
Hank Childs, University of OregonMay 21st, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 17:
Virtual function table, potpourri

Schedule	(lectures)
• Week	8
– Mon	&	Weds:	Hank	lectures
– Fri:	Brent	lab	on	debugging

• Week	9
– Mon:	Memorial	Day
– Weds:	live	code	of	project	3
– Fri:	Brent	lectures	on	templates

• Week	10
– Mon	&	Weds:	Brent	holds	his	OH	in	MCK125	during	
class	time

– Fri:	Hank	does	review	for	final

Schedule	(projects)

• 3E:	due	Weds
• 3F:	“due”	May	27
• 3G:	assigned	Weds	May	23,	“due”	Weds	May	30
• 3T:	assigned	Weds	May	30,	due Friday	June	2
– No	late	on	this	project

• 3H,	4A,	4B:	“due”	Friday	June	9th

• AND:	all	work	must	be	submitted	by	Weds	June	
13.		No	work	will	be	accepted	after	this	time.

Project	3E

• You	will	need	to	think	about	how	to	
accomplish	the	data	flow	execution	pattern	
and	think	about	how	to	extend	your	
implementation	to	make	it	work.

• This	prompt	is	vaguer	than	some	previous	
ones
– …	not	all	of	the	details	are	there	on	how	to	do	it

Project	3E

Project	3E

• Worth	3%	of	your	grade
• Assigned	today,	due	May	23

3F

Project	3F	in	a	nutshell

• Logging:
– infrastructure	for	logging
– making	your	data	flow	code	use	that	
infrastructure

• Exceptions:
– infrastructure	for	exceptions
– making	your	data	flow	code	use	that	
infrastructure

The	webpage	has	a	head	start	at	the	infrastructure	
pieces	for	you.	

Warning	about	3F

• My	driver	program	only	tests	a	few	exception	
conditions

• Your	stress	tests	later	will	test	a	lot	more.
– Be	thorough,	even	if	I’m	not	testing	it

3F:	warning

• 3F	will	almost	certainly	crash	your	code
– It	uses	your	modules	wrong!

• You	will	need	to	figure	out	why,	and	add	
exceptions
– gdb will	be	helpful

Review:	Access	Control

Two	contexts	for	access	control

class	A	:	public	B	{
public:

A()	{	x=0;	y=0;	};
int foo()	{	x++;	return	foo2();	};

private:
int x,	y;
int foo2()	{	return	x+y;	};

};

defines	how	a	class	inherits	
from	another	class

defines	access	controls	for	data	
members	and	methods

Inheritance	(“class	A	:	public	B”)

• public	à “is	a”
– (I	never	used	anything	but	public)

• private	à “implemented	using”
– (I	have	never	used	this,	but	see	how	it	could	be	
useful)

• protected	à the	internet	can	not	think	of	any	
useful	examples	for	this

Access	Control

class	Hank
{
public/private/protected:
BankAccount hanksId;

};
Access	control	type Who	can	read it

private Only	Hank	class

public Anyone

protected Those	who inherit	from	Hank

Class	Vs Struct

• Class:
– Default	inheritance	is	private
• That’s	why	you	add	public	(class	A	:	public	B)

– Default	access	control	is	private
• Struct:
– Default	inheritance	is	public
• That’s	why	you	don’t	have	to	add	public	(struct A	:	B)

– Default	access	control	is	public

How	C++	Does	Methods

“this”:	pointer	to	current	object

• From	within	any	struct’s method,	you	can	
refer	to	the	current	object	using	“this”

How	methods	work	under	the	covers	(1/4)

How	methods	work	under	the	covers	(2/4)

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

12

0x8004 mic 0x8000

How	methods	work	under	the	covers	(3/4)

How	methods	work	under	the	covers	(4/4)

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

12

0x8004 mic 0x8000

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

13

0x8004 this 0x8000

The	compiler	secretly	slips	“this”	
onto	the	stack	whenever	you	make	a	

method	call.

It	also	automatically	changes	
“myInt”	to	this->myInt in	methods.

Virtual	Function	Tables

Virtual	functions

• Virtual	function:	function	defined	in	the	base	
type,	but	can	be	re-defined	in	derived	type.

