0 UNIVERSITY OF OREGON ‘ I S 3 3 O [J
[]

/1717 O /7 71 17 _ 7.
/117 NI Il T N1 I I
AV VAV VA YIS A Y A A AR A AN A A R I A A A Y I
__ /1L I N, LS IN_] N N___ I T

Lecture 20: templates

June 1, 2018 Hank Childs, University of Oregon

Announcements

* 3T: duein 2 hours!
— No late work accepted

* 3H, 4B, and 4C: assighed Saturday AM
— “Due” June 9t

— But full credit will be awarded until 6am June 14t

 IMPORTANT: all work must be submitted by
6am Weds June 14th

— No work accepted starting at 601am June 14th

Stress Test Project (3H)

 We will have ~60 stress tests

* We can’t check in 60 baseline images and
difference them all
— Will slow ix to a halt

e Solution:
— We commit “essence of the solution”

— We also complement that all images posted if
needed.

Checksums

Input Checksum
Fox > Cfticc';isc:‘r:“ 1582054665
The red fox heck
jumps over —» Cfu‘;cctf:r:“ - 2367213558
the blue dog
— Most useful when
e red 1ox 5 c
jumps ouer — Cfr:]icc';f:r:“ —— > 3043859473 input is very large
the blue do .
J and checksum is very
jtnhrﬁp:seg;?r); ___y checksum| oo 115126 ALl
the blue dog function
The red fox checksum
jumps oer —p function —P 1685473544
the blue dog

| From Wikipedia |

O

UNIVERSITY OF OREGON

Our “checksum”

* Three integers:
— Sum of red channel
— Sum of green channel
— Sum of blue channel

* When you create a stress test, you register
these three integers

 When you test against others stress tests, you
compare against their integers

— If they match, you got it right

This will be done with a derived type of Sink.

Should Checksums Match?

* Onix, everything should match

* On different architectures, floating point math
won’t match

* Blender: has floating point math
* =2 no blender

Assignment:
Make your 3E project run memory error and leak free

UNIVERSIT

O

Tasks:
4 1) start with your 3E source code. (Don’t use 3F, since it has exceptions and

Notes:
1) ifI had memory errors, they would have occurred after “Command: proj3F” red to use ix to do this ... esp.
and before “HEAP SUMMARY". None there, so I'm OK. |
a. Don'tforget to use your 3E code ... not 3F code.
2) Re memory leaks: “All heap blocks were freed” is the magic statement ... that
means no memory leaks. clares your program leak free

Submit:
1) ascreenshot of the valgrind output (see mine below)
2) your source code

hank@ix: ~/3F/3F 65% valgrind proj3F ~/3A_input.pnm 3F_output.pnm

==16125== Memcheck, a memory error detector

==16125== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==16125== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==16125== Command: proj3F /home/users/hank/3A_input.pnm 3F_output.pnm

==16125==

==16125==

==16125== HEAP SUMMARY:

==16125= in use at exit: @ bytes in @ blocks

==16125== total heap usage: 33 allocs, 33 frees, 108,022,422 bytes allocated
==16125==

==16125== All heap blocks were freed —— no leaks are possible

==16125==

==16125== For counts of detected and suppressed errors, rerun with: =-v
==16125== ERROR SUMMARY: @ errors from @ contexts (suppressed: 2 from 2)

UNIVERSITY OF OREGON

O

4C

1) Extend your project 3 to having timing information
a. The timings should be added to logger
b. The timing for each Execute method should be logged individually
i. Note: if you do the inheritance stuff cleverly, you should only
have to add two gettimeofday calls total
2) Run a small performance study using your time

a. Create the following pipeline: one source that creates a solid red
image, one source that creates a solid blue image, and one Blender
(who's inputs are the red image and blue image).

b. Run the program multiple times. The first time make the solid colored
images be 250x250. Then 500x500. Then 1000x1000. Then
2000x2000. Study the timings.

c. Write a short report (i.e., several sentences) about your findings.
Please do not use MS Word or RTF. This short report should be in a

w__*n

text file, so that I can easily view it with my “vi” program.

