O

UNIVERSITY OF OREGON ‘ I S 3 3 O []
[]

/1717 O /7 71 17 _ 7.
/117 NI Il T N1 I I
AV VAV VA YIS A Y A A AR A AN A A R I A A A Y I
__ /1L I N, LS IN_] N N___ I T

Lecture 21: Review

June 8™, 2018 Hank Childs, University of Oregon

Your Grade

* Projects: 70%
* Final: 30%

* |f you have 70% right now, you have already
passed the class.

— Although if you bomb the final, | may meet with
you and ask you to code

Late Pass Policy

* You have 2 "|ate passes.”

e Late passes allow you to turn in your project
(specifically a sub-project, i.e., project 1A) two
days after the due date for full credit.

* You may also use two late passes on one

assignment and get a four day extension.

— For example, you submit a project that was due
on a Wednesday on Friday (i.e., two days later)
and get full credit if you use one late pass.

UNIVERSITY OF OREGON

O

Late Pass Decisions

* There will be a spot on the final

Name:

Answer the questions in the spaces provided below the questions. If you run
out of room for an answer, continue on the back of the page.

| Please write your name on every page! |

| This is a closed-book test. No notes, no calculators, no computers. |

Apply Late Pass #1 To:
Apply Late Pass #2 To:

List Projects That You Feel Have Been Improperly Graded:

O

UNIVERSITY OF OREGON

Homeworks

* 3H, 4B
— due Wednesday June 13th

* not late until 6am Thurs June 14th

* And: no work accepted after 6am Thurs June
14th

— Late passes don’t help after this time
— And this goes for all projects, not just 3H/4B

UNIVERSITY OF OREGON

O

4C: canceled

1) Extend your project 3 to having timing information
a. The timings should be added to logger
b. The timing for each Execute method should be logged individually
i. Note: if you do the inheritance stuff cleverly, you should only
have to add two gettimeofday calls total
2) Run a small performance study using your time

a. Create the following pipeline: one source that creates a solid red
image, one source that creates a solid blue image, and one Blender
(who's inputs are the red image and blue image).

b. Run the program multiple times. The first time make the solid colored
images be 250x250. Then 500x500. Then 1000x1000. Then
2000x2000. Study the timings.

c. Write a short report (i.e., several sentences) about your findings.
Please do not use MS Word or RTF. This short report should be in a

w__*n

text file, so that I can easily view it with my “vi” program.

What’s on the final?

« HW 2Ais likely

 “What does this print?”

— Or related questions like “what is the value of
this?”

* What is a dangling pointer?
— (i.e., true/false or vocab)

* Write code!
e ... this year | will likely have a question on

debuggers I

What Will NOT Be On The Final

e Makefiles

— | don’t expect you to write one
— | may have a question where | write one for you
— and other aspects of compilation are fair game

* Vi
* templates / STL
* performance analysis

 specific filters from Proj3 (i.e., no “implement

blur”) -

Notes

* No notes
 Closed book

Will the Final Be Hard?

* | used to say “no”...
but now | say “yes”...

| want to understand what you have learned about
C/C++/Unix

Everything in lecture is fair game

But: almost all parts of lecture are reinforced in the
homeworks

Is This Review Exhaustive?

* No.
* Things not in the review are fair game

UNIVERSITY OF OREGON

Review

UNIVERSITY OF OREGON

O

Directories are hierarchical

* Directories can be placed within other
directories

o “/” --The root directory

— Note “/”, where Windows uses “\”
o “/dirl/dir2/filel”

— What does this mean?

File filel is contained in directory dir2,
which is contained in directory dirl,
which is in the root directory

Home directory

* Unix supports multiple users

* Each user has their own directory that they
control

* Location varies over Unix implementation, but
typically something like “/home/username”

e Stored in environment variables

fawcett:~ childs$ echo $HOME
/Users/childs 3

O

UNIVERSITY OF OREGON

File manipulation

Mo Terminal — bash — 80x24

| bash |
Last login: Tue Apr 1 04:56:14 on ttys@05

—_—m—m—————________________
New commands: mkdir, cd, touch, Is, rmdir, rm

UNIVERSITY OF OREGON

O

There are 9 file permission attributes

e Can user read?
e Can user write?
e Can user execute?