• When	you	call	a	virtual	function,	you	get	the	
version	defined	by	the	derived	type

Virtual	functions:	
example

Picking	the	right	virtual	function

??????

It	seems	like	the	compiler	
should	be	able	to	figure	

this	out	...
it	knows	that	a	is	of	type	A	

and
it	knows	that	b	is	of	type	B

Picking	the	right	virtual	function

??????

So	how	to	does	the	
compiler	know?

How	does	it	get	“B”	for	
“b”	and	“A”	for	“a”?

Virtual	Function	Table
• Let	C	be	a	class	and	X	be	an	instance	of	C.
• Let	C	have	3	virtual	functions	&	4	non-virtual	
functions

• C	has	a	hidden	data	member	called	the	“virtual	
function	table”

• This	table	has	3	rows
– Each	row	has	the	correct	definition	of	the	virtual	
function	to	call	for	a	“C”.

• When	you	call	a	virtual	function,	this	table	is	
consulted	to	locate	the	correct	definition.

Showing	the	existence	of	the	virtual	
function	pointer	with	sizeof()

what	will	this	print?

empty	objects	have	size	of	1?
why?!?

Answer:	so	every	object	has	a	
unique	address.

Virtual	Function	Table

• Let	C	be	a	class	and	X	be	an	instance	of	C.
• Let	C	have	3	virtual	functions	&	4	non-virtual	
functions

• Let	D	be	a	class	that	inherits	from	C	and	Y	be	
an	instance	of	D.
– Let	D	add	a	new	virtual	function

• D’s	virtual	function	table	has	4	rows
– Each	row	has	the	correct	definition	of	the	virtual	
function	to	call	for	a	“D”.

More	notes	on	virtual	function	tables

• There	is	one	instance	of	a	virtual	function	
table	for	each	class
– Each	instance	of	a	class	shares	the	same	virtual	
function	table

• Easy	to	overwrite	(i.e.,	with	a	memory	error)
– And	then	all	your	virtual	function	calls	will	be	
corrupted

– Don’t	do	this!	;)

Virtual	function	table:	example

Virtual	function	table:	example

Questions
• What	does	the	virtual	function	table	look	like	
for	a	Shape?

• What	does	Shape’s	virtual	function	table	look	
like?
– Trick	question:	Shape	can’t	be	instantiated,	
precisely	because	you	can’t	make	a	virtual	
function	table
• abstract	type	due	to	pure	virtual	functions

Questions

• What	is	the	virtual	function	table	for	
Rectangle?

• (this	is	a	code	fragment	from	my	2C	solution)

Calling	a	virtual	function
• Let	X	be	an	instance	of	class	C.
• Assume	you	want	to	call	the	4th virtual	
function	

• Let	the	arguments	to	the	virtual	function	be	
an	integer	Y	and	a	float	Z.

• Then	call:
(X.vptr[3])(&X,	Y,	Z);

The	pointer	to	the	virtual	
function	pointer	(often	
called	a	vptr)	is	a	data	
member	of	X

The	4th virtual	function	has	index	3	(0-indexing)

Secretly	pass	“this”	as	first	argument	to	method

Inheritance	and	Virtual	Function	
Tables

A

Foo1 Location of	
Foo1

B

Foo1 Location of	
Foo1

Foo2 Location	of	
Foo2

C

Foo1 Location of	
Foo1

Foo2 Location	of	
Foo2

Foo3 Location of	
Foo3

Same	as	B’s
This	is	how	you	can	
treat	a	C	as	a	B

This	whole	scheme	gets	much	harder	with	multiple	
inheritance,	and	you	have	to	carry	around	multiple	

virtual	function	tables.

:	public	B

Virtual	Function	Table:	Summary

• Virtual	functions	require	machinery	to	ensure	the	
correct	form	of	a	virtual	function	is	called

• This	is	implemented	through	a	virtual	function	
table

• Every	instance	of	a	class	that	has	virtual	functions	
has	a	pointer	to	its	class’s	virtual	function	table

• The	virtual	function	is	called	via	following	
pointers
– Performance	issue

Now	show	Project	2D	in	C++

• Comment:
– C/C++	great	because	of	performance
– Performance	partially	comes	because	of	a	
philosophy	of	not	adding	“magic”	to	make	
programmer’s	life	easier

– C	has	very	little	pixie	dust	sprinkled	in
• Exception:	‘\0’	to	terminate	strings

– C++	has	more
• Hopefully	this	will	demystify	one	of	those	things	(virtual	
functions)

vptr.C

Pitfalls

Pitfall	#1

This	is	using	call-by-value,	not	call-by-reference.