UNIVERSITY OF OREGON

O

The plan

* Monday June 5: No class

 Weds, June 7: No class

— Remember: you will tell me about late passes on
the final

* Fri, June 9: Finals Review
— This room, this time

UNIVERSITY OF OREGON

Review

UNIVERSITY OF OREGON

O

const

°* const:
—is a keyword in C and C++
— qualifies variables

— is a mechanism for preventing write access to
variables

UNIVERSITY OF OREGON

O

const example

fawcett:330 childs$ cat constl.C
int main()

[const keyword modifies int
coné%/I;;/;/; 5;

}

The compiler enforces const ... just like public/
private access controls

O

UNIVERSITY OF OREGON

const arguments to functions

* Functions can use const to guarantee to the
calling function that they won’t modify the
arguments passed in.

struct Image

{
int width, height;
unsigned char xbuffer; read function can’t make the
}; same guarantee

ReadImage(char xfilename, Image &);
WriteImage(char xfilename, const Image &);

guarantees function won’t
modify the Image

UNIVERSITY OF OREGON

O

const pointers

 Assume a pointer named “P”

e Two distinct ideas:

— P points to something that is constant

* P may change, but you cannot modify what it points to
via P

— P must always point to the same thing, but the
thing P points to may change.

UNIVERSITY OF OREGON

O

 Assume a pointer named “P”

e Two distinct ideas:

— P points to something that is constant
* P may change, but you cannot modify what it points to
via P
— P must always point to the same thlng, but the
thing P points to may change. | gy sild.

_UNIVE RSITY OF OREGON

Y

ldea #1: ldea #2:

violates const: violates const:

“*p =3, “intY=5; P=&Y;”
OK: OK:

“intY=5; P=&Y;” “*p =3.”

‘ pointer can’t change, but you

can modify the thing it points to

pointer can change, but you
can’t modify the thing it can

points to

UNIVERSITY OF OREGON

O

ldea #3:
violates const:

u*P — 3,1)
’ pointer can’t change, and
“intY=5; P=&Y;,” you can’t modify the thing it
OK: points to

none

UNIVERSITY OF OREGON

O

const pointers

*p = .
Idea #1 fawcett:330 childs$ cat const3.C
int main()

ViOIateS const: { / const goes before type
. int X = 5;
sk - W int ;
F) - E;, const int xP;

P &X; // compiles
OK: P &; // compiles

(e) *P = 7; // won't compiles
intY=5;P=&Y;”

fawcett:330 childs$ g++ const3.C
/f=/ const3.C: In function ‘int main()':

. const3.C:8: error: assignment of read-only location
pointer can change, but you
can’t modify the thing it

points to

UNIVERSITY OF OREGON

O

const pointers

*p — .
fawcett:330 childs$ cat const4.C |CiEEE3 ##:Z:
int main() *
{ const goes after .)
int X < 5; violates const:
int Y = 6;
’ (“: ”
int % const P = &X; // must initialize intY=5; P=&Y;
*P = 7; // compiles
P = &Y; // won't compile .
\ p OK:
fawcett:330 childs§ g++.const§.c (% _ »”
const4.C: In function ‘int main()’: F) = 53)

const4.C:7: error: assignment of read-only variable ‘P’

pointer can’t change, but you
can modify the thing it points to

UNIVERSITY OF OREGON

O

const pointers

MtX=4i

ldea #3: int *P = &X;

violates const:
u*P _ 3,1)
-)
uint Y — 5’ P — &Y;” const in both places

OK, fawcett:330 childs$ cap const5.C
. int main()
{
none int X = 5;
int Y = 6;
const int *x const P = &X; // must initialize
. , *P = 7; // won't compile
pointer can’t change, P =&Y; // won't compile

: }
and you can’t modify fawcett:330 childs$ g++ const5.C

. . . const5.C: In function ‘int main()’:
the thmg It pomts to const5.C:6: error: assignment of read-only location

const5.C:7: error: assignment of read-only variable ‘P’

UNIVERSITY OF OREGON

O

const usage

* class Image;

e const Image *ptr;

— Used a lot: offering the guarantee that the
function won’t change the Image ptr points to

* Image * const ptr;

— Helps with efficiency. Rarely need to worry about
this.

e const Image * const ptr;
— Interview question!!

UNIVERSITY OF OREGON

O

Very common issue with const and objects

fawcett:330 childs$ cat const6.C
class Image

How does compiler know GetNumberOfPixels
doesn’t modify an Image?

