0 UNIVERSITY OF OREGON ‘ I S 3 3 O [J
[]

/1717 O /7 71 17 _ 7.
/117 NI Il T N1 I I
AV VAV VA YIS A Y A A AR A AN A A R I A A A Y I
__ /1L I N, LS IN_] N N___ I T

Lecture 2:
Memory in C

April 4, 2018 Hank Childs, University of Oregon

UNIVERSITY OF OREGON

O

Office Hours

e Hank’s OH:
— Tues 2pm-3pm, Friday, 11am-noon
e Hank’s OH Location: 301 Deschutes Hall

e Brent’s Office Hours:
— Monday: 4-5pm
— Weds: 4-5pm (not today)
— Thurs: 4-5pm (not today)

e TA OH Location: 100 Deschutes Hall

Note on Homeworks

* Project 1A: assighed Monday, due tonight
— = means 6am Thursday
— Will discuss again in 10 slides

* Project 2A: assigned today, due in class on
Monday

* Project 1B assigned Friday, due Weds Apr 12
e Lecture this Friday (not lab)

O UNIVERSITY OF OREGON

UNIVERSITY OF

OREGON Libraries

VirtualBox Demo O

O X Virtualization is useful in an incredible

4

°
5 @ libreoffice|

A BB BB variety of cases, but it also involves

i A A
EY

knowing arcane details about how com-
puters work. Additionally, it has its own
unique hiccups that can be a snag for

““““ even veteran technicians. Do you know
some basics about computers, and want
to expand upon that through virtualiz-

(O
”

W—mﬁ Ing an Operating SyStem? Show up, and

we can help get you started.

WHEN

Fri, April 06
4:00 - 6:00 PM
WHERE

PSC Boo6 (Vislab) th.ps://Iibrary.uoregon.edu/
scilib/psc-dearmond-makerspace

More on Piazza

Plan for today

* Quick review of Unix basics
* Project 1A

* Baby steps into C and gcc

* Memory

Plan for today

* Quick review of Unix basics
* Project 1A

* Baby steps into C and gcc

* Memory

UNIVERSITY OF OREGON

O

Files

* Unix maintains a file system

— File system controls how data is stored and
retrieved

* Primary abstractions:
— Directories
— Files

* Files are contained within directories

UNIVERSITY OF OREGON

O

Directories are hierarchical

* Directories can be placed within other
directories

o “/” --The root directory

— Note “/”, where Windows uses “\”
o “/dirl/dir2/filel”

— What does this mean?

File filel is contained in directory dir2,
which is contained in directory dirl,
which is in the root directory

Home directory

* Unix supports multiple users

* Each user has their own directory that they
control

* Location varies over Unix implementation, but
typically something like “/home/username”

e Stored in environment variables

fawcett:~ childs$ echo $HOME
/Users/childs 3

O

UNIVERSITY OF OREGON

File manipulation

Mo Terminal — bash — 80x24

| bash |
Last login: Tue Apr 1 04:56:14 on ttys@05

—_—m—m—————________________
New commands: mkdir, cd, touch, Is, rmdir, rm

cd: change directory

* The shell always has a “present working
directory”

— directory that commands are relative to
e “cd” changes the present working directory

* When you start a shell, the shell is in your
“home” directory

O

UNIVERSITY OF OREGON

Unix commands: mkdir

* mkdir: makes a directory

— Two flavors
* Relative to current directory
— mkdir dirNew

* Relative to absolute path
— mkdir /dirl/dir2/dirNew
» (dirl and dir2 already exist)

UNIVERSITY OF OREGON

O

Unix commands: rmdir

* rmdir: removes a directory

— Two flavors

* Relative to current directory
— rmdir badDir

» Relative to absolute path
— rmdir /dirl/dir2/badDir
» Removes badDir, leaves dirl, dir2 in place

* Only works on empty directories!

— “Empty” directories are directories with no files

Most Unix commands can distinguish between absolute and

relative path, via the “/” at beginning of filename.
(I'm not going to point this feature out for subsequent commands.)