* Can group read? User = “owner”

* Can group write? Other = “not owner, not group”
* Can group execute?

* Can other read?

e Can other write?
e Can other execute?

——————————————————————
A bunch of bits ... we could represent this with binary

UNIVERSITY OF OREGON

Translating R/W/E permissions to
binary

O

Permission rwx
7 full 111

6 read and write 110

5 read and execute 101 Which of these modes make
4 read only 100 sense? Which don’t?
3 write and execute 011

2 write only 010 We can have separate values (0-7)
for user, group, and other

1 execute only 001

0 none 000

O

UNIVERSITY OF OREGON

Unix command: chmod

 chmod: change file mode

e chmod 750 <filename>
— User gets 7 (rwx)
— Group gets 5 (rx)

— Other gets 0 (no access)

Lots of options to chmod
(usage shown here is most common)

Build: The Actors

* File types * Programs
— Source code — Compiler
— Object code — Linker

— Executable code

(e.g., C code)

Compilers, Object Code, and Linkers

 Compilers transform source code to object
code

— Confusing: most compilers also secretly have
access to linkers and apply the linker for you.

 Object code: statements in machine code
— not executable
— intended to be part of a program

* Linker: turns object code into executable
programs

UNIVERSITY OF OREGON

O

Our first gcc program: named output

® O O L] CIS330 — bash — 80x24

CO2LNOOGFD58:CIS330 hank$ cat t.c
#include <stdio.h>
int main()

{

¥ “-0” sets name of output
CO2LNOOGFD58:CIS330 hank$ gcc t.c

CO2LNOOGFD58:CIS330 hank$./a.out ///////7

hello world! Output name is different
CO2LNOOGFD58:CIS330 hank$ gcc -o helloygﬁlg’;,c———,——a
CO2LNOOGFD58:CIS330 hank$./helloworld

hello world!

CO2LNOOGFD58:CIS330 hank$ ls -1 helloworld

-rwxr-=xr-x 1 hank staff 8496 Apr 3 15:15 helloworld
CO2LN@OGFR58:CIS330 hank$ |

printf("hello world!\n");

”

Output has execute permissions

UNIVERSITY OF OREGON

O

Character strings example

128-223-223-72-wireless:330 hank$ cat string.c
#include <stdio.h>

int main()

{
char str[12] = "hello world";
char xstr2 = str+6;

printf("str is \"%s\" and str2 is \"%s\"\n",
str, str2);

str[5] = '\0';

printf("Now str is \"%s\" and str2 is \"%s\"\n",
str, str2);
}
128-223-223-72-wireless:330 hank$ gcc string.c
128-223-223-72-wireless:330 hank$./a.out
str is "hello world" and str2 is "world"

Now str is "hello" and str2 is "world"

#include <stdio.h>
#include <printf.h>

#include <stdlib.h>

int main(int argc, char *argvl[])

{

FILE *xf_in, *f_out;
int buff_size;
char xbuffer;

if (argc != 3)

{
printf("Usage: %s <filel> <file2>\n", argv[0]);
exit (EXIT_FAILURE);

}

f_in = fopen(argvI[1l, "r");
fseek(f_in, @, SEEK_END);
buff_size = ftell(f_in);
fseek(f_in, @, SEEK_SET);

buffer = malloc(buff_size);
fread(buffer, sizeof(char), buff_size, f_in);

printf("Copying %d bytes from %s to %s\n", buff_size, argv[1], argv[2]);

f_out = fopen(argv([2], "w");
fwrite(buffer, sizeof(char), buff_size, f_out);

fclose(f_in);
fclose(f_out);

return 0;

fprintf

e Just like printf, but to streams

 fprintf(stdout, “helloworld\n”);
— = same as printf

* fprintf(stderr, “helloworld\n”);

— prints to “standard error”
o fprintf(f _out, “helloworld\n”);
— prints to the file pointed to by FILE *f out.

