
Hank Childs, University of OregonApril 6th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 3:
Permissions and More Memory Stuff

Lectures

Unix C C++

Lecture	#1 Lecture	#2

Lecture	#3

Lecture	#4 Lecture	#5

Lecture	#6-8
Lecture	#9-20

My	goal	is	to	arrange	topics	such	that	more	work	can	be	put	earlier	in	the	course.

Quiz
• What	is	the	output	of	this	sequence?

Semi-colon:	issue	the	first	command,	then	the	second	right	
afterwards

Output	from	first	command	will	be	on	one	line,	with	second	
command	on	the	next	line.

Unix	systems

• Four	basic	use	cases
– Personal	use	machines
– Servers
– Embedded
– Compute	clusters

Are	there	more?		
(this	is	off	the	top	of	my	head)

In	many	of	these	scenarios,	there	is	a	system	
administrator	who	makes	an	“image”	of	the	OS	that	

they	“clone”	for	each	machine.

I	have	used	Unix	actively	since	1994,	but	only	did	
system	administration	2005-2009	when	I	had	a	

Linux	box	in	my	home.

Outline

• Permissions
• Project	1B	Overview
• More	on	memory	/	arrays	/	pointers

Outline

• Permissions
• Project	1B	Overview
• More	on	memory	/	arrays	/	pointers

Permissions:	System	Calls

• System	calls:	a	request	from	a	program	to	the	
OS	to	do	something	on	its	behalf
– …	including	accessing	files	and	directories

• System	calls:
– Typically	exposed	through	functions	in	C	library
– Unix	utilities	(cd,	ls,	touch)	are	programs	that	call	
these	functions

Permissions	in	Unix	are	enforced	via	system	calls.

Permissions:	Unix	Groups

• Groups	are	a	mechanism	for	saying	that	a	
subset	of	Unix	users	are	related
– In	2014,	we	had	a	“330_S14”	unix group	on	ix
–Members:
• Me
• 2	GTFs

The	commands	for	creating	a	group	tend	to	vary,	
and	are	often	done	by	a	system	administrator

CIS	uses	“groupctl”

Permissions

• Permissions	are	properties	associated	with	files	
and	directories
– System	calls	have	built-in	checks	to	permissions

• Only	succeed	if	proper	permissions	are	in	place

• Three	classes	of	permissions:
– User:	access	for	whoever	owns	the	file

• You	can	prevent	yourself	from	accessing	a	file!
– (But	you	can	always	change	it	back)

– Group:	allow	a	Unix	group	to	access	a	file
– Other:	allow	anyone	on	the	system	to	access	a	file

Three	types	of	permissions

• Read
• Write
• Execute	(see	next	slide)

Executable	files

• An	executable	file:	a	file	that	you	can	invoke	
from	the	command	line
– Scripts
– Binary	programs

• The	concept	of	whether	a	file	is	executable	is	
linked	with	file	permissions

There	are	9	file	permission	attributes

• Can	user	read?
• Can	user	write?
• Can	user	execute?
• Can	group	read?
• Can	group	write?
• Can	group	execute?
• Can	other	read?
• Can	other	write?
• Can	other	execute?

A	bunch	of	bits	…	we	could	represent	this	with	binary

User	=	“owner”
Other	=	“not	owner,	not	group”

Translating	R/W/E	permissions	to	
binary

Image	from	wikipedia

Which	of	these	modes	make	
sense?		Which	don’t?

We	can	have	separate	values	(0-7)	
for	user,	group,	and	other

Unix	command:	chmod

• chmod:	change	file	mode

• chmod 750	<filename>
– User	gets	7	(rwx)
– Group	gets	5	(rx)
– Other	gets	0	(no	access)

Lots	of	options	to	chmod
(usage	shown	here	is	most	common)

Manpage for	chmod

• “man	chmod”

Unix	commands	for	groups

• chgrp:	changes	the	group	for	a	file	or	directory
– chgrp <group>	<filename>

• groups:	lists	groups	you	are	in

ls -l

• Long	listing	of	files

Permissions

How	to	interpret	this?