We know, because we can see the implementation.

But, in large projects, compiler can’t see
implementation for everything.

UNIVERSITY OF OREGON

O

const functions with objects

fawcett:330 childs$ cat const7.C const after method name
class Image
{
public:
int GetNumberOfPixels() const { return widthxheight; };

private: If a class method is
X int width, height; declared as const,
’ then you can call
unsigned char * those methods with
Allocator(const Image *img) pointers.
{
int npixels = img->GetNumberOfPixels();
unsigned char *rv = new unsigned char[3xnpixels];
return rv;
}

fawcett:330 childs$ g++ —-c const7.C
fawcett:330 childs$

O

UNIVERSITY OF OREGON

mutable

 mutable: special keyword for modifying data
members of a class

— If a data member is mutable, then it can be
modified in a const method of the class.

— Comes up rarely in practice.

UNIVERSITY OF OREGON

static

e static memory: third kind of memory
allocation

— reserved at compile time

e contrasts with dynamic (heap) and automatic
(stack) memory allocations

e accomplished via keyword that modifies
variables

‘ There are three distinct usages of statics

UNIVERSITY OF OREGON

static usage #1: persistency within a
function

fawcett:330 childs$ cat staticl.C
#include <stdio.h>

O

int fibonacci() fawcett:330 childs$ g++ staticl.C
{ fawcett:330 childs$./a.out
static int last2 = 0; 1
static int lastl = 1; z
int rv = lastl+last2; 3
last2 = lastl; >
lastl = rv; 8
return rv; 13
} 21
34
int main() 25
{ 89 N

int 1i;
for (int i =0 ; i < 10 ; i++)
printf("sd\n", fibonacci());

UNIVERSITY OF OREGON

static usage #2: making global
variables be local to a file

O

| have no idea why the static keyword is used in this way.

fa

fawcett:330 childs$ cat file2.C
#include <stdio.h> static int count = 0;
static int count = 0; int doubler(int Y)

{
int doubler(int); count++;

return 2xY;
int main() }
{
count++;

doubler(3);
printf("count is %d\n", count);

}

fawcett:330 childs$ g++ —-c file2.C
fawcett:330 childs$ g++ filel.o file2.o0
fawcett:330 childs$./a.out

count is 1

UNIVERSITY OF OREGON

O

static usage #3: making a singleton for a class

fawcett:Downloads childs$ cat static3.C
#include <iostream>

using std::cout;
using std::endl;

class MyClass

{
public:
MyClass() { numInstances++; };
virtual ~MyClass() { numInstances——; };
int GetNumInstances(void) { return numInstances; };
private:
static int numInstances;
};

int MyClass::numInstances = 0;

int main()
{
MyClass *p = new MyClass[10];
cout << "Num instances = " << p[@].GetNumInstances() << endl;

delete [] p;
cout << "Num instances = " << p[@].GetNumInstances() << endl;
}

fawcett:Downloads childs$ cat static3.C
#include <iostream>

o ot static methods

class MyClass

{
public:
MyClass() { numInstances++; };
virtual ~MyClass() { numInstances——; };

static int GetNumInstances(void) { return numInstances; };

private:
static int numInstances;
};

Static data members and static

methods are useful and they are
definitely used in practice

int MyClass::numInstances = 0;

int main()

{
MyClass *p = new MyClass[10];
cout << "Num instances = " << MyClass::GetNumInstances() << endl;
delete [] p;
cout << "Num instances = " << MyClass::GetNumInstances() << endl;
}

fawcett:Downloads childs$ g++ static3.C
fawcett:Downloads childs$./a.out

Num instances 10

Num instances (]

UNIVERSITY OF OREGON

Scope

int X = 0;

class MyClass

{ scope

public:
MyClass() { X =1; };

void SetValue(int);

private:
int X;
}; This one will compile ... the
void MyClass::SetValue(int X) compiler thinks that you
{ made a new SCOope on
{

int X = 3: purpose.

cout << "X is " << X << endl;

}
So what does it print?

int main()

{

MyClass mc;
mc.SetValue(2);

UNIVERSITY OF OREGON

O

Scope Rules

 The compiler looks for variables:
— inside a function or block
— function arguments
— data members (methods only)
— globals

Sort of new / sort of review

Overloading Operators

* NOTE: | lectured on this some, but it was
informal. These slides formally capture the
ideas we discussed.

