdb or lldb
* May want to run on ix

* Worksheet due in class Friday

e P3.c:4 errors

Outline

* Review

* Filel/O

* Project 2B
* Redirection

* Pipes

O

UNIVERSITY OF OREGON

File I/O: streams and file descriptors

* Two ways to access files:
— File descriptors:

* Lower level interface to files and devices
— Provides controls to specific devices

* Type: small integers (typically 20 total)

— Streams:
* Higher level interface to files and devices

— Provides uniform interface; easy to deal with, but less
powerful

e Type: FILE *

(,
Streams are more portable, and more accessible
to beginning programmers. (I teach streams here.)

UNIVERSITY OF OREGON

O

File 1/0O

* Process for reading or writing

— Open a file
* Tells Unix you intend to do file I/O

* Function returns a “FILE *
— Used to identify the file from this point forward

* Checks to see if permissions are valid
— Read from the file / write to the file

— Close the file

Opening a file

* FILE *handle = fopen(filename, mode);

The argument mode points to a string beginning with one of the following
sequences (Additional characters may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning

of the file.

““r+'' Open for reading and writing. The stream is positioned at the begin-
ning of the file.

Example: FILE *h = fopen(“/tmp/330”, “wb”);

exist, otherwise it is truncated. The stream is positioned at the
beginning of the file.

Close when you are done with “fclose”

“Yat

Open for reading and writing. The file is created if it does not
exist. The stream is positioned at the end of the file. Subsequent
writes to the file will always end up at the then current end of file,
irrespective of any intervening fseek(3) or similar.

Note: #include <stdio.h>

Reading / Writing

® 00 ' _ Promotion — less — 98x35
FREAD(3) BSD Library Functions Manual FREAD(3)
NAME
fread, fwrite —— binary stream input/output
| LIBRARY

Standard C Library (libc, -1c)

| SYNOPSIS
#include <stdio.h>

size t
fread(void *restrict ptr, size t size, size t nitems, FILE xrestrict stream);

size t
fwrite(const void xrestrict ptr, size t size, size t nitems,
FILE xrestrict stream);

DESCRIPTION

The function fread() reads nitems objects, each size bytes long, from the stream
pointed to by stream, storing them at the location given by ptr.

The function fwrite() writes nitems objects, each size bytes long, to the stream
pointed to by stream, obtaining them from the location given by ptr.

RETURN VALUES
The functions fread() and fwrite() advance the file position indicator for the
stream by the number of bytes read or written. They return the number of objects
read or written. If an error occurs, or the end-of-file is reached, the return
value is a short object count (or zero).

UNIVERSITY OF OREGON

O

Example

CO2LNOOGFD58:330 hank$ cat rw.c
#include <stdio.h>
#include <string.h>

int main(int argc, char *argvl[])
{
char xhello = "hello world: file edition\n";
FILE xf = fopen("330", "w");
fwrite(hello, sizeof(char), strlen(hello), f);
fclose(f);
b
CO2LNOOGFD58:330 hank$ gcc rw.c
CO2LNOOGFD58:330 hank$./a.out
CA2LNOOGFD58:330 hank$ cat 330
hello world: file edition

File Position Indicator

* File position indicator: the current location in
the file

* |f | read one byte, the one byte you get is
where the file position indicator is pointing.

— And the file position indicator updates to point at
the next byte

— But it can be changed...

O

UNIVERSITY OF OREGON

fseek

int
fseek(FILE *xstream, long offset, int whence);

The fseek() function sets the file position indicator for the stream pointed to by
stream. The new position, measured in bytes, is obtained by adding offset bytes to
the position specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or
SEEK_END, the offset is relative to the start of the file, the current position
indicator, or end-of-file, respectively. A successful call to the fseek() function
clears the end-of-file indicator for the stream and undoes any effects of the
ungetc(3) and ungetwc(3) functions on the same stream.

O

UNIVERSITY OF OREGON

ftell

long
ftell(FILE *xstream);

The ftell() function obtains the current value of the file position indicator for
the stream pointed to by stream.

) oo oromeon

We have everything we need to make
a copy command...