O

UNIVERSITY OF OREGON

Enums

* Enums make your own type
— Type is “list of key words”

 Enums are useful for code clarity

— Always possible to do the same thing with
Integers

e Be careful with enums

— ... you can “contaminate” a bunch of useful words

O

UNIVERSITY OF OREGON

enum example

C keyword —*
“enum” —
means enum
definition is
coming

enum StudentType

{
HighSchool,
Freshman, &————This enum
Sophomore, contains 6
g:z;g;: different
GradStL’Jdent student
}s types

\

semi-colon!!!

Structs: a complex data type

* Construct that defines a group of variables

— Variables must be grouped together in contiguous
memory

* Also makes accessing variables easier ... they
are all part of the same grouping (the struct)

O

UNIVERSITY OF OREGON

C keyword —*
“struct” —

means struct
definition is
coming

o

struct syntax

struct Ray
{
double origin[3]; €—————This struct
double direction[3]; contains 6
b S semi-colon!!! doubles,

int main()

{
L

. accesses data members for a struct

meaning it is
48 bytes

struct Ray r; €————Declaring an
.origin[@] instance

.origin[1]
.origin[2]
.direction[0]
.direction[1]
.direction[2]

T

0
0
0

|| || || -e wE wa
[IO Y]
- wn

-

2 I B B Bl B |

UNIVERSITY OF OREGON

O

Unions

128-223-223-72-wireless:330 hank$ cat union.c
#include <stdio.h>

typedef union
float x;

{
int Y;

char zI[4]: Why are unions useful?
} cis330_union;

int main()

{
cis330_union u;
u.Xx = 3.5; /% u.x 1is 3.5, u.y and u.z are not meaningful *x/
u.y = 3; /* u.y 1is 3, now u.X and u.z are not meaningful x/
printf("As u.x = %f, as u.y = %d\n", u.x, u.y);

}

128-223-223-72-wireless:330 hank$ gcc union.c
128-223-223-72-wireless:330 hank$./a.out
As u.x = 0.000000, as u.y = 3

O

UNIVERSITY OF OREGON

Why are Unions useful?

* Allows you to represent multiple data types
simultaneously

— But only if you know you want exactly one of
them

* Benefit is space efficiency, which leads to
performance efficiency

Unions are also useful for abstracting type.
We will re-visit this when we talk about C++’s
templates.

UNIVERSITY OF OREGON

O

Function Pointer Example

128-223-223-72-wireless:cli hank$ cat function_ptr.c
#include <stdio.h>
int doubler(int x) { return 2xx; }
int tripler(int x) { return 3xx; }
int main()
{
int (kmultiplier) (int);
multiplier = doubler;
printf("Multiplier of 3 = %d\n", multiplier(3));
multiplier = tripler;
printf("Multiplier of 3 = %d\n", multiplier(3));

Iy
128-223-223-72-wireless:cli hank$ gcc function_ptr.c

128-223-223-72-wireless:cli hank$./a.out
Multiplier of 3 =
Multiplier of 3

6
9

UNIVERSITY OF OREGON

O

Function Pointer Example #2

128-223-223-72-wireless:cli hank$ cat array_fp.c
#include <stdio.h>

void doubler(int xX) { X[0]lx=2; X[1]%x=2; };

void tripler(int xX) { X[0]%=3; X[11x=3; };

int main() F t int Part of f t [t
unction pointer art or runcuaon signature
{ / p / g

void (kmultiplier) (int x);
int A[2] =1{ 2, 3 };
multiplier = doubler;
multiplier(A);
printf("Multiplier of 3
multiplier = tripler;
multiplier(A);
printf("Multiplier of 3 = %d, %d\n", A[Q], A[1l]);

%d, %d\n", A[0], Al[1]);

+
128-223-223-72-wireless:cli hank$ gcc array_fp.c

128-223-223-72—-wireless:cli hank$./a.out

| Don't be scared of extra ‘*’s ... they just come about because of

pointers in the arguments or return values.