Links	(*) Owner Group File	size Date	of
last	change

Filename

Permissions	and	Directories

• You	can	only	enter	a	directory	if	you	have	
“execute”	permissions	to	the	directory

• Quiz:	a	directory	has	permissions	“400”.		What	
can	you	do	with	this	directory?

Answer:	it	depends	on	what	permissions	a	
system	call	requires.

Directories	with	read,	but	no	execute

Outline

• Permissions
• Project	1B	Overview
• More	on	memory	/	arrays	/	pointers

Unix	scripts

• Scripts
– Use	an	editor	(vi/emacs/other)	to	create	a	file	that	
contains	a	bunch	of	Unix	commands

– Give	the	file	execute	permissions
– Run	it	like	you	would	any	program!!

Unix	scripts

• Arguments
– Assume	you	have	a	script	named	“myscript”
– If	you	invoke	it	as	“myscript foo	bar”
– Then
• $#	==	2
• $1	==	foo
• $2	==	bar

Project	1B

• Summary:	write	a	script	that	will	create	a	
specific	directory	structure,	with	files	in	the	
directories,	and	specific	permissions.	

Project	1B

Project	1B

CIS$330:$Project$#1B$
Assigned:$April$4th,2014
Due$April$11th,2014
(which$means$submittedby6amonApril$12th,$2014)$
Worth$4%$of$your$grade$
$
Assignment:$Create$a$script$that$will$createadirectory$structure,$and$files$within$
that$directory$structure,allwiththespecified$file$permissions.$$The$script$shouldbe
named$“proj1b”.$$(A$consistent$name$will$help$with$grading.)$
$
Note:youare$only$allowedtousethefollowing$commands:$mkdir,$touch,$cd,$chmod,$
mv,$cp,$echo.$$(Youdonot$need$touseallofthese$commands$to$successfully$
completetheassignment.)$$$
$
Note$2:Every$file$should$containthecontents$“This$is$file$<name>”.$$For$example,$the$
contentsofFile1$should$be$“This$is$File1”.$
$
The$directory$structure$should$be:$
$

$
$
The$script$should$take$an$argument,$andtheargument$should$bethelocationto
createthedirectory.$$So,ifthe$script$isrunas$“proj1b$/tmp”,$then$it$would$create$
directories$tmp/Dir1,$tmp/Dir2,$tmp/Dir1/File1,$tmp/Dir2/File2,$etc.$

(Finish	Lecture	2)

Stack	vs Heap:	Pros	and	Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
stack_varA
stack_varB

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info	for	how	to	get	
back	to	main>
A	(=	3)
<Location	for	RV>

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info	for	how	to	get	
back	to	main>
A	(=	3)
<Location	for	RV>
stack_varA

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info	for	how	to	get	
back	to	main>
A	(=	3)
<Location	for	RV>
stack_varA

Return	copies	into	
location	specified	
by	calling	function

How	stack	memory	is	allocated	into	
Stack	Memory	Segment

Code

Data

Heap

Stack

Free

stack_varC =	6
stack_varD =	3

This	code	is	very	problematic	…	why?

foo	and	bar	are	returning	
addresses	that	are	on	the	
stack	…	they	could	easily	

be	overwritten
(and	bar’s	stack_varD

overwrites	foo’s	
stack_varC in	this	

program)

Nested	Scope

Code

Data

Heap

Stack

Free

stack_varA

Nested	Scope

Code

Data

Heap

Stack

Free

stack_varA
stack_varB

Nested	Scope

Code

Data

Heap

Stack

Free

stack_varA

You	can	create	new	scope	
within	a	function	by	adding	

‘{‘	and	‘}’.

Stack	vs Heap:	Pros	and	Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Memory	pages	associated	
with	stack	are	almost	
always	immediately	

available.

Memory	pages	associated	
with	heap	may	be	located	

anywhere	...	may	be	
caching	effects

Stack	vs Heap:	Pros	and	Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Variable	scope Limited Unlimited

Variable	scope:	stack	and	heapfoo	is	bad	code	…	never	
return	memory	on	the	
stack	from	a	function

bar	returned	memory	
from	heap

The	calling	function	–
i.e.,	the	function	that	

calls	bar	– must	
understand	this	and	take	
responsibility	for	calling	

free.