* fopen

* fread

e fwrite

* fseek
e ftell

Can we do this together as a class?

argc & argv

e two arguments to every C program
e argc: how many command line arguments

e argv: an array containing each of the
arguments

e “/a.out hank childs”
* = argc ==

- argv[0] = “a.out”, argv[1] = “hank”,
argv[2] = “childs”

#include <stdio.h>
#include <printf.h>

#include <stdlib.h>

int main(int argc, char *argvl[])

{

FILE *xf_in, *f_out;
int buff_size;
char xbuffer;

if (argc != 3)

{
printf("Usage: %s <filel> <file2>\n", argv[0]);
exit (EXIT_FAILURE);

}

f_in = fopen(argvI[1l, "r");
fseek(f_in, @, SEEK_END);
buff_size = ftell(f_in);
fseek(f_in, @, SEEK_SET);

buffer = malloc(buff_size);
fread(buffer, sizeof(char), buff_size, f_in);

printf("Copying %d bytes from %s to %s\n", buff_size, argv[1], argv[2]);

f_out = fopen(argv([2], "w");
fwrite(buffer, sizeof(char), buff_size, f_out);

fclose(f_in);
fclose(f_out);

return 0;

UNIVERSITY OF OREGON

O

Return values in shells

CO2LNOOGFD58:330 hank$./a.out copy.c copy2.cC
Copying 697 bytes from copy.c to copy2.c
CO2LNOOGFD58:330 hank$ echo $7?

0

CO2LNOOGFD58:330 hank$./a.out copy.c

Usage: ./a.out <filel> <file2>
CO2LNOOGFD58:330 hank$ echo $7?

1

S? is the return value of the last executed command

Printing to terminal and
reading from terminal

* |n Unix, printing to terminal and reading from
terminal is done with file I/O

 Keyboard and screen are files in the file
system!
— (at least they were ...)

Standard Streams

* Wikipedia: “preconnected input and output
channels between a computer program and its

environment (typically a text terminal) when it
begins execution”

* Three standard streams:
— stdin (standard input)
— stdout (standard output)

— stderr (standard error)

—_—m
What mechanisms in C allow you to access standard streams?

printf

* Print to stdout
— printf(“hello world\n”);
— printf(“Integers are like this %d\n”, 6);
— printf(“Two floats: %f, %f”, 3.5, 7.0);

fprintf

e Just like printf, but to streams
* fprintf(stdout, “helloworld\n”);

— = same as printf

* fprintf(stderr, “helloworld\n”);
— prints to “standard error”

o fprintf(f out, “helloworld\n”);
— prints to the file pointed to by FILE *f_out.

buffering and printf

* Important: printf is buffered
* So:
— printf puts string in buffer

— other things happen
— buffer is eventually printed

 But what about a crash?
— printf puts string in buffer

— other things happen ... including a crash
buffer is never printed!

—_—
Solutions: (1) fflush, (2) fprintf(stderr) always flushed

Outline

* Review

* Filel/O

* Project 2B
* Redirection

* Pipes

UNIVERSITY OF OREGON

O

Project 2B

Worth 4% of your grade

Assignment: Write a program that reads the file “2E_binary_file”. This file contains a
two-dimensional array of integers, that is 10x10. You are to read in the 5x5 bottom
left corner of the array. That is, the values 0-4, 10-14, 20-24, 30-34, and 40-44. You
may only read 25 integers total. Do not read all 100 and throw some out. You will
then write out the new 5x5 array. Please write this as strings, one integer per line
(25 lines total). You should be able to “cat” the file afterwards and see the values.

Use Unix file streams for this project (i.e., fopen, fread, fseek, fprintf). Your program
will be checked for good programming practices. (Close your file streams, use
memory correctly, etc. [am not referring to style, variable initialization, etc.)

Also, add support for command line arguments (argc and argv).

Your program should run as:
./<prog_name> <input_name> <output_name>

(The input_name will be 2E_binary_file, unless you change it.)

Finally, note that I am handing you a binary file. I think we are all little endian, and
so it will be fine. But, if it is big endian, then we will have a problem. You can check
if it is little endian by printing the first two values of the file. They should be “0” and
“” 1".

Please submit a tarball with (1) a Makefile (should be simple), (2) your source code,
and (3) the output ASCII file from running your program, with the name
“ASCII_output”.