UNIVERSITY OF OREGON

O

Unix commands: touch

e touch: “touch” a file

e Behavior:

— If the file doesn’t exist
* = create it

— If the file does exist
e - update time stamp

Time stamps record the last modification to a file or directory
Will talk more about this command with build systems

O

UNIVERSITY OF OREGON

Unix commands: Is

* |s: list the contents of a directory
— Note this is “LS”, not “is” with a capital ‘i’
* Many flags, which we will discuss later

— A flag is a mechanism for modifying a Unix
programs behavior.

— Convention of using hyphens to signify special
status

e “Is” is also useful with “wild cards”, which we
will also discuss later

UNIVERSITY OF OREGON

O

Important: “man”

* Get a man page:

* 2 “man rmdir” gives:

RMDIR(1) BSD General Commands Manual RMDIR(1)
NAME

rmdir —— remove directories
SYNOPSIS

rmdir [-p] directory ...

DESCRIPTION

The rmdir utility removes the directory entry specified by each directory
argument, provided it is empty.

Arguments are processed in the order given. In order to remove both a
parent directory and a subdirectory of that parent, the subdirectory must
be specified first so the parent directory is empty when rmdir tries to
remove it.

The following option is available:
-p Each directory argument is treated as a pathname of which all

components will be removed, if they are empty, starting with the
last most component. (See rm(1) for fully non-discriminant

File Editors

e vimtutor a great start for learning “vi”

e But ask me for tips any time you see me
editing

(l'(" "sion 1.1 \
April 1st, 06
1 / Vi hical cheat sheet
normal
mode
toggle external play rev N 0O/ goto "soft" repeat|| 3 next begin end "soft" bol next
~ case ! filter I@ macro # llt,lent f) i /Omat bol & s ident sentence|| Jsentence|| ___ down + line
_ goto = "hard"|[_ prev || — auto’
* mark 1 3 5 6 7 8 9 0 bol ine ||~ format
ex next end replace v back vank undo insert open aste begin end
mode WVO E R nfode "till Y line line I at bol O al?me P lfefore i parag. parag.
record next end replacel| §, 1,3 insert open paste!{| [, 1. i
* macro word e word r’ char t ull _y yank u undo 1 mode O below p after misc e
append)| subst delete 'back" eof/ n] screen)| oin screen|| « exemd|| " reg. 1 bol
A:l:tp eol S line to eol *find ¢ Ggotol top J T'mes K help bottom|| « line * spec goto éol
subst L3 £, find xtra® « repeat || ', goto t
Aappend|[S Char d delete | 8¢ cnds h - J 2 k 4+ 1 => |5 ohoF | \° used:
AT back- change visual prev rev screen I find
Z quit space IC to eo lines B N(%nd) mid'l < indem > indent ? (rev.)
. extra” delete 1.3 visual next . set t
ﬁmff; X char C change V mode b word n (find) mark]| :7';7;7[? . rgpme; / * find
moves the cursor, or defines Main command line commands ('ex'): Notes:
the range for an operator W (sme), i t‘l)ult) :q! (quit w/o saving) (1) use "x before a yank/paste/del command
direct action command, :e f (open file to use that register (‘clipboard’) (x=a..z,*)
if red, it enters insert mode :%s/x/y/g (replace 'x' by 'y' filewide), (e.g.: "ay$ to copy rest of line to reg 'a’)
. 8 :h (help in vim), :new (new file in vim), - -
t requires a motion afterwards, (2) type in a number before any action
operates between cursor & Other important commands: to repeat it that number of times
destination CTRL-R: redo (vim), (e.g.: 2p, d2w, 5i, dgj)
special functions, CTRL-F/-B: page up/down, (3) duplicate operator to act on current line
requires extra input CI‘RL-E/-grl' : siroll linlc up(/]down, . s (d(i) =ppris line, >> = indent line)
* CTRL-V: block-visual mode (vim only . . .
. commands with a dot need vist i v) (4) ZZ to save & quit, ZQ to quit w/o saving
a char argument afterwards Visual mode:
bol = beginning of line, eol = end of line, Move around and type operator to act (5) zt: scroll cursor to top,
mk = mark, yank = copy on selected region (vim only) zb: bottom, zz: center
words: quux|(foo]] baz]] baz)] O B Lo e s oarr (vim only
WORDSs: Guux (foo, bar, baz) J : open file under cursor (vim only)
For a graphical vi/vim tutorial & more tips, go to www.viemu.com - home of ViEmu, vi/vim emulation for Microsoft Visual Studio