C++ lets you define operators

* You declare a method that uses an operator in
conjunction with a class

—+, -, /1 !; ++, etc.

* You can then use operator in your code, since
the compiler now understands how to use the
operator with your class

* This is called “operator overloading”

— ... we are overloading the use of the operator for
more than just the simple types.

UNIVERSITY OF OREGON

O

Example of operator overloading

class MyInt

{
public:
MyInt(int x) { myInt = x; }; Declare operator ++ will be
(_____—————""——— overloaded for MylInt
MyInt& operator++();
int GetValue(void) { return myInt; };
protected:
int myInt;
}; int main()
{
MyInt & MyInt mi(6); Call operator ++ on
MyInt::operator++() ++mi; é_,_————””’—— Myint.
{ ++mi;
myInt++; printf("Value is %d\n", mi.GetValue());
return *xthis; }
} fawcett:330 childs$./a.out

Define operator ++ for jValue is 8

Mylnt

0 ‘ UNIVERSITY OF OREGON
fawcett:330 childs$ cat oostream.C

#include <iostream> IVIOre Ope rator

using std::ostream;

using std::cout; Overloading

using std::endl;

class Image

{
public:
Image();
friend ostream& operator<<(ostream &os, const Image &);
private: - :
int width, height; int main()
unsigned char xbuffer; { _
};: Image img;
cout << img;

Image: :Image() + .

{ fawcett:330 childs$ g++ oostream.C
width = 100; fawcett:330 childs$./a.out
height = 100; 100x100
buffer = NULL; No buffer allocated!

}

ostream &

operator<<(ostream &out, const Image &img)

{

out << img.width << "x" << img.height << endl;
if (img.buffer == NULL)

out << "No buffer allocated!" << endl;
else

out << "Buffer is allocated!" << endl;

UNIVERSITY OF OREGON

O

Beauty of inheritance

e ostream provides an abstraction

— That’s all Image needs to know
* itis a stream that is an output

— You code to that interface
— All ostream’s work with it

int main()
int main() { .
{ Image img;
Image img; ofstream ofile("output_file");
cerr << img; y ofile << img;
}
fawcett:330 childs$./a.out | |fawcett:33@ childs$ g++ oostream.C
100x100 fawcett:330 childs$./a.out
No buffer allocated! fawcett:330 childs$ cat output_file

100x100
No buffer allocated!

0 UNIVERSITY OF OREGON

class Image

assignment operator

{
public:
Image();
void SetSize(int w, int h);
friend ostream& operator<<(ostream &os, const Image &);
Image & operator=(const Image &);
Image &
private: Image::operator=(const Image &rhs)
int width, height;
unsigned char xbuffer; if (buffer != NULL)
}; delete [] buffer;
buffer = NULL;
. width = rhs.width;
void o , height = rhs.height;
}mage::Set51ze(1nt w, int h) if (rhs.buffer != NULL)
{
if (buffer != NULL) buffer = new unsigned char[3*widthxheight];
delete [] buffer; memcpy(buffer, rhs.buffer, 3%widthxheight);
width = w;
height = h; }
buffer = new unsigned char[3xwidthxheight]; ‘ .
} int main()
fawcett:330 childs$./a.out {

Image 1:200x200
Buffer is allocated!
Image 2:0x0

No buffer allocated!
Image 1:200x200
Buffer is allocated!
Image 2:200x200
Buffer is allocated!

Image imgl, img2;

imgl.SetSize (200, 200);
cout << "Image 1:" << imgl;
cout << "Image 2:" << img2;
img2 = imgl;

cout << "Image 1:" << imgl;
cout << "Image 2:" << img2;

UNIVERSITY OF OREGON

O

let’s do this again...

ostream &
operator<<(ostream &out, const Image &img)
{
out << img.width << "x" << img.height << endl;
if (img.buffer == NULL)
out << "No buffer allocated!" << endl;
else
out << "Buffer is allocated, and value is "
<< (void *) img.buffer << endl;

return out;

fawcett:330 childs$./a.out

Image 1:200x200

Buffer is allocated, and value is 90x100800000
Image 2:0x0

No buffer allocated!