Simple-to-Exotic Function Pointer
Declarations

void (*foo)(void);
void (*foo)(int **, char **%*);
char ** (*foo)(int **, void (*)(int));

These sometimes come up on interviews.

UNIVERSITY OF OREGON

O

Definition of Rectangle in rectangle.c

Why is this a pro

prototypes.h

olem?

void IntializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4);

[struct Rectangle;

ﬁcruct Rectangle

)

rectangle.c

“gcc —c driver.c” needs to make an object file.

It needs info about Rectangle then, not later.

r->minX=vl, r->maxX=v2; r->minY =v3; r->maxY =v4;

ﬁ#include <prototypes.h>

int main()

{

struct Rectangler;

driver.c

InitializeRectangle(r, 0, 1, 0, 1.5);

}

UNIVERSITY OF OREGON

The fix is to make sure

driver.c has access to the
Rectangle struct definition.

struct Rectangler;
InitializeRectangle(r, 0, 1, 0, 1.5);

L

on: “gcc —E”

1 "driver.c"
1 "<built-in>" 1

1 "<built-in>" 3

162 "<built-in>" 3

#1 "<command line>" 1
1 "<built-in>" 2

#1 "driver.c" 2
#1"./prototypes.h" 1

struct Rectangle;

void InitializeRectangle(struct Rectangle *r, doui
2 "driver.c" 2

int main()
{
struct Rectangle r;
InitializeRectangle(r, 0, 1, 0, 1.5);
}

gcc —E shows what the
compiler sees after satisfying

“preprocessing”, which
includes steps like “H#include”.

This is it. If the compiler can’t
figure out how to make object
file with this, then it has to

give up.

UNIVERSITY OF OREGON

O

4 files: struct.h, prototypes.h, rectangle.c, driver.c

struct.h

struct Rectangle

{

double minX, maxX, minY, maxy;

|5

prototypes.h

#include <struct.h>
void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4);

;/

rectangle.c ™

/#include <struct.h>

#include <prototypes.h>
void IntializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4)

{

r->minX =vl;, r->maxX=v2; r->minY =v3; r->maxY =v4;
\J /

ﬁ#include <struct.h> driver.c
#include <prototypes.h>
int main()

{

t
fni What is the problem with this configuration?

UNIVERSITY OF OREGON

O

Compilation error

CO2LNOOGFD58:project hank$ make

gcc -I. —c rectangle.c

In file included from rectangle.c:2:

In file included from ./prototypes.h:2:
./struct.h:2:8: error: redefinition of 'Rectangle’
struct Rectangle

./struct.h:2:8: note: previous definition is here
struct Rectangle

1 error generated.

UNIVERSITY OF OREGON

O

ifndef / #define to the rescue

struct.h
#ifndef RECTANGLE_330
#define RECTANGLE_330

struct Rectangle

{

double minX, maxX, minY, maxy;

|5

#endif

/

Why does this work?
‘ This problem comes up a lot with big projects, and

especially with C++.

O

UNIVERSITY OF OREGON

References

* Simplified version of a pointer.
e Key differences:

— You cannot manipulate it

* Meaning: you are given a reference to exactly one
instance ... you can’t do pointer arithmetic to skip
forward in an array to find another object

— A reference is always valid

* No equivalent of a NULL pointer ... must be a valid
instance

O

UNIVERSITY OF OREGON

References vs Pointers vs Call-By-Value

CO2LNOOGFD58:330 hank$ cat reference.C
#include <stdio.h>

void ref_doubler(int &x) { x = 2xx; };
void ptr_doubler(int xx) { *x = 2%kx; };
void val_doubler(int x) { x = 2xx; };

int main()
{
int x1 =2, x2 =2, X3 = 2;
ref_doubler(x1);
ptr_doubler(&x2);
val _doubler(x3);
printf("Vals are %d, %d, %d\n", x1, x2, x3);

| ref _doubler and ptr_doubler are both examples of call-by-reference.

val_doubler is an example of call-by-value.