_ http://www.viemu.com/vi-vim-cheat-sheet.gif _

Plan for today

* Quick review of Unix basics
* Project 1A

* Baby steps into C and gcc

* Memory

UNIVERSITY OF OREGON

O

Project 1A

* Practice using an editor
* Must be written using editor on Unix platform

— | realize this is unenforceable.

— If you want to do it with another mechanism, |
can’t stop you

* But realize this project is simply to prepare you for later
projects

Project 1A

* Write >=300 words using editor (vi, emacs,
other)

* Topic: what you know about C programming
language

e Can’t write 300 words?
— Bonus topic: what you want from this course

 How will you know if it is 300 words?
— Unix command: “wc” (word count)

UNIVERSITY OF OREGON

O

Unix command: wc (word count)

fawcett:~ childs$ vi hanks_essay
fawcett:~ childs$ wc -w hanks_essay
252 hanks_essay
fawcett:~ childs$ wc hanks_essay
63 252 1071 hanks_essay
fawcett:~ childs$ [

(63 = lines, 252 = words, 1071 = character)

UNIVERSITY OF OREGON

O

Project 1A

CIS 330: Project #1A

Assigned: April 274, 2018

Due April 4, 2018

(which means submitted by 6am on April 5%, 2018)
Worth 1% of your grade

Assignment:
1) On a Unix platform (including Mac), use an editor (vi, emacs, other) to write a
300 word “essay”
a. The purpose of the essay is to practice using an editor.
i. Grammar will not be graded

b. [would like to learn more about what you know about C and want
from this class ... | recommend you each write about that.

c. Ifyourun out of things to say, you don’t have to write original words
(do a copy/paste using vi commands: yyp)

Do not write this in another editor and copy into vi.
Also, do not put more than 100 characters onto any given line. (I want you to

practice having multiple lines and navigating.) If you have more than 100
characters per line, you will receive half credit.

How to submit

* Canvas
* |f you run into trouble:

— Email me your solution

Plan for today

* Quick review of Unix basics
* Project 1A

* Baby steps into C and gcc

* Memory

GNU Compilers

* GNU compilers: open source
— gcc: GNU compiler for C
— g++: GNU compiler for C++

UNIVERSITY OF OREGON

Our first gcc program

Unix command that

prints contents of a file
® O O kad CIS330 j¢b/7

CO2LNOOGFD58:CIS330 hank$ cat t.c —
#include <stdio.h>

int main() Invoke gcc compiler

{
printf("hello world!\n") / Name of file to compile
} -

CO2LNOOGFD58:CIS330 hank$ gcc t.c
CO2LNOOGFD58:CIS330 hank$./a.out
hello world!

CO2LNOOGFD58:CIS330 hank$ I

O

Default name for output programs

‘ You should use this for Proj 2A.

Plan for today

* Quick review of Unix basics
* Project 1A

* Baby steps into C and gcc

* Memory

Reading

e 4.1 (but NOT 4.1.2 ... covered later)
¢ 4.2

e 4.3-4.5.2 (what | assume you know from 314)
— NOT4.5.3t04.5.8

* 4.6:today’s lecture

Why C?

* You can control the memory
* That helps get good performance

* |f you don’t control the memory (like in other

programming languages), you are likely to get
poor performance

e ...so0 let’s talk about memory

O

UNIVERSITY OF OREGON

Motivation: Project 2A

Assignment: fill out this worksheet.