Image 1:200x200
Buffer is allocated, and value is 0x100800000
Image 2:200x200

Buffer is allocated, and value is 0x10081e600

UNIVERSITY OF OREGON

O

let’s do this again...

class Image
{
public:
Image();
void SetSize(int w, int h);
friend ostream& operator<<(ostream &os, const Image &);
// Image & operator=(const Image &); — ,
int main()
private: {
1nt'w1dth, height; Image imgl, img2;
,, Unsignad char abutter: imgl.SetSize (200, 200);

cout << "Image 1:" << imgl;
cout << "Image 2:" << img2;
img2 = imgl;

cout << "Image 1:" << imgl;
cout << "Image 2:" << img2;

J—
fawcett:330 childs$ g++ assignment_op.C it still compiled ...
fawcett:330 childs$ | 5

why'

O

UNIVERSITY OF OREGON

C++ defines a default assignment
operator for you

* This assighment operator does a bitwise copy
from one object to the other.

* Does anyone see a problem with this?

fawcett:330 childs$./a.out

Image 1:200x200

Buffer is allocated, and value is 90x100800000
Image 2:0x0

No buffer allocated!

Image 1:200x200

Buffer is allocated, and value is 0x100800000
Image 2:200x200

Buffer is allocated, and value is 0x100800000

| This behavior is sometimes OK and

sometimes disastrous.

Copy constructors: same deal

e C++ automatically defines a copy constructor
that does bitwise copying.

* Solutions for copy constructor and assignment
operators:
— Re-define them yourself to do “the right thing”
— Re-define them yourself to throw exceptions
— Make them private so they can’t be called

Templates

UNIVERSITY OF OREGON

O

Motivation

int Doubler(int X) { return 2xX; };
float Doubler(float X) { return 2xX; };

int main()

{

int X = 2;

float Y = 2.6;

cout << "2xX = " << Doubler(X) << ", 2xY = " << Doubler(Y) << endl;
}

fawcett:330 childs$ g++ logger_defines.C
fawcett:330 childs$./a.out
2%xX = 4, 2%xY = 5.2

fawcett:330 childs$ nm a.out
0000000100000d7a s stub helpers

00000001000010b0® D _NXArgc

00000001000010b8 D _NXArgv

0000000100000ac7 t __GLOBAL__I__Z7Doubleri

0000000100000a84 t __Z41__static_initialization_and_destruction_0ii
0000000100000b26 T __Z7Doublerf

0000000100000b18 T __ Z7Doubleri

UNIVERSITY OF OREGON

O

Motivation

fawcett:330 childs$ nm a.out
0000000100000d7a s stub helpers
00000001000010b0® D _NXArgc
‘/*00000001000010b8 D _NXArgv
11 0000000100000ac7 t __GLOBAL__I__Z7Doubleri
0000000100000a84 t __Z41_static_initialization_and_destruction_@0ii
f100000001@0660b26 T __Z7Doublerf
0000000100000b18 T __Z7Doubleri

n 2%xX; };

DOUBLER_MACRO(int)
DOUBLER_MACRO(float)

int main()
{

int X = 2;

float Y = 2.6;

cout << "2xX = " << Doubler(
}
fawcett:330 childs$ g++ logger_g
fawcett:330 childs$./a.out

2%X = 4, 2%Y = 5.2

fawcett:330 childs$ g++ -E logger_defines.C
1 "logger_defines.C"

1 "<built-in>"

1 "<command-1line>"

1 "logger_defines.C"

15 "logger_defines.C"

int Doubler(int X) { return 2xX; };

float Doubler(float X) { return 2xX; };

int main()

UNIVERSITY OF OREGON

O

First Template

fawcett:330 childs$ cat doubler_template.C

fawcett:330 childs$ nm a.out
#include <iostream> 0000000100000d7a s stub helpers
00000001000010c® D _NXArgc
000000010000106c8 D _NXArgv

us 1ng std r:cout : 0000000100000abb t __GLOBAL__I_main
o .. . 0000000100000a78 t __Z41__static_initialization_and_destruction_@0ii
using std::endl; 0000000100000ced T _ Z7DoublerIfET_SO_

0000000100000cdf T __Z7DoublerIiET_SO_
template <class T> T Doubler(T X) { return 2xX; };

int main()

{

int X = 2;

float Y = 2.6;

cout << "2xX = " << Doubler(X) << ", 2xY = " << Doubler(Y) << endl;
}

fawcett:330 childs$ g++ doubler_template.C
fawcett:330 childs$./a.out
24X = 4, 2%Y = 5.2

Will now do an example to compare
templates and virtual functions

* Will take some buildup...