Pitfall	#2

Pitfall	#3

• int *s	=	new	int[6*sizeof(int)];

Pitfall	#4

• Assume:
int *X	=	new	int[100];

• What	is	sizeof(X)?
• What	is	sizeof(*X)?

Pitfall	#5

(not-a-)Pitfall	#6

Top	requires	memory	allocation	/	deletion,	and	does	extra	copy.

Pitfall	#7

• For	objects	on	the	stack,	the	destructors	are	
called	when	a	function	goes	out	of	scope
– You	may	have	a	perfectly	good	function,	but	it	seg-
faults	on	return

• Especially	tricky	for	main
– program	ran	to	completion,	and	crashed	at	the	
very	end

Pitfall	#8

const

const

• const:
– is	a	keyword	in	C	and	C++
– qualifies	variables
– is	a	mechanism	for	preventing	write	access	to	
variables

const example

const keyword	modifies	int

The	compiler	enforces	const …	just	like	
public/private	access	controls

Efficiency

Are	any	of	the	three	for	
loops	faster	than	the	

others?		Why	or	why	not?

Answer:	NumIterations is	
slowest	…	overhead	for	

function	calls.

Answer:	X	is	probably	faster	
than	Y	…	compiler	can	do	
optimizations	where	it	

doesn’t	have	to	do	“i <	X“	
comparisons	(loop	unrolling)

const arguments	to	functions

• Functions	can	use	const to	guarantee	to	the	
calling	function	that	they	won’t	modify	the	
arguments	passed	in.

guarantees	function	won’t	
modify	the	Image

read	function	can’t	make	the	
same	guarantee

const pointers

• Assume	a	pointer	named	“P”
• Two	distinct	ideas:
– P	points	to	something	that	is	constant
• P	may	change,	but	you	cannot	modify	what	it	points	to	
via	P

– P	must	always	point	to	the	same	thing,	but	the	
thing	P	points	to	may	change.

const pointers

• Assume	a	pointer	named	“P”
• Two	distinct	ideas:
– P	points	to	something	that	is	constant
• P	may	change,	but	you	cannot	modify	what	it	points	to	
via	P

– P	must	always	point	to	the	same	thing,	but	the	
thing	P	points	to	may	change.

const pointers
int X	=	4;

int *P	=	&X;

Idea	#1:
violates	const:

“*P	=	3;”
OK:

“int Y	=	5;	P	=	&Y;”

Idea	#2:
violates	const:

“int Y	=	5;	P	=	&Y;”	
OK:
“*P	=	3;”

pointer	can change,	but	you	
can’t modify	the	thing	it	

points	to

pointer	can’t change,	but	you	
can modify	the	thing	it	points	to

const pointers
int X	=	4;

int *P	=	&X;

Idea	#3:
violates	const:

“*P	=	3;”
“int Y	=	5;	P	=	&Y;”

OK:
none

pointer	can’t change,	and	
you	can’t modify	the	thing	it	

points	to

const pointers
int X	=	4;

int *P	=	&X;

Idea	#1:
violates	const:

“*P	=	3;”
OK:

“int Y	=	5;	P	=	&Y;”

pointer	can change,	but	you	
can’t modify	the	thing	it	

points	to

const goes	before	type

const pointers
int X	=	4;

int *P	=	&X;
Idea	#2:
violates	const:

“int Y	=	5;	P	=	&Y;”	
OK:
“*P	=	3;”

pointer	can’t change,	but	you	
can modify	the	thing	it	points	to

const goes	after	*

const pointers
int X	=	4;

int *P	=	&X;Idea	#3:
violates	const:

“*P	=	3;”
“int Y	=	5;	P	=	&Y;”

OK:
none

pointer	can’t change,	
and	you	can’t modify	
the	thing	it	points	to

const in	both	places

const usage

• class	Image;
• const Image	*ptr;
– Used	a	lot:	offering	the	guarantee	that	the	
function	won’t	change	the	Image	ptr points	to

• Image	*	const ptr;
– Helps	with	efficiency.		Rarely	need	to	worry	about	
this.