UNIVERSITY OF OREGON

O

Constructor Types

struct TallyCounter
{

int count;

TallyCounter(void) - Default constructor

TallyCounter(int c);«- Parameterized
TallyCounter(TallyCounter &); | constructor
void Reset(); —
int GetCount();
void IncrementCount();

- Copy constructor

O

UNIVERSITY OF OREGON

Access Control

* New keywords: public and private
— public: accessible outside the struct
— private: accessible only inside the struct

* Also “protected” ... we will talk about that later
struct TallyCounter Everything following is

t private. Only will change
prJ_-Vite : € - when new access control
in count, keyword is encountered.

public: <—
TallyCounter(voio)s;
TallyCounter(int c);
TallyCounter(TallyCounter &); when NEWacess control
void Reset(): keyword is encountered.
GetCount();
IncrementCount();

Everything following is now
public. Only will change

Public, private, protected

Accessed |Accessed

by derived |outside

types* object
Public Yes Yes
Protected Yes No
Private No No

r—
* = with public inheritance

3 big changes to structs in C++

1) You can associate “methods” (functions) with
structs

2) You can control access to data members and
methods

3) Inheritance

UNIVERSITY OF OREGON

O

class vs struct

* class is new keyword in C++

* classes are very similar to structs

— the only differences are in access control

e primary difference: struct has public access by default, class
has private access by default

* Almost all C++ developers use classes and not
structs

— C++ developers tend to use structs when they want to
collect data types together (i.e., C-style usage)

— C++ developers use classes for objects ... which is
most of the time

You should use classes!

Even though there isn’t much difference ...

O

UNIVERSITY OF OREGON

Simple inheritance example

struct A

{ * Terminology
int x; . _
}: — B inherits from A
struct B : A — Ais a base type for B
{ : .
int y; — B is a derived type of A
i * Noteworthy
{i"t main() — “” (during struct definition) =
B b; inherits from
E’; : 2' * Everything from A is accessible in B
} — (b.x is valid!!)

|
'128—223—223—72—wire1ess:330 hank$ cat virtual2.C
#include <stdio.h>

truct SimpleID 1 y .
struct Simple Virtual functions:
int id;
virtual int GetIdentifier() { return id; };
. example
struct ComplexID : SimpleID
{

int extrald;
virtual int GetIdentifier() { return extralIdx128+id; };

};

struct C3 : ComplexID
{

};

int extraExtrald;

You get the method furthest down

. | in the inheritance hierarchy
int main()

{

C3 cid;
cid.id = 3;
cid.extrald = 3;
cid.extraExtrald = 4;
printf("ID = %d\n", cid.GetIdentifier());
}
128-223-223-72-wireless:330 hank$ g++ virtual2.C
I128—223—223—72—wire1ess:330 hank$./a.out

O

UNIVERSITY OF OREGON

C++ memory management

* C++ provides new constructs for requesting
heap memory from the memory manager

— stack memory management is not changed

e (automatic before, automatic now)

* Allocate memory: “new”
* Deallocate memory: “delete”

O

UNIVERSITY OF OREGON

new / delete syntax

No header necessary

fawcetz;330—CHiTaii_Egg—;;;TE————>

int main()
{ Allocating array and
int xoneInt = new int: single value is the same.
- ’
xonelnt = 3; —

int xintArray = new int[3];
intArray[0] = intArray[1l] = intArray[2] = 5;

delete onelnt;
delete [] intArray;

Deleting array takes [],

deleting single value
doesn’t.

new knows the type and
allocates the right amount.

new int 2 4 bytes
new int[3] = 12 bytes

) o oromeon

new calls constructors for your classes

* Declare variable in the stack: constructor
called

 Declare variable with “malloc”: constructor
not called

— C knows nothing about C++!

e Declare variable with “new”: constructor
called

Pure Virtual Functions

e Pure Virtual Function: define a function to be
part of the interface for a class, but do not
provide a definition.

e Syntax: add “=0" after the function definition.

