
Hank Childs, University of OregonApril 18th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 7: file I/O, more Unix

Announcements

• Projects
– 4A	due	IN	CLASS	Friday	(no	late)
– 2B	assigned	today,	due	Monday
– 3A,	2C	to	be	assigned	soon

• Next	week:
– Lecture	Monday	and	Friday
– Lab	Wednesday
– Also,	will	be	a	YouTube	short	lecture

• (We	are	getting	ahead	of	schedule	… trying	hard	to	prevent	
work	from	this	class	to	be	backloaded)

Outline

• Review
• File	I/O
• Project	2B
• Redirection
• Pipes

Outline

• Review
• File	I/O
• Project	2B
• Redirection
• Pipes

Makefile example:	multiplier	lib

Unix	command:	tar

• tar	cvf 330.tar	file1	file2	file3
– puts	3	files	(file1,	file2,	file3)	into	a	new	file	called	330.tar

• scp 330.tar	@ix:~
• ssh ix
• tar	xvf 330.tar
• ls

file1	file2	file

Memory	Errors

• Array	bounds	read

• Array	bounds	write

Memory	Errors

• Free	memory	read	/	free	memory	write

Vocabulary:	“dangling	pointer”:	pointer	that	points	to	memory	
that	has	already	been	freed.

Memory	Errors

• Freeing	unallocated	memory

Memory	Errors

• Freeing	non-heap	memory

Memory	Errors

• NULL	pointer	read	/	write

• NULL	is	never	a	valid	location	to	read	from	or	
write	to,	and	accessing	them	results	in	a	
“segmentation	fault”
– ….	remember	those	memory	segments?

Memory	Errors

• Uninitialized	memory	read

NEW:	IPR,	IPW

• int *X	=	0xDEADBEEF:
• int Y	=	*X;

• what	error	code	fits?

• I	missed	two:
– Invalid	Pointer	Read	(IPR)
– Invalid	Pointer	Writer	(IPW)

Memory	error	in	action

Project	4A

• Posted	now
• You	will	practice	debugging	&	using	a	debugger
– There	are	3	programs	you	need	to	debug

• In	this	case,	“debug”	means	identify	the	bug
– Does	not	mean	fix	the	bug

• Can	use	gdb or	lldb
• May	want	to	run	on	ix

• Worksheet	due	in	class	Friday
• P3.c:	4	errors

Outline

• Review
• File	I/O
• Project	2B
• Redirection
• Pipes

File	I/O:	streams	and	file	descriptors

• Two	ways	to	access	files:
– File	descriptors:
• Lower	level	interface	to	files	and	devices

– Provides	controls	to	specific	devices	

• Type:	small	integers	(typically	20	total)

– Streams:	
• Higher	level	interface	to	files	and	devices

– Provides	uniform	interface;	easy	to	deal	with,	but	less	
powerful

• Type:	FILE	*

Streams	are	more	portable,	and	more	accessible	
to	beginning	programmers.		(I	teach	streams	here.)

File	I/O

• Process	for	reading	or	writing
– Open	a	file
• Tells	Unix	you	intend	to	do	file	I/O
• Function	returns	a	“FILE	*

– Used	to	identify	the	file	from	this	point	forward

• Checks	to	see	if	permissions	are	valid

– Read	from	the	file	/	write	to	the	file
– Close	the	file

Opening	a	file

• FILE	*handle	=	fopen(filename,	mode);

Example:	FILE	*h	=	fopen(“/tmp/330”,	“wb”);

Note:	#include	<stdio.h>

Close	when	you	are	done	with	“fclose”

Reading	/	Writing

Example

File	Position	Indicator

• File	position	indicator:	the	current	location	in	
the	file

• If	I	read	one	byte,	the	one	byte	you	get	is	
where	the	file	position	indicator	is	pointing.
– And	the	file	position	indicator	updates	to	point	at	
the	next	byte

– But	it	can	be	changed…

fseek

ftell

We	have	everything	we	need	to	make	
a	copy	command…

• fopen
• fread
• fwrite
• fseek
• ftell

Can	we	do	this	together	as	a	class?

argc &	argv

• two	arguments	to	every	C	program
• argc:	how	many	command	line	arguments
• argv:	an	array	containing	each	of	the	
arguments

• “./a.out hank	childs”
• à argc ==	3
• à argv[0]	=	“a.out”,	argv[1]	=	“hank”,										
argv[2]	=	“childs”

Return	values	in	shells

$?	is	the	return	value	of	the	last	executed	command

Printing	to	terminal	and	
reading	from	terminal

• In	Unix,	printing	to	terminal	and	reading	from	
terminal	is	done	with	file	I/O

• Keyboard	and	screen	are	files	in	the	file	
system!
– (at	least	they	were	…)