UNIVERSITY OF OREGON

O

Money Class

class Money

{
public:
Money(int d, int c) { dollars = d; cents = c; };
bool operator<(const Money &m);
private:
int dollars;
int cents;
b
bool Money::operator<(const Money &m)
{
if (dollars < m.dollars) . .
return true; int main()
if (dollars == m.dollars) { .
return (cents < m.cents); mg::; mé?é,sggs;
. bool 1t = m < m2;
} return false; cerr << "LT = " << 1t << endl;
1t = m2 < m;
cerr << "LT = " << 1t << endl;
}
CO2LNOOGFD58:330 hank$ g++ money.C

CO2LNOOGFD58:330 hank$./a.out
LT 0
LT 1

UNIVERSITY OF OREGON

O

License Plate Class

class LicensePlate

{
public:
LicensePlate(char c1, char c2, char c3,
int i1, int 12, int i3)
{
letters[0] = c1;
letters[1] = c2;
letters[2] = c3: bool LicensePlate::operator<(const LicensePlate &rhs)
o {
numbers[@] = il; for (int i = @ ; i < 3 ; i++)
numbers[1] = i2; {
numbers[2] = i3; if (letters[i] < rhs.letters[i])
return true;
by if (letters[i] > rhs.letters[i])
return false;
bool operator<(const LicensePlate &); } . , ,
for (int 1 =0 ; i < 3 ; i++)
{
private: if (numbers[i] < rhs.numbers[i])
char letters [3]; if (r:s:\Egrr]'st[irlljei rhs.numbers[i])
} int numbers [3]; return false; .
’ }
// equal
int main() return false;
{ }
LicensePlate 1p1('a', 'b', 'c', 4, 5, 6);
LicensePlate 1p2('c', 'b', 'a', 6, 5, 4);

bool 1t = 1pl < 1p2;
cerr << "LT = " << 1t << endl;
1t = 1p2 < 1pl;

cerr << "LT = " << 1t << endl;

Sorting With Templates

template <class T> int main()
void Sort(T *%X, int nX) {
{ Money m1(6, 85);
for (int 1 =0 ; i < nX ; i++) Money m2(6, 25);
for (int j = i+1 ; j < nX ; j++) Money m3(4, 25);
{ Money m4(5, 25);
if (xX[j] < %X[i])
{ LicensePlate 1lp1(‘'a', 'b', 'c', 4, 5, 6);
T xtmp = X[j]; LicensePlate 1p2('c', 'b', 'a', 6, 5, 4);
X[j] = XI[i]; LicensePlate 1p3('c', 'd', 'a', 6, 5, 4);
X[i] = tmp; LicensePlate 1lp4('b', 'b', 'a', 6, 5, 4);
}
} Money xmoney_1list[4] = { &m1, &m2, &m3, &m4 };
} LicensePlate x1p_list[4] = { &lpl, &lp2, &lp3, &lp4 };

Sort(money_1list, 4);
Sort(lp_list, 4);

CO2LNOOGFD58:330 hank$ g++ template_sort.C for (int i =0 : i <4 : i++)

g?Z;EOSgFD58:330 hank$./a.out cout << i << ": $" << money_list[i]->dollars << "."
1: $5.25 << money_list[i]->cents << endl;

2: $6|25 1 1 = . 1 . 1

3: $6.85 Eor (int 1 =0 ; i <4 ; i++)

0: abc456 cout << i << ": "

1: bbab654 PrintLicensePlate(1p_list[il);

2: cba654 cout << endl;