• const Image	*	const ptr;
– Interview	question!!

Very	common	issue	with	const and	objects

How	does	compiler	know	GetNumberOfPixels
doesn’t	modify	an	Image?

We	know,	because	we	can	see	the	implementation.

But,	in	large	projects,	compiler	can’t	see	
implementation	for	everything.

const functions	with	objects
const after	method	name

If	a	class	method	is	
declared	as	const,	
then	you	can	call	

those	methods	with	
pointers.

mutable

• mutable:	special	keyword	for	modifying	data	
members	of	a	class
– If	a	data	member	is	mutable,	then	it	can	be	
modified	in	a	const method	of	the	class.

– Comes	up	rarely	in	practice.

globals

globals

• You	can	create	global	variables	that	exist	
outside	functions.

global	variables

• global	variables	
are	initialized	
before	you	
enter	main

Storage	of	global	variables…

• global	variables	
are	stored	in	a	
special	part	of	
memory
– “data	segment”	
(not	heap,	not	
stack)

• If	you	re-use	
global	names,	you	
can	have	collisions

Externs:	mechanism	for	unifying	global	
variables	across	multiple	files

extern:	there’s	a	global	variable,	and	it	lives	in	a	
different	file.

static

• static	memory:	third	kind	of	memory	
allocation
– reserved	at	compile	time

• contrasts	with	dynamic	(heap)	and	automatic	
(stack)	memory	allocations

• accomplished	via	keyword	that	modifies	
variables

There	are	three	distinct	usages	of	statics

static	usage	#1:	persistency	within	a	
function

static	usage	#2:	making	global	
variables	be	local	to	a	file

I	have	no	idea	why	the	static	keyword	is	used	in	this	way.

static	usage	#3:	making	a	singleton	for	a	class

static	usage	#3:	making	a	singleton	for	a	class

We	have	to	tell	the	compiler	where	to	store	this	static.

What	do	we	get?

static	usage	#3:	making	a	singleton	for	a	class

static	methods

Static	data	members	and	static	
methods	are	useful	and	they	are	

definitely	used	in	practice

Scope

scope

• I	saw	this	bug	quite	
a	few	times…

The	compiler	will	sometimes	
have	multiple	choices	as	to	
which	variable	you	mean.	

It	has	rules	to	make	a	
decision	about	which	one	to	

use.

This	topic	is	referred	to	as	
“scope”.

scope

This	one	won’t	compile.	

The	compiler	notices	that	
you	have	a	variable	called	X	

that	“shadows”	the	
argument	called	X.

scope

This	one	will	compile	…	the	
compiler	thinks	that	you	
made	a	new	scope	on	

purpose.	

So	what	does	it	print?

Answer:	3

scope

What	does	this	one	print?

Answer:	2

scope

What	does	this	one	print?

Answer:	1

scope

What	does	this	one	print?

Answer:	0

Scope	Rules

• The	compiler	looks	for	variables:
– inside	a	function	or	block
– function	arguments
– data	members	(methods	only)
– globals

Pitfall	#8
• The	compiler	looks	for	

variables:
– inside	a	function	or	

block
– function	arguments
– data	members	

(methods	only)
– globals

Shadowing

• Shadowing	is	a	term	
used	to	describe	a	
“subtle”	scope	
issue.
– …	i.e.,	you	have	
created	a	situation	
where	it	is	confusing	
which	variable	you	
are	referring	to

Overloading	Operators

• NOTE:	I	lectured	on	this	some,	but	it	was	
informal.		These	slides	formally	capture	the	
ideas	we	discussed.

C++	lets	you	define	operators

• You	declare	a	method	that	uses	an	operator	in	
conjunction	with	a	class
– +,	-,	/,	!,	++,	etc.

• You	can	then	use	operator	in	your	code,	since	
the	compiler	now	understands	how	to	use	the	
operator	with	your	class

• This	is	called	“operator	overloading”
– …	we	are	overloading	the	use	of	the	operator	for	
more	than	just	the	simple	types.

Example	of	operator	overloading

Declare	operator	++	will	be	
overloaded	for	MyInt

Define	operator	++	for	
MyInt

Call	operator	++	on	
MyInt.