Location | 0x8000 | 0x8004 | 0x8008 | 0x800c | 0x8010 | 0x8014 | 0x8018
Value 0 1 1 2 3 5 8
Location | 0x801c | 0x8020 | 0x8024 | 0x8028 | 0x802c | 0x8030 | 0x8034
Value 13 21 34 55 89 144 233
Location | 0x8038 | 0x803c | 0x8040 | 0x8044 | 0x8048 | 0x804c | 0x8050
Value 377 610 987 1597 2584 4181 6765
Code:
int *A = 0x8000;
int*B[3] ={ A A+7,A+14 };
Note: “NOT ENOUGH INFO” is a valid answer.
Variable Your Answer Variable Your Answer
A 0x8000 (A+6)-(A+3)
&A NOT ENOUGH *(A+6)-*(A+4)

INFO
A[2] 1 A[5]-*(A+4)
*A (A+6)-B[0]

Important Context

* Different types have different sizes:
— int: 4 bytes
— float: 4 bytes
— double: 8 bytes
— char: 1 byte
— unsigned char: 1 byte

Important Memory Concepts in C (1/9):
Stack versus Heap

* You can allocate variables that only live for the
invocation of your function

— Called stack variables (will talk more about this
later)

 You can allocated variables that live for the
whole program (or until you delete them)

— Called heap variables (will talk more about this
later as well)

UNIVERSITY OF OREGON

Important Memory Concepts in C (2/9):
Pointers

O

* Pointer: points to memory location
— Denoted with “*’
— Example: “int *p”
* pointer to an integer
— You need pointers to get to heap memory

* Address of: gets the address of memory
— Operator: ‘&’

— Example:
int x;
int *y = &x;

Important Memory Concepts in C (3/9):
Memory allocation

e Special built-in function to allocate memory
from heap: malloc

— Interacts with Operating System

— Argument for malloc is how many bytes you want

e Also built-in function to deallocate memory:
free

UNIVERSITY OF OREGON

O

free/malloc example

Enables compiler to see functions that aren’t in this file. More on this next week.

l\

#include <stdlib.h> ' sizeof is a built in function in C. It
. . returns the number of bytes for a
‘J{'nt maln () type (4 bytes for int).

/% allocates memory %/ /
int *ptr = malloc(2*sizeof(int));

/* deallocates memory */
free(ptr);

} \ don’t have to say how many bytes

to free ... the OS knows

UNIVERSITY OF OREGON

Important Memory Concepts in C (4/9):
Arrays

O

* Arrays lie in contiguous memory

— So if you know address to one element, you know
address of the rest

* int *a = malloc(sizeof(int)*1);
— a single integer
— ...or an array of a single integer
* int *a = malloc(sizeof(int)*2);
— an array of two integers
— first integer is at ‘@’

— second integer is at the address ‘a+4’
* Tricky point here, since C/C++ will refer to it as ‘a+1’

Important Memory Concepts in C (5/9):
Dereferencing

 There are two operators for getting the value
at a memory location: *, and []

— This is called deferencing

e * = “dereference operator”
* int *p = malloc(sizeof(int)*1);
p = 2; / sets memory p points to to have value 2 */

* p[0] = 2; /* sets memory p points to to have value 2 */

UNIVERSITY OF OREGON

Important Memory Concepts in C (6/9):
pointer arithmetic

O

* int *p = malloc(sizeof(int)*5);
» C/C++ allows you to modify pointer with math
operations

— called pointer arithmetic
— “does the right thing” with respect to type
* int *p = malloc(sizeof(int)*5);
e p+1is 4 bytes bigger than p!!
* Then:
— “p+3” is the same as “&(p[3])” (ADDRESSES)

— “*(p+3)” is the same as “p[3]” (VALUES) .

) oo oromeon .
Important Memory Concepts in C (7/9)

Pointers to pointers

* int **p = malloc(sizeof(int *)*5);
* p[0] = malloc(sizeof(int)*50);

p[O] p[1] pl[2] pl[3] pl4]
p /|

/

P 50 integers...