3: cda654 }

Doing the same with inheritance

class Sortable
{
public: void Sort(Sortable *xxX, int nX)
virtual bool operator<(const Sortable %) = 0; {
b for (int i =0 ; 1 < nX ; i++)
, _ for (int j = i+1 ; j < nX ; j++)
class LicensePlate : public Sortable {
{ . . .
public: ?f (xX[j]l < XI[il])
LicensePlate(char cl1, char c2, char c3, .
int i1, int i2, int i3) Sortable xtmp = X[jl;
{ X[jl = XI[il;
letters[0] = c1; X[i] = tmp;
letters[1] = c2; }
letters[2] = c3; }
numbers[0] = i1; }
numbers[1] = i2;
numbers[2] = i3;
} int main()
{
bool operator<(const Sortable x*); LicensePlate lpl(‘'a', 'b', 'c', 4, 5, 6);
) LicensePlate 1p2('c', 'b', 'a', 6, 5, 4);
public: LicensePlate 1p3('c', 'd', 'a', 6, 5, 4);
char letters[3]; LicensePlate 1p4('b', 'b', 'a', 6, 5, 4);
int numbers[3];
}; Sortable x1p_list[4] = { &lp1, &lp2, &lp3, &lp4 };
Sort(lp_list, 4);
for (int i =0 ; i <4 ; i++)

cout << 1 << ;
PrintLicensePlate((LicensePlate x)1lp_list[il]);
cout << endl;

Templates vs Virtual Functions

e Virtual functions:
— Had to affect inheritance hierarchy
— Overhead in function call (virtual function table)

 Templates:

— Did not need to affect inheritance hierarchy,
although function names had to coincide

— No additional overhead (resolved at compile time)

Standard Template Library

Standard Template Library

e Standard Template Library: STL

 Many, many templated types

* Can ease your programming burden

* Can also hide significant performance issues

— And you use C/C++ for performance

* My recommendation: use with caution for
code that needs to be performant

UNIVERSITY OF OREGON

O

Vector

#include <vector>
using std::vector;

int main()
{
vector<int> intArray(2);
intArray[0] = 0;
intArray[1l] = 1;
intArray.push_back(1);
intArray.push_back(2);
intArray.push_back(3);
intArray.push_back(5);
cout << "Size is " << intArray.size() << endl;
cout << "Last val of Fib is " << intArray[5] << endl;
¥
CO2LNOOGFD58:330 hank$ g++ vector.C
CO2LNOOGFD58:330 hank$./a.out
Size is 6
Last val of Fib is 5

std::vector

* Always has the amount of memory you need
* Many STL algorithms work on it
* Memory allocation:

— If you don’t have enough, double it
* (can be a big overestimation)

* Overhead in access
— Maybe not a big deal if data-intensive?

O

UNIVERSITY OF OREGON

STL: map

#include <map>
#include <string>

using std::map;
using std::string;

int main()

{
map<string, int> agelLookup;
ageLookup["Hank"] = 37;
ageLookup["Charlotte"] = 11;
ageLookup["William"] = 9;

cout << "Hank's age is " << agelLookup["Hank"] << endl;
cout << "Carissa's age is " << agelLookup["Carissa"] << endl;

}
CO2LNOOGFD58:330 hank$ g++ map.C
CO2LNOOGFD58:330 hank$./a.out
Hank's age is 37

Carissa's age is 0

C++ Strings

UNIVERSITY OF OREGON

O

(not a template thing): String

e C++ string class is very useful

* Great implementation of a class that
encapsulates a string

#include <string>
using std::string;

int main()

{
string str = "Hello";
str += " world";
cout << str << endl;
}

CO2LNOOGFD58:330 hank$ g++ string.C
CO2LNOOGFD58:330 hank$./a.out

Hello world

UNIVERSITY OF OREGON

O

String methods

Iterators:

begin Return iterator to beginning (public member function)

end Return iterator to end (public member function)

rbegin Return reverse iterator to reverse beginning (public member function)

rend Return reverse iterator to reverse end (public member function)

cbegin & Return const_iterator to beginning (public member function)

cend <! Return const_iterator to end (public member function)

crbegin & Return const_reverse_iterator to reverse beginning (public member function)

crend & Return const_reverse_iterator to reverse end (public member function)
Capacity:

size Return length of string (public member function)

length Return length of string (public member function)

max_size Return maximum size of string (public member function)

resize Resize string (public member function)

capacity Return size of allocated storage (public member function)

reserve Request a change in capacity (public member function)

clear Clear string (public member function)

empty Test if string is empty (public member function)

shrink_to_fit < Shrink to fit (public member function)