More	operator	
overloading

Beauty	of	inheritance

• ostream provides	an	abstraction
– That’s	all	Image	needs	to	know
• it	is	a	stream	that	is	an	output

– You	code	to	that	interface
– All	ostream’s work	with	it	

assignment	operator

let’s	do	this	again…

(ok,	fine)

let’s	do	this	again…

it	still	compiled	…	
why?

C++	defines	a	default	assignment	
operator	for	you

• This	assignment	operator	does	a	bitwise	copy	
from	one	object	to	the	other.

• Does	anyone	see	a	problem	with	this?

This	behavior	is	sometimes	OK	and	
sometimes	disastrous.

Copy	constructors:	same	deal

• C++	automatically	defines	a	copy	constructor	
that	does	bitwise	copying.

• Solutions	for	copy	constructor	and	assignment	
operators:
– Re-define	them	yourself	to	do	“the	right	thing”
– Re-define	them	yourself	to	throw	exceptions
–Make	them	private	so	they	can’t	be	called

Project	3G

• Will	add	new	filters.
• Likely	assigned	tomorrow.

Stress	Test	Project	(3H)

• We	will	have	~60	stress	tests
• We	can’t	check	in	60	baseline	images	and	
difference	them	all
–Will	slow	ix	to	a	grind

• Solution:
–We	commit	“essence	of	the	solution”
–We	also	complement	that	all	images	posted	if	
needed.

Checksums

From	Wikipedia

Most	useful	when	
input	is	very	large	

and	checksum	is	very	
small

Our	“checksum”

• Three	integers:
– Sum	of	red	channel
– Sum	of	green	channel
– Sum	of	blue	channel

• When	you	create	a	stress	test,	you	register	
these	three	integers

• When	you	test	against	others	stress	tests,	you	
compare	against	their	integers
– If	they	match,	you	got	it	right

This	will	be	done	with	a	derived	type	of	Sink.

Should	Checksums	Match?

• On	ix,	everything	should	match
• On	different	architectures,	floating	point	math	
won’t	match

• Blender:	has	floating	point	math
• à no	blender

Bonus	Topics

Upcasting and	Downcasting

• Upcast:	treat	an	object	as	the	base	type
–We	do	this	all	the	time!
– Treat	a	Rectangle	as	a	Shape

• Downcast:	treat	a	base	type	as	its	derived	type
–We	don’t	do	this	one	often
– Treat	a	Shape	as	a	Rectangle
• You	better	know	that	Shape	really	is	a	Rectangle!!

Upcasting and	Downcasting

what	do	we	get?

Upcasting and	Downcasting

• C++	has	a	built	in	facility	to	assist	with	
downcasting:	dynamic_cast

• I	personally	haven’t	used	it	a	lot,	but	it	is	used	
in	practice

• Ties	in	to	std::exception

Default	Arguments

default	arguments:	compiler	pushes	values	on	the	
stack	for	you	if	you	choose	not	to	enter	them

Booleans

• New	simple	data	type:	bool (Boolean)
• New	keywords:	true	and	false

Bonus	Topics

Backgrounding

• “&”:	tell	shell	to	run	a	job	in	the	background
– Background	means	that	the	shell	acts	as	normal,	
but	the	command	you	invoke	is	running	at	the	
same	time.

• “sleep	60”	vs “sleep	60	&”

When	would	backgrounding be	useful?

Suspending	Jobs

• You	can	suspend	a	job	that	is	running
Press	“Ctrl-Z”

• The	OS	will	then	stop	job	from	running	and	not	
schedule	it	to	run.

• You	can	then:
– make	the	job	run	in	the	background.

• Type	“bg”
– make	the	job	run	in	the	foreground.

• Type	“fg”
– like	you	never	suspended	it	at	all!!

Web	pages

• ssh –l	<user	name>	ix.cs.uoregon.edu
• cd	public_html
• put	something	in	index.html
• à it	will	show	up	as	

http://ix.cs.uoregon.edu/~<username>

Web	pages

• You	can	also	exchange	files	this	way
– scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

– point	people	to	
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note	that	~/public_html/dir1 shows	up	as	
http://ix.cs.uoregon.edu/~<username>/dir1

(“~/dir1”	is	not	accessible	via	web)