Important Memory Concepts in C (8/9):
Hexadecimal address

 Addresses are in hexadecimal
* int *A =0x8000;
* Then A+1 is 0x8004. (Since intis 4 bytes)

) oo oromeon .
Important Memory Concepts in C (9/9)

NULL pointer
* int *p = NULL;
e often stored as address Ox0000000

* used to initialize something to a known value
— And also indicate that it is uninitialized...

O

UNIVERSITY OF OREGON

Project 2A

* You now know what you need to do Project
2A

— But: practice writing C programs and testing
yourself!!

— Hint: you can printf fawcett:VIS2016 childs$ cat t.c
#include <stdlib.h>

with a pointer #include <stdio.h>

int main()

{
/* allocates memory x/
int *ptr = malloc(2xsizeof(int));
printf("sp\n", ptr);

}

fawcett:VIS2016 childs$ gcc t.c
fawcett:VIS2016 childs$./a.out
0x100100080

Project 2A

* Assigned now

* Worksheet. You print it out, complete it on
your own, and bring it to class.

* Due Monday 10am in class
— Graded in class

* No Piazza posts on this please
* Practice with C, vi, gcc, printf

UNIVERSITY OF OREGON

O

Memory Segments

* Von Neumann architecture: one memory
space, for both instructions and data

* =2 so break memory into “segments”

— ... creates boundaries to prevent confusion
* 4 segments:

— Code segment

— Data segment

— Stack segment

— Heap segment

Code Segment

* Contains assembly code instructions

* Also called text segment

* This segment is modify-able, but that’s a bad

idea

— “Self-modifying code”
* Typically ends in a bad state very quickly.

UNIVERSITY OF OREGON

O

Data Segment

* Contains data not associated with heap or
stack

— global variables
— statics (to be discussed later)

— character strings you’ve compiled in
char *str = “hello world\n”

Stack: data structure for collection

* A stack contains things

* [t has only two methods: push and pop
— Push puts something onto the stack

— Pop returns the most recently pushed item (and
removes that item from the stack)

e LIFO: last in, first out

Imagine a stack of trays.
You can place on top (push).
Or take one off the top (pop).

UNIVERSITY OF OREGON

O

Stack

e Stack: memory set aside as scratch space for
program execution

* When a function has local variables, it uses
this memory.
— When you exit the function, the memory is lost

O

UNIVERSITY OF OREGON

Stack

* The stack grows as you enter functions, and
shrinks as you exit functions.

— This can be done on a per variable basis, but the
compiler typically does a grouping.
* Some exceptions (discussed later)

* Don’t have to manage memory: allocated and
freed automatically

Heap

 Heap (data structure): tree-based data
structure

 Heap (memory): area of computer memory
that requires explicit management (malloc,
free).

* Memory from the heap is accessible any time,
by any function.

— Contrasts with the stack

O

UNIVERSITY OF OREGON

Memory Segments

S R - +

text (fixed size)
S TRy S +

data (fixed size)
e ———— +

stack | growth
e ———— + V

free
e ————— + °

heap | growth

‘ Source: http://www.cs.uwm.edu/classes/cs315/Bacon/ |

Stack vs Heap: Pros and Cons

Allocation/ Automatic Explicit
Deallocation

Stack Memory Segment

void foo()

{

int stack_varA;
int stack _varB;

}
]

int main()

{
int stack var(C;
int stack _varD;
foo();

}

Stack Memory Segment

void foo() Code

{ Data
int stack varA; Stack

int stack_varB; e e
} stack:va rD

int main() ¢

{

int stack var(C;
int stack _varD;
foo();
}

Stack Memory Segment

void fOO() <€ Code

{ Data
int stack_varA;

int stack _varB;

Stack

stack_varC

} stack_varD

l stack_varA

: . stack_varB
int main() =

{
int stack var(C;
int stack _varD;
foo(); =«

}

Stack Memory Segment

void foo() Code

{ Data
int stack_varA;

int stack _varB;

Stack

stack_varC

i = stack_varD
int main()
{

int stack var(C;
int stack _varD;
foo();

<€

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

Code

int doubler(int A)
F Data
int stack_varA; Stack
stack_varA = 2xA;

stack varC
return stack_varA; 3

stack_varD

}
i

int main()
{
int stack_varC;
int stack_varD = 3;
stack_varC = doubler(stack_varD);