String methods

Element access:

operator[] Get character of string (public member function)

at Get character in string (public member function)

back ¢! Access last character (public member function)

front < Access first character (public member function)
Modifiers:

operator+= Append to string (public member function)

append Append to string (public member function)

push_back Append character to string (public member function)

assign Assign content to string (public member function)

insert Insert into string (public member function)

erase Erase characters from string (public member function)

replace Replace portion of string (public member function)

swap Swap string values (public member function)

pop_back ¢t Delete last character (public member function)

String operations:

c_str Get C string equivalent (public member function)

data Get string data (public member function)

get_allocator Get allocator (public member function)

copy Copy sequence of characters from string (public member function)
find Find content in string (public member function)

rfind Find last occurrence of content in string (public member function)
find_first_of Find character in string (public member function)

find_last_of Find character in string from the end (public member function)

find_first_not_of Find absence of character in string (public member function)
find_last_not_of Find non-matching character in string from the end (public member function)
substr Generate substring (public member function)

compare Compare strings (public member function)

Bonus Topics

Upcasting and Downcasting

e Upcast: treat an object as the base type
— We do this all the time!
— Treat a Rectangle as a Shape

 Downcast: treat a base type as its derived
type
— We don’t do this one often
— Treat a Shape as a Rectangle

* You better know that Shape really is a Rectangle!!

O

UNIVERSITY OF OREGON

Upcasting and Downcasting

class A
{
};

class B : public A
{

public:
B() { myInt = 5; };
void Printer(void) { cout << myInt << endl; };
private:
int myInt;
b

void Downcaster(A *a)

{
B xb = (B %) a;
b->Printer();

}
int main()
{

A a;

B b;

Downcaster(&b);
Downcaster(&a);

fawcett:330 childs$ g++ downcaster.C
fawcett:330 childs$./a.out

5

-1074118656

// no problem
// no good

| whatdoweget?

Upcasting and Downcasting

e C++ has a built in facility to assist with
downcasting: dynamic_cast

* | personally haven’t used it a lot, but it is used
In practice

* Ties in to std::exception and polymorphism

* Others: reinterpret_cast, static_cast,
const_cast

UNIVERSITY OF OREGON

O

Default Arguments

void Foo(int X, int Y = 2)

{
cout << "X =" <<« X << ", ¥Y =" << Y << endl;

}
int main()
{

Foo(5);

Foo(5, 4);
}

fawcett:330 childs$ g++ default.C
fawcett:330 childs$./a.out

default arguments: compiler pushes values on the
stack for you if you choose not to enter them

O

UNIVERSITY OF OREGON

Booleans

* New simple data type: bool (Boolean)
* New keywords: true and false

int main()

{
bool b = true;
cout << "Size of boolean is " << sizeof(bool) << endl;

}
fawcett:330 childs$ g++ Boolean.C

fawcett:330 childs$./a.out

UNIVERSITY OF OREGON

O

printf

* Print to stdout
— printf(“hello world\n”);
— printf(“Integers are like this %d\n”, 6);
— printf(“Two floats: %f, %f”, 3.5, 7.0);

Have you ever wondered how printf takes a
variable number of arguments?

UNIVERSITY OF OREGON

O

Variable-Length Argument Lists

#include <stdarg.h> *
#include <stdlib.h>
#include <stdio.h>
int SumIntList(int X, ...)
{
va_list ap; /* points to each unnamed arg in turn x/
int sum = 0;
int ival;
int i;
va_start(ap, X); /* make ap point to 1st unnamed arg */
for (i =0 ; i< X ; i++)
{
ival = va_arg(ap, int);
sum += ival;
}
va_end(ap);
return sum;
}
int main()
{
printf("List sum = %d\n", SumIntList(3, 13, 17, 22));
printf("List sum = %d\n", SumIntList(5, 1, 2, 3, 4, 5));
}

EﬂiilgNggﬁF?ﬁ;;Promotion hank$./a.out Adapted from Kernigan &

List sum = 15 Ritchie C book