 This makes the class be “abstract”
— |t cannot be instantiated
 When derived types define the function, then

are “concrete”
— They can be instantiated

UNIVERSITY OF OREGON

O

Pure Virtual Functions Example

class Shape

{
public:
virtual double GetArea(void) = 0;
};

class Rectangle : public Shape

{
public:
virtual double GetArea() { return 4; }:
};

int main()

{
Shape s;
Rectangle r;

}

fawcett:330 childs$ g++ pure_virtual.C

pure_virtual.C: In function ‘int main()’:

pure_virtual.C:15: error: cannot declare variable ‘s’ to be of abstract type ‘Shape’
pure_virtual.C:2: note: Dbecause the following virtual functions are pure within ‘Shape’:
pure_virtual.C:4: note: virtual double Shape::GetArea()
e

UNIVERSITY OF OREGON

O

Example of operator overloading

class MyInt

{
public:
MyInt(int x) { myInt = x; }; Declare operator ++ will be
(_____—————""——— overloaded for MylInt
MyInt& operator++();
int GetValue(void) { return myInt; };
protected:
int myInt;
}; int main()
{
MyInt & MyInt mi(6); Call operator ++ on
MyInt::operator++() ++mi; é_,_————””’—— Myint.
{ ++mi;
myInt++; printf("Value is %d\n", mi.GetValue());
return *xthis; }
} fawcett:330 childs$./a.out

Define operator ++ for jValue is 8

Mylnt

Virtual Function Table

e Let C be aclass and X be an instance of C.

e Let C have 3 virtual functions & 4 non-virtual
functions

e Let D be a class that inherits from Cand Y be
an instance of D.

— Let D add a new virtual function

e D’s virtual function table has 4 rows

— Each row has the correct definition of the virtual
function to call for a “D”.

UNIVERSITY OF OREGON

O

Exceptions

fawcett:330 childs$ cat exceptions.C
#include <iostream>

using std::cout;

using std::endl;

int main()
{

try

{

cout << "About to throw 105" << endl;
throw 105;
cout << "Done throwing 105" << endl;

}
catch (int &thelnt)
{
cout << "Caught an int: " << thelInt << endl;
}

}
fawcett:330 childs$ g++ exceptions.C

UNIVERSITY OF OREGON

O

const point"

 Assume a pointer named “P”
 Two distinct ideas:

— P points to something that is constant
* P may change, but you cannot modify what it points to
via P
— P must always point to the same thlng, but the
thing P points to may change. | @ |

O UNIVERSITY OF OREGON

ldea #1: ldea #2:
violates const: violates const:

“*p =3, “intY=5; P=&Y;”
OK: OK:

“intY=5; P=&Y;” “*p =3.”

‘ pointer can’t change, but you

can modify the thing it points to

pointer can change, but you
can’t modify the thing it can

points to

O

UNIVERSITY OF OREGON

const pointers

ldea #3:
violates const:
u*P — 3,»

“intY=5; P=&Y;,” you can’t modify the thing it
OK: points to

pointer can’t change, and

none

UNIVERSITY OF OREGON

O

const pointers

*p = .
Idea #1 fawcett:330 childs$ cat const3.C
int main()

ViOIateS const: { / const goes before type
. int X = 5;
sk - W int ;
F) - E;, const int xP;

P &X; // compiles
OK: P &; // compiles

(e) *P = 7; // won't compiles
intY=5;P=&Y;”

fawcett:330 childs$ g++ const3.C
/f=/ const3.C: In function ‘int main()':

. const3.C:8: error: assignment of read-only location
pointer can change, but you
can’t modify the thing it

points to

UNIVERSITY OF OREGON

O

const pointers

*p — .
fawcett:330 childs$ cat const4.C |CiEEE3 ##:Z:
int main() *
{ const goes after .)
int X < 5; violates const:
int Y = 6;
’ (“: ”
int % const P = &X; // must initialize intY=5; P=&Y;
*P = 7; // compiles
P = &Y; // won't compile .
\ p OK:
fawcett:330 childs§ g++.const§.c (% _ »”
const4.C: In function ‘int main()’: F) = 53)

const4.C:7: error: assignment of read-only variable ‘P’

pointer can’t change, but you
can modify the thing it points to

UNIVERSITY OF OREGON

O

const pointers

MtX=4i

ldea #3: int *P = &X;

violates const:
u*P _ 3,1)
-)
uint Y — 5’ P — &Y;” const in both places

OK, fawcett:330 childs$ cap const5.C
. int main()
{
none int X = 5;
int Y = 6;
const int *x const P = &X; // must initialize
. , *P = 7; // won't compile
pointer can’t change, P =&Y; // won't compile

