O

UNIVERSITY OF OREGON ‘ I S 3 3 0 []
[]

/1717 O /7 71 17 _ 7.
/117 NI Il T N1 I I
AV VAV VA YIS A Y A A AR A AN A A R I A A A Y I
__ /1L I N, LS IN_] N N___ I T

Lecture 16:
exceptions,
Virtual function table

May 18™ 2018 Hank Childs, University of Oregon

Project 3E

* You will need to think about how to
accomplish the data flow execution pattern
and think about how to extend your
implementation to make it work.

* This prompt is vaguer than some previous
ones

— ... hot all of the details are there on how to do it

UNIVERSITY OF OREGON

O

Project 3E

blender.SetInput(tbconcat2.GetOutput());
blender.SetInput2(reader.GetOutput());

writer.SetInput(blender.GetOutput());

reader.Execute();

shrinkerl.Execute()
lrconcatl.Execute()
tbconcatl.Execute();
shrinker2.Execute();
lrconcat2.Execute();
tbconcat2.Execute();
blender.Execute();

writer.Write(argv(2]);

blender.SetInput(tbconcat2.GetOutput());
blender.SetInput2(reader.GetOutput());

writer.SetInput(blender.GetOutput());

blender.GetOutput()->Update();
writer.Write(argv([2]);

Project 3E

 Worth 3% of your grade
* Assigned today, due May 23

New Stuff: Exceptions

UNIVERSITY OF OREGON

O

Exceptions

* C++ mechanism for handling error conditions

 Three new keywords for exceptions

— try: code that you “try” to execute and hope there
IS N0 exception

— throw: how you invoke an exception

— catch: catch an exception ... handle the exception
and resume normal execution

UNIVERSITY OF OREGON

O

Exceptions

fawcett:330 childs$ cat exceptions.C
#include <iostream>

using std::cout;

using std::endl;

int main()
{

try

{

cout << "About to throw 105" << endl;
throw 105;
cout << "Done throwing 105" << endl;

}
catch (int &thelnt)
{
cout << "Caught an int: " << thelInt << endl;
}

}
fawcett:330 childs$ g++ exceptions.C

O

UNIVERSITY OF OREGON

Exceptions: catching multiple types

fawcett:330 childs$ cat exceptions2.C
#include <iostream>

using std::cout;

using std::endl;

int main()
{

try

{

}

fawcett:330 childs$ g++ exceptions2.C
fawcett:330 childs$./a.out

About to throw 105
Caught an int: 165

cout << "About to throw 105" << endl;
throw 105;
cout << "Done throwing 105" << endl;

zatch (int &theInt)

i cout << "Caught an int: " << thelInt << endl;
iatch (float &theFloat)

i cout << "Caught a float: " << theFloat << endl;

UNIVERSITY OF OREGON

O

Exceptions: catching multiple types

fawcett:330 childs$ cat exceptions3.C
#include <iostream>

using std::cout;

using std::endl;

int main()
{

try

{

cout << "About to throw 10.5" << endl;
throw 10.5;
cout << "Done throwing 10.5" << endl;

zatch (int &thelnt)

¢ cout << "Caught an int: " << thelInt << endl;
zatch (float &theFloat)

i cout << "Caught a float: " << theFloat << endl;

}
fawcett:330 childs$ g++ exceptions3.C

fawcett:330 childs$./a.out

About to throw 10.5

terminate called after throwing an instance of 'double'
Abort trap

UNIVERSITY OF OREGON

O

Exceptions: catching multiple types

fawcett:330 childs$ cat exceptions4.C
#include <iostream>

using std::cout; fawcett:330 childs$ g++ exceptions4.C
using std::endl; fawcett:330 childs$./a.out
)) About to throw 10.5
int main() Caught a double: 10.5
{ fawcett:330 childs$ |
try
{
cout << "About to throw 10.5" << endl;
throw 10.5;
cout << "Done throwing 10.5" << endl;
}
catch (int &thelnt)
{
cout << "Caught an int: " << thelInt << endl;
}
catch (float &theFloat)
{
cout << "Caught a float: " << theFloat << endl;
}
catch (double &theDouble)
{
cout << "Caught a double: " << theDouble << endl;
}

UNIVERSITY OF OREGON

Exceptions: throwing/catching
complex types

O

class MyExceptionType { };
void Foo(); class MemoryException : public MyExceptionType {};
. _ class FailedAllocationException : public MemoryException {};
int main() class NULLPointerException : public MemoryException {};
try class FloatingPointException : public MyExceptionType {};
{ class DivideByZeroException : public FloatingPointException {};
X Foo(); |class OverflowException : public FloatingPointException {};
catch (MemoryException &e)
{
cout << "I give up" << endl;
}
catch (OverflowException &e)
{
cout << "I think it is OK" << endl;
}
catch (DivideByZeroException &e)

{
}

cout << "The answer is bogus" << endl;

UNIVERSITY OF OREGON

Exceptions: cleaning up before you
return

O

void Foo(int *xarr);

int x
Foo2(void)
{
int *xarr = new int[1000];
try
{
Foo(arr);
}
catch (MyExceptionType &e)
{
delete [] arr;
return NULL;
}

return arr;