Outline

* Review

* Filel/O

* Project 2B
* Redirection

* Pipes

Unix shells allows you to manipulate
standard streams.

e “>" redirect output of program to a file

* Example:
— |s > output

— echo “this is a file” > output2
— cat filel file2 > file3

O

UNIVERSITY OF OREGON

Unix shells allows you to manipulate
standard streams.

e “<” redirect file to input of program

* Example:
— python < myscript.py

* Note: python quits when it reads a special character
called EOF (End of File)

* You can type this character by typing Ctrl-D
* This is why Python quits when you type Ctrl-D

— (many other programs too)

Unix shells allows you to manipulate
standard streams.

e “>>"” concatenate output of program to end of
existing file
— (or create file if it doesn’t exist)
* Example:
— echo “I am starting the file” > filel
— echo “l am adding to the file” >> filel

— cat filel

| am starting the file
| am adding to the file

UNIVERSITY OF OREGON

O

What’s happening here?

CO2LNOOGFD58:330 hank$ mkdir tmp
CO2LNOOGFD58:330 hank$ cd tmp
CO2LNOOGFD58:tmp hank$ touch fl
CO2LNOOGFD58:tmp hank$ 1ls fl f2 > out
ls: f2: No such file or directory
CO2LNOOGFD58:tmp hank$ cat out

fl

|s is outputting its error messages to stderr

O

UNIVERSITY OF OREGON

Redirecting stderr in a shell

CO2LNOOGFD58:Documents hank$ cd ~/330
CO2LNOOGFD58:330 hank$ mkdir tmp
CO2LNOOGFD58:330 hank$ cd tmp
CO2LNOOGFD58:tmp hank$ touch fl
CO2LNOOGFD58:tmp hank$ 1ls fl f2 > out
ls: f2: No such file or directory

| CO2LN@OOGFD58:tmp hank$ cat out

fl

CO2LNOOGFD58:tmp hank$ 1s fl1 f2 > out 2>out_error
CO2LNOOGFD58:tmp hank$ cat out_error
ls: f2: No such file or directory

UNIVERSITY OF OREGON

O

Redirecting stderr to stdout

CO2LNOOGFD58:330 hank$ mkdir tmp
CO2LNOOGFD58:330 hank$ cd tmp
CO2LNOOGFD58:tmp hank$ touch fl
CO2LNOOGFD58:tmp hank$ 1ls fl f2 > out

ls: f2: No such file or directory
CO2LNOOGFD58:tmp hank$ cat out

fl

CO2LNOOGFD58:tmp hank$ 1s fl1 f2 > out 2>out_error
CO2LNOOGFD58:tmp hank$ cat out_error

ls: f2: No such file or directory
CO2LNOOGFD58:tmp hank$ 1s fl f2 > out 2>&1
CO2LNOOGFD58:tmp hank$ cat out

ls: f2: No such file or directory

fl

‘ Convenient when you want both to go to the same stream

Outline

* Review

* Filel/O

* Project 2B
* Redirection

* Pipes

UNIVERSITY OF OREGON

O c functions: fork and pipe

e fork: duplicates current program into a
separate instance
— Two running programs!

— Only differentiated by return value of fork (which
is original and which is new)

* pipe: mechanism for connecting file
descriptors between two forked programs

Through fork and pipe, you can connect two running
programs. One writes to a file descriptor, and the
other reads the output from its file descript

(: :
Only used on special occasions.
(And one of those occasions is with the shell.)

UNIVERSITY OF OREGON

O

pipes in Unix shells

CO2LNOOGFD58:tmp hank$ cat printer.c * represented Wlth “ | ”

#include <stdio.h>

int main() { printf("Hello world\n"); } e
CO2LNOOGFD58:tmp hank$ cat doubler.c OUtpUt Of one program

#include <stdio.h> becomes input to

int main()
{
int ch = getc(stdin); anOther program
while (ch !'= EOF)
{
printf("%c%sc", ch, ch);
ch = getc(stdin);
}

Iy
CO2LNOOGFD58:tmp hank$ gcc —o printer printer.c

CO2LNOOGFD58:tmp hank$ gcc —o doubler doubler.c
CO2LNOOGFD58:tmp hank$./printer | ./doubler
HHeelllloo wwoorrlldd