: }
and you can’t modify fawcett:330 childs$ g++ const5.C

. . . const5.C: In function ‘int main()’:
the thmg It pomts to const5.C:6: error: assignment of read-only location

const5.C:7: error: assignment of read-only variable ‘P’

UNIVERSITY OF OREGON

O

Very common issue with const and objects

fawcett:330 childs$ cat const6.C
class Image

How does compiler know GetNumberOfPixels
doesn’t modify an Image?

We know, because we can see the implementation.

But, in large projects, compiler can’t see
implementation for everything.

Chance to Discuss Homeworks

* Your questions?

Final Thoughts

Goal: Getting Ready for 415

415

330
Difficulty

210

CIS Classes at UO

Final Comments

 This class is hard

e |tis hard for the instructors too

— | set it up this way, since | think it is crucial that
you learn these things

— Remember: | was in industry for 15 years

* Project 3: you have done something
significant and you should be proud.
— Github

UNIVERSITY OF OREGON

O

This class

* |f you liked this class

— You will love being a professional programmer
* One of my favorite periods of my career

— Aim for a development job (write code)
* |f you didn’t like this class
— Give it another chance

— This class also challenged you in other ways (time
management, hours per week, lots of material)

 Thank you for a great term

Assignment:
Make your 3E project run memory error and leak free

UNIVERSIT

O

Tasks:
4 B 1) start with your 3E source code. (Don’t use 3F, since it has exceptions and

Notes:
1) ifI had memory errors, they would have occurred after “Command: proj3F” red to use ix to do this ... esp.
and before “HEAP SUMMARY". None there, so I'm OK. |
a. Don'tforget to use your 3E code ... not 3F code.
2) Re memory leaks: “All heap blocks were freed” is the magic statement ... that
means no memory leaks. clares your program leak free

Submit:
1) ascreenshot of the valgrind output (see mine below)
2) your source code

hank@ix: ~/3F/3F 65% valgrind proj3F ~/3A_input.pnm 3F_output.pnm

==16125== Memcheck, a memory error detector

==16125== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==16125== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==16125== Command: proj3F /home/users/hank/3A_input.pnm 3F_output.pnm

==16125==

==16125==

==16125== HEAP SUMMARY:

==16125= in use at exit: @ bytes in @ blocks

==16125== total heap usage: 33 allocs, 33 frees, 108,022,422 bytes allocated
==16125==

==16125== All heap blocks were freed —— no leaks are possible

==16125==

==16125== For counts of detected and suppressed errors, rerun with: =-v
==16125== ERROR SUMMARY: @ errors from @ contexts (suppressed: 2 from 2)

3H

* Will look at this together now

Stress Test Project (3H)

 We will have ~60 stress tests

* We can’t check in 60 baseline images and
difference them all
— Will slow ix to a grind

e Solution:
— We commit “essence of the solution”

— We also complement that all images posted if
needed.

Checksums

Input Checksum
Fox > Cfticc';isc:‘r:“ 1582054665
The red fox heck
jumps over —» Cfu‘;cctf:r:“ - 2367213558
the blue dog
— Most useful when
e red 1ox 5 c
jumps ouer — Cfr:]icc';f:r:“ —— > 3043859473 input is very large
the blue do .
J and checksum is very
jtnhrﬁp:seg;?r); ___y checksum| oo 115126 ALl
the blue dog function
The red fox checksum
jumps oer —p function —P 1685473544
the blue dog

| From Wikipedia |