Standard	Streams

• Wikipedia:	“preconnected input	and	output	
channels	between	a	computer	program	and	its	
environment	(typically	a	text	terminal)	when	it	
begins	execution”

• Three	standard	streams:
– stdin (standard	input)
– stdout (standard	output)
– stderr (standard	error)

What	mechanisms	in	C	allow	you	to	access	standard	streams?

printf

• Print	to	stdout
– printf(“hello	world\n”);
– printf(“Integers	are	like	this	%d\n”,	6);
– printf(“Two	floats:	%f,	%f”,	3.5,	7.0);

fprintf

• Just	like	printf,	but	to	streams
• fprintf(stdout,	“helloworld\n”);
–à same	as	printf

• fprintf(stderr,	“helloworld\n”);
– prints	to	“standard	error”

• fprintf(f_out,	“helloworld\n”);
– prints	to	the	file	pointed	to	by	FILE	*f_out.

buffering	and	printf

• Important:	printf is	buffered
• So:
– printf puts	string	in	buffer
– other	things	happen
– buffer	is	eventually	printed

• But	what	about	a	crash?
– printf puts	string	in	buffer
– other	things	happen	…	including	a	crash
– buffer	is	never	printed!
Solutions:	(1)	fflush,	(2)	fprintf(stderr)	always	flushed

Outline

• Review
• File	I/O
• Project	2B
• Redirection
• Pipes

Project	2B

0 1

Outline

• Review
• File	I/O
• Project	2B
• Redirection
• Pipes

Unix	shells	allows	you	to	manipulate	
standard	streams.

• “>”	redirect	output	of	program	to	a	file
• Example:
– ls >	output
– echo	“this	is	a	file”	>	output2
– cat	file1	file2	>	file3			

Unix	shells	allows	you	to	manipulate	
standard	streams.

• “<”	redirect	file	to	input	of	program
• Example:
– python	<	myscript.py
• Note:	python	quits	when	it	reads	a	special	character	
called	EOF	(End	of	File)
• You	can	type	this	character	by	typing	Ctrl-D
• This	is	why	Python	quits	when	you	type	Ctrl-D

– (many	other	programs	too)

Unix	shells	allows	you	to	manipulate	
standard	streams.

• “>>”	concatenate	output	of	program	to	end	of	
existing	file	
– (or	create	file	if	it	doesn’t	exist)

• Example:
– echo	“I	am	starting	the	file”	>	file1
– echo	“I	am	adding	to	the	file”	>>	file1
– cat	file1

I	am	starting	the	file
I	am	adding	to	the	file

What’s	happening	here?

ls is	outputting	its	error	messages	to	stderr

Redirecting	stderr in	a	shell

Redirecting	stderr to	stdout

Convenient	when	you	want	both	to	go	to	the	same	stream

Outline

• Review
• File	I/O
• Project	2B
• Redirection
• Pipes

c	functions:	fork	and	pipe
• fork:	duplicates	current	program	into	a	
separate	instance
– Two	running	programs!
– Only	differentiated	by	return	value	of	fork	(which	
is	original	and	which	is	new)

• pipe:	mechanism	for	connecting	file	
descriptors	between	two	forked	programs

Through	fork	and	pipe,	you	can	connect	two	running	
programs.		One	writes	to	a	file	descriptor,	and	the	

other	reads	the	output	from	its	file	descript

Only	used	on	special	occasions.
(And	one	of	those	occasions	is	with	the	shell.)

pipes	in	Unix	shells

• represented	with	“|”
• output	of	one	program	
becomes	input	to	
another	program

Very	useful	programs

• grep:	keep	lines	that	match	pattern,	discard	
lines	that	don’t	match	pattern

Very	useful	programs

• sed:	replace	pattern	1	with	pattern	2
– sed s/pattern1/pattern2/g
• s	means	substitute
• g	means	“global”	…	every	instance	on	the	line

sed is	also	available	in	“vi”
:%s/pattern1/pattern2/g		(%	means	all	lines)

:103,133s/p1/p2/g	(lines	103-133)

Wildcards

• ‘*’	is	a	wildcard	with	unix shells

‘?’	is	a	wildcard	that	matches	exactly	one	character

Other	useful	shell	things

• ‘tab’:	auto-complete
• esc=:	show	options	for	auto-complete
• Ctrl-A:	go	to	beginning	of	line
• Ctrl-E:	go	to	end	of	line
• Ctrl-R:	search	through	history	for	command