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

Code

int doubler(int A)
F Data
int stack_varA; Stack
stack_varA = 2xA;

stack _varC
return stack_varA;

stack_varD

} <info for how to get
I_ _ back to main>

int maln() A(= 3)

{

1t stack varC <Location for RV>
i _varC;

int stack_varD = 3; Ae”////’
stack_varC = doubler(stack_varD); Free

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A) <€

{
int stack_varA; Stack
st:ck_vaEA E Z*AA. stack_varC

) return stack_varA; stack varD

I <info for how to get

: _ back to main>

int main() _

| A (=3)

<Location for RV>

int stack_varC; stack varA

int stack_varD = 3;
stack_varC = doubler(stack_varD); Free

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

int doubler(int A)

{
int stack_varA; Stack
stack_varA = 2xA; stack varC
return stack_varA; stack varD

} . . <info for how to get

i Return copies into || SSHIEoNeg

?“t main() location specified [\ FVEE

by calling function)| REEECEEURCIAN
stack_varA

int stack_varC;
int stack_varD = 3;
stack_varC = doubler(stack_varD); Free

}

UNIVERSITY OF OREGON

How stack memory is allocated into
Stack Memory Segment

O

Code

int doubler(int A)
F Data
int stack_varA; Stack
stack_varA = 2xA;

return stack _varA; stack_varC =6

stack_varD =3

}
i

int main()
{
int stack_varC;
int stack_varD = 3;
stack_varC = doubler(stack_varD);

} —

O

UNIVERSITY OF OREGON

This code is very problematic ... why?

int xfoo()

{

int stack_varC[2] = { 0, 1 };
return stack _varC;

int wbar() foo and bar are returning

{ addresses that are on the
int stack varD[2] = { 2, 3 }; stack ... they could easily
return stack _varD; be overwritten

i (and bar’s stack_varD

int main() overwrites foo’s

{ stack_varCin this

int *xstack _varA, *stack _varB;
stack_varA = foo();
stack_varB = bar();
stack _varA[@] x= stack _varB[0];

program)

O

UNIVERSITY OF OREGON

Nested Scope

int main()

{

int stack_varA; <

{
}

int stack_varB = 3;

Code
Data

Stack

stack varA
R

O

UNIVERSITY OF OREGON

Nested Scope

Code

int main() Data

{ . Stack
int stack_varA; stack_varA
{ stack varB

int stack_varB = 3; «——

}

UNIVERSITY OF OREGON

O

Nested Scope

Code
int main() Data

{ . Stack
int stack_varA;

{
}

stack varA

int stack_varB = 3;

e

You can create new scope
within a function by adding
1{1 and 1};.

UNIVERSITY OF OREGON

O

Stack vs Heap: Pros and Cons

Allocation/ Automatic Explicit
Deallocation
Access Fast Slower

Memory pages associated

with heap may be located

anywhere ... may be
caching effects

Memory pages associated
with stack are almost
always immediately
available.

Stack vs Heap: Pros and Cons

Allocation/ Automatic Explicit
Deallocation

Access Fast Slower
Variable scope Limited Unlimited

UNIVERSITY OF OREGON

O

Variable scope: stagfoois bad code ... never

int *foo() return memory on the
{ stack from a function
int stack _varA[2] = { 0, 1 };
return stack_varA;
} bar returned memory
int xbar() from heap
{
int *xheap_varB; i AN —
heap_varB = malloc(sizeof(int)*2); The calling fuhd—lon
heap_varB[0] = 2; i.e., the function that
heap_varB[1] = 2; calls bar — must

return heap varB; i
P understand this and take

}

responsibility for calling
int main() free
{ .

int xstack_varA;

int *xstack_varB;

stack_varA = foo(); /x problem x/
I}

If it doesn’t, then this is
bar(); /% still good */ a “memory leak”.

stack_varB

O

UNIVERSITY OF OREGON

Memory leaks

/1t is OK that we are using the heap ... that’s what
it is there for
. Stack
The problem is that we lost the references to
the first 49 allocations on heap

stack varA

The heap’s memory manager will not be able to
re-claim them ... we have effectively limited the
memory available to the

int 1;

int stack _varA;
for (i =0 ; 1 <50 ; i++)
stack _varA = bar();

UNIVERSITY OF OREGON

O

Running out of memory (stack)

int endless_fun()

{

endless_fun();
b
int main()
{

endless_fun();
}

stack overflow: when the stack runs into the heap.
There is no protection for stack overflows.