If	it	doesn’t,	then	this	is	
a	“memory	leak”.

Memory	leaks
Code

Data

Heap

Stack

Free

stack_varA

It	is	OK	that	we	are	using	the	heap	…	that’s	what	
it	is	there	for

The	problem	is	that	we	lost	the	references	to	
the	first	49	allocations	on	heap

The	heap’s	memory	manager	will	not	be	able	to	
re-claim	them	…	we	have	effectively	limited	the	

memory	available	to	the	program.

Running	out	of	memory	(stack)
Code

Data

Heap

Stack

Freestack	overflow:	when	the	stack	runs	into	the	heap.
There	is	no	protection	for	stack	overflows.

(Checking	for	it	would	require	coordination	with	the	
heap’s	memory	manager	on	every	function	calls.)

Running	out	of	memory	(heap)
Code

Data

Heap

Stack

FreeIf	the	heap	memory	manager	
doesn’t	have	room	to	make	an	
allocation,	then	malloc returns	
NULL	….	a	more	graceful	error	

scenario.

Allocation	
too	big	…	
not	enough	

free	
memory

Stack	vs Heap:	Pros	and	Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Variable	scope Limited Unlimited

Fragmentation No Yes

Memory	Fragmentation

• Memory	fragmentation:	the	memory	
allocated	on	the	heap	is	spread	out	of	the	
memory	space,	rather	than	being	
concentrated	in	a	certain	address	space.

Memory	Fragmentation
Code

Data

Heap

Stack

Free

Negative	aspects	of	fragmentation?
(1) can’t	make	big	allocations
(2) losing	cache	coherency

Fragmentation	and	Big	Allocations
Code

Data

Heap

Stack

Free

Even	if	there	is	lots	of	memory	
available,	the	memory	manager	can	
only	accept	your	request	if	there	is	a	

big	enough	contiguous	chunk.

Stack	vs Heap:	Pros	and	Cons
Stack Heap

Allocation/Deal
location

Automatic Explicit

Access Fast Slower

Variable	scope Limited Unlimited

Fragmentation No Yes

Memory	Errors

• Array	bounds	read

• Array	bounds	write

Outline

• Permissions
• Project	1B	Overview
• More	on	memory	/	arrays	/	pointers

Memory	Segments

Source:	http://www.cs.uwm.edu/classes/cs315/Bacon/

C:	must	manage	your	own	memory

• This	is	a	big	change	from	other	programs
• You	keep	track	of	memory
– Allocation
– How	much	there	is	/	indexing	memory
– Deallocation

malloc

• malloc:	command	for	allocating	memory

Allocation	/	Deallocation Example

Automatic	allocation	on	the
stack.		(Deallocation occurs	
when	out	of	scope.)

Explicit	allocation	from	the	
heap.		(Deallocation occurs	
with	“free”	call.)

sizeof

• sizeof:	gets	size	of	type
• Usually:
– sizeof(int)	==	4
– sizeof(float)	==	4
– sizeof(double)	==	8
– sizeof(unsigned	char)	==	1
– sizeof(char)	==	1
– sizeof(int *)	==	sizeof(double	*)	==	sizeof(char	*)	==	8

• à array	of	10	intsàmalloc(10*sizeof(int))

Hexadecimal

• Binary:	2	values
• Decimal:	10	values
• Hexadecimal:	16	values
– 0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F

• 0x:	prefix	for	hexadecimal
• 0x10	=	16
• 0x101	=	257

Memory	Addresses

• Every	location	in	
memory	has	an	
address	associated	
with	it

• Locations	in	memory	
are	represented	in	
hexadecimal

Code

Data

Heap

Stack

Free

0x7fff55bc

0x7fff55b8

Memory	addresses	descend	in	the	stack,	
ascend	in	the	heap.

Pointers
• Pointers	store	locations	in	memory

Pointers
• Pointers	store	locations	in	memory

• “&”:	unary	operator	that	gives	the	address	
of	a	variable.

int x;
int *yp =	&x;

Pointers
• Pointers	store	locations	in	memory

printf prints	pointers	with	“%p”

NULL	pointer
• NULL:	defined	by	
compiler	to	be	a	
location	that	is	not	
valid.
– Typically	0x00000000

• You	can	use	NULL	to	
initialize	pointers,	and	
also	to	check	to	see	
whether	a	pointer	is	
set	already.