CO2LN@OGFD58:tmp hank$ [

UNIVERSITY OF OREGON

O

Very useful programs

* grep: keep lines that match pattern, discard
lines that don’t match pattern

-rw—r——r——@ 1 hank
| -rw—r—r—@ 1 hank
-rw-r——r—— 1 hank
-rw-r——r—— 1 hank
-rw-r——r—— 1 hank
-rw-r——r—— 1 hank
-rw—-r——r——@ 1 hank
-rw—r——r——@ 1 hank
-rw—r——r——@ 1 hank
-rw-r——r—— 1 hank
-rw—r——r——@ 1 hank
-rw-r——r—— 1 hank
-rw-r——r—-—@ 1 hank
-rw—r——r——@ 1 hank
-rw—-r——r——@ 1 hank
-rw-r——r—— 1 hank
-rw—r——r——@ 1 hank
-rw—-r——r——@ 1 hank
-rw—r——r——@ 1 hank
-rw—-r——r——@ 1 hank
W T T 1 hanl

staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff

ct+~FF

3278589
2220104
3899863
4629257
21382185
21382185
2172179
4841050
2031749
17972476
08149068
9815146
592243
15765504
16699392
3159872
15767552
35099136
10775552
72966144

TE 712217

Apr
Apr
Jan
Jan
Mar
Jan
Dec
Nov
Apr
Mar
Apr
Feb
Feb
Feb
Jan
Jan
Mar
Mar
Mar

Mar
M~ »

5
8
21
30
25
7
20
13
5
25
1
24
26
13
7
7
23
25
25
26

o1~

CO02LNOOGFD58:Documents hank$ 1ls -1 | grep ppt
11:
157
09:
10:
12:
12:
15:
10:
16:
12:
10:
o7:
04:
14:
12:
11:
02:
09:
04:
08:

1.

20

40

26
24
40
21
24
10
20
43
25
00
09
57
14
15
48
42
49
43

D

CIS330_Lec2.pptx
CIS330_Lec3.pptx
CIS610_lec2.pptx
CIS610_lec3.pptx
CIS_colloquium2013.pptx
CIS_colloquium_2013.pptx
ICS_results.pptx

MBTI.pptx

SC14_flow.pptx

VMV_2013.pptx

aachen.pptx
childs_poster_SDAV_AHM_2014.pptx
childs_sdav_slides.pptx
cig_exascale.ppt
Cis610_Lecl.ppt
egpgv_cgf.pptx
eu_regional_school.ppt
eu_regional_school_partl.ppt
eu_regional_school_partlB.ppt

eu_regional_school_part2.ppt
aT1Tm han+yh +21L Anntv

UNIVERSITY OF OREGON

O

Very useful programs

* sed: replace pattern 1 with pattern 2
— sed s/patternl/pattern2/g

* s means substitute

* g means “global” ... every instance on the line

sed is also available in “vi”
:%s/patternl/pattern2/g (% means all lines)
:103,133s/p1/p2/g (lines 103-133)

O UNIVERSITY OF OREGON

e “*isaw

fawcett:tmp
Abe
Alajaji
Alamoudi
Anastas
Andrade
Ballarche
Brennan
Brockway
Brogan
Brooks
Bruce
Carlton
Chalmers
fawcett:tmp
Carlton
Chalmers
fawcett:tmp
Rodriguez
fawcett:tmp
Lee
fawcett:tmp
Lee

childs$ 1s
Chavarria
Chen
Clark
Collier
Costello
Donnelly
Etzel
Friedrich
Garvin
Gonzales
Guo
Hampton
Harris

childs$ 1s Cx
Chavarria
Chen

childs$ 1ls *z

childs$ 1s xeex
Steelhammer

childs$ 1s xexex
Legge

Wildcards

Hebb
Jia
Kine
Lee
Legge
Li
Lin
Liu
Lopes
Luo
Lynch
Lyon
Machado

Clark
Collier

Steelhammer

Macy
Maguire
Michlanski
Moreno
Olson

Owen
Pogrebinsky
Qin

Rhodes
Roberts
Rodriguez
Roush
Rozenboim

Costello

Whiteley

ildcard with unix shells

Smith
Steelhammer
Szczepanski
Totten
Vega-Fujioka
Wang
Whiteley
Woodruff

Xu
Yaconelli
Young

Zhang

de

“?” is a wildcard that matches exactly one character

Other useful shell things

e ‘tab’: auto-complete

e esc=: show options for auto-complete
e Ctrl-A: go to beginning of line

e Ctrl-E: go to end of line

e Ctrl-R: search through history for command