(Checking for it would require coordination with the

heap’s memory manager on every function calls.)

O

UNIVERSITY OF OREGON

Running out of memory (heap)

int xheaps_o_fun()

{
int xheap_A = malloc(sizeof(int)*1000000000);
return heap_A;
}
%"t main() Allocation
int xstack_A; too big ...
\ stack_A = heaps_o_fun(); not enough

free
memory

If the heap memory manager
doesn’t have room to make an
allocation, then malloc returns
NULL a more graceful error
scenario.

Stack vs Heap: Pros and Cons

Allocation/ Automatic Explicit
Deallocation

Access Fast Slower
Variable scope Limited Unlimited
Fragmentation No Yes

Memory Fragmentation

e Memory fragmentation: the memory
allocated on the heap is spread out of the
memory space, rather than being
concentrated in a certain address space.

UNIVERSITY OF OREGON

O

Memory Fragmentation

int *bar()

{

int xheap_varA;

heap_varA = malloc(sizeof(int)x*2);
heap_varA[0] = 2;

heap_varA[1l] = 2;

return heap_varA;

}

int main()
{
int 1i;
int stack_varA[50];
for (i =0 ; i <50 ; i++)
stack_varA[i]l = bar();
for (1 =0 ; i < 25 ; i++)
free(stack _varA[ix2]);

Negative aspects of
fragmentation?
(1) can’t make big allocations
(2) losing cache coherency

UNIVERSITY OF OREGON

O

Fragmentation and Big Allocations

Even if there is lots of memory
available, the memory manager can
only accept your request if there is a

big enough contiguous chunk.

Stack vs Heap: Pros and Cons

Allocation/ Automatic Explicit
Deallocation

Access Fast Slower
Variable scope Limited Unlimited
Fragmentation No Yes

UNIVERSITY OF OREGON

O

Memory Errors

* Array bounds read
int main()

{
int var;
int arr[3] ={ 0, 1, 2 };
var=arr([3];

}

* Array bounds write
int main()

{

int var = 2;
int arr[3]:

arr[3]=var;
¥

O

UNIVERSITY OF OREGON

Memory Errors

* Free memory read / free memory write

int main()
{
int xvar = malloc(sizeof(int)%*2);
var[Q] = 0;
var[l] = 2;
free(var);
var[0] = varl1l];

}

When does this happen in real-world scenarios?

UNIVERSITY OF OREGON

O

Memory Errors

* Freeing unallocated memory

int main()

{
int *kvar = malloc(sizeof(int)x*2);
var[0] = 0;
var[l] = 2;

free(var);
free(var);

When does this happen in real-world scenarios?
Vocabulary: “dangling pointer”: pointer that points to memory

that has already been freed.

UNIVERSITY OF OREGON

O
Memory Errors

* Freeing non-heap memory

int main()

{
int var[2]
var[0] = 0;
var[l] = 2;

free(var);

When does this happen in real-world scenarios?

UNIVERSITY OF OREGON

O

Memory Errors

* NULL pointer read / write

int main()

{
char xstr = NULL;
printf(str);
str[@] = 'H';

}

* NULL is never a valid location to read from or
write to, and accessing them results in a
“segmentation fault”

— ... remember those memory segments?

When does this happen in real-world scenarios?

UNIVERSITY OF OREGON

O

Memory Errors

* Unitialized memory read
int main()

{

int *arr = malloc(sizeof(int)x*10);
int V2=arr([3]:

'~

When does this happen in real-world scenarios?