IBM	team	I	worked	on	used	
0xDEADBEEF,	not	NULL

‘*’	operator
• Let	“ptr”	be	a	pointer
• Then	“*ptr”	returns	value	in	the	address	that	ptr
points	to.	

• *	=	“dereference	operator”

Behavior	of	dereference

• When	you	dereference,	you	get	the	value	at	
that	moment.
–Whatever	happens	afterwards	won’t	have	effect.

Pointer	Arithmetic
• You	can	combine	pointers	and	integers	to	get	
new	pointer	locations

ptr +	1à
ptr +	sizeof(type)	

bytes

Arrays

• Arrays:	container	that	has	multiple	elements	
of	identical	type,	all	stored	in	contiguous	
memory

int A[10];

à 10	integers,	stored	in	40	consecutive	bytes	
(assuming	sizeof(int)	==	4)

Arrays	are	just	pointers.		You	can	use	arrays	and	pointers	
interchangeably.

[]	operator

• []	is	a	way	of	dereferencing	memory
– Recall	that	‘*’	is	the	dereference	operator

• A[0]	<=	=> *A
• A[5]	<=	=>	*(A+5);

More	array	relationships

int A[10];
int *B;

B=(A+5)	à A[5]	=	B[0]
B=&(A[0])	à B	=	A
B=&(A[5])	à B	=	A+5

Pointers	to	pointers

• Remember:	pointer	points	
to	a	location	in	memory
–We’ve	been	considering	
cases	where	locations	in	
memory	are	arrays	of	
integers

– But	locations	in	memory	
could	be	pointer	themselves

Code

Data

Heap

Stack

Free

0x7fff55bc 0x7fff55b8

Simple	pointers	to	pointers	example

What’s	the	difference	between	these	
two	programs?

Answer:	X	is	on	the	heap	on	the	left,	and	on	the	stack	on	the	right.
But	they	are	both	pointers-to-pointers.

What’s	the	difference	between	these	
two	programs?

Answer:	program	on	left	makes	one	allocation	for	each	pointer,
program	on	right	makes	one	allocation	for	whole	program	
&	each	pointer	points	at	locations	within	that	allocation.

Call	by	value	/	call	by	reference

• Refers	to	how	parameters	are	passed	to	a	
function.
– Call	by	value:	send	the	value	of	the	variable	as	a	
function	parameter
• Side	effects	in	that	function	don’t affect	the	variable	in	
the	calling	function

– Call	by	reference:	send	a	reference	(pointer)	as	a	
function	parameter
• Side	effects	in	that	function	affect	the	variable	in	the	
calling	function

Call	by	Value

Call	by	value

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info	for	how	to	get	
back	to	main>
A	(=	3)
<Location	for	RV>
stack_varA

Return	copies	into	
location	specified	
by	calling	function

Call	by	reference

Call	by	reference

Code

Data

Heap

Stack

Free

stack_varC
stack_varD
<info	for	how	to	get	
back	to	main>
A	(=	address)
<Location	for	RV>
stack_varA

Return	copies	into	
location	specified	
by	calling	function

*

*

&

Memory	Errors

• Free	memory	read	/	free	memory	write

When	does	this	happen	in	real-world	scenarios?

Memory	Errors

• Freeing	unallocated	memory

When	does	this	happen	in	real-world	scenarios?

Vocabulary:	“dangling	pointer”:	pointer	that	points	to	memory	
that	has	already	been	freed.

Memory	Errors

• Freeing	non-heap	memory

When	does	this	happen	in	real-world	scenarios?

Memory	Errors

• NULL	pointer	read	/	write

• NULL	is	never	a	valid	location	to	read	from	or	
write	to,	and	accessing	them	results	in	a	
“segmentation	fault”
– ….	remember	those	memory	segments?

When	does	this	happen	in	real-world	scenarios?

Memory	Errors

• Unitialized memory	read

When	does	this	happen	in	real-world	scenarios?