O

UNIVERSITY OF OREGON

Exceptions: re-throwing

void Foo(int xarr);

int x
Foo2(void)
{
int *arr = new int[1000];
try
{
Foo(arr);
}
catch (MyExceptionType &e)
{
delete [] arr;
throw e;
}

return arr;

O

Exceptions: catch and re-throw anything

UNIVERSITY OF OREGON

void Foo(int *arr);

int x
Foo2(void)
{
int s*arr = new int[1000];
try
{
Foo(arr);
}
catch (...)
(e
delete [] arr;
throw;
}

return arr; _
}

UNIVERSITY OF OREGON

Exceptions: declaring the exception
types you can throw

O

int
MyIntArrayMemoryAllocator(int num) throw(FloatingPointException)
{

int *arr = new int[num];
if (arr == NULL)
throw DivideByZeroException();

return arr;

O

"Exceptions: declaring the exception
types you can throw ... not all it is
cracked up to be
int *x

MyIntArrayMemoryAllocator(int num) : : .
{ throw(FloatingPointException)

int xarr = new int[num];
if (arr == NULL)
throw MemoryException();

return arr;

y This will compile ... compiler can only
enforce this as a run-time thing.

As a result, this is mostly unused
(I had to read up on it)
But: “standard” exceptions have a
“throw” in their declaration.

UNIVERSITY OF OREGON

O

std::exception
. /{ using sFandard exceptions
* ct++provides a base finciue somen
type Ca”ed class myexception: public exception

using namespace std;
”Std::excepﬁon” { virtual const char* what() const throw()
{
* |t provides a method ,

} myex;
called “what”

return "My exception happened”;

int main () {

try
{
throw myex;
}
catch (exception& e)
{
cout << e.what() << '\n';
}

return 0;

Source: cplusplus.com

UNIVERSITY OF OREGON

Exceptions generator by C++ standard
library

O

exception description
bad alloc thrown by new on allocation failure
bad cast thrown by dynamic cast when it fails in a dynamic cast
bad exception thrown by certain dynamic exception specifiers
bad typeid thrown by typeid
bad function callfthrown by empty function objects
bad weak ptr thrown by shared ptr when passed a bad weak ptr

Source: cplusplus.com

UNIVERSITY OF OREGON

3F

O

UNIVERSITY OF OREGON

Project 3F in a nutshell

* Logging:
— infrastructure for logging

— making your data flow code use that
infrastructure

* Exceptions:
— infrastructure for exceptions

— making your data flow code use that
infrastructure

The webpage has a head start at the infrastructure

nieces for you.

Warning about 3F

My driver program only tests a few exception
conditions

 Your stress tests later will test a lot more.

— Be thorough, even if I'm not testing it

3F timeline

* Assigned tonight, due Saturday May 26th

3F: warning

* 3F will almost certainly crash your code
— It uses your modules wrong!

* You will need to figure out why, and add
exceptions

— gdb will be helpful

Review: Access Control

Two contexts for access control

class A : public B {

pU bl iC: defines how a class inherits

from another class
A() { x=0; y=0; };
int foo() { x++; return foo2(); };

private:
defines access controls for data

Int X, Y, members and methods

int foo2() { return x+y; };

5

Inheritance (“class A : public B”)

* public 2 “is a”
— (I never used anything but public)
* private 2 “implemented using”

— (I have never used this, but see how it could be
useful)

* protected =2 the internet can not think of any
useful examples for this

O

UNIVERSITY OF OREGON

Access Control

class Hank

{
public/private/protected:

BankAccount hanksld;

Access control type Who can read it

private Only Hank class

public Anyone

protected Those who inherit from Hank -

UNIVERSITY OF OREGON

O

Class Vs Struct

e Class:

— Default inheritance is private
e That’s why you add public (class A : public B)

— Default access control is private
* Struct:

— Default inheritance is public
e That’s why you don’t have to add public (struct A : B)

— Default access control is public

How C++ Does Methods

UNIVERSITY OF OREGON

O

“this”: pointer to current object

* From within any struct’s method, you can
refer to the current object using “this”

TallyCounter::TallyCounter(int c)

{
count = c;
}
<————— >
L
t TallyCounter::TallyCounter(int c)
H{

2 this—>count = c;
|IIIIIIIIIIIIII}- IIIIIIIIIIIIIII

O
How methods work under the covers (1/4)

class MyIntClass

UNIVERSITY OF OREGON

{
public:
MyIntClass(int x) { myInt = x; };
friend void FriendIncrementFunction(MyIntClass *);
int GetMyInt() { return myInt; };
protected:
int myInt;
|-
void
FriendIncrementFunction(MyIntClass *mic)
{
mic->myInt++;
} fawcett:330 childs$ g++ this.C
fawcett:330 childs$./a.out
int main() My int is 14
{ fawcett:330 childs$ [

MyIntClass MIC(12);

FriendIncrementFunction(&MIC);
FriendIncrementFunction(&MIC);
cout << "My int is " << MIC.GetMyInt() << endl;

UNIVERSITY OF OREGON

O

How methods work under the covers (2/4)

class MyIntClass

{
public:
RTINS N LS R TR Acdr. | Variable |Value
friend void FriendIncrementFunction(MyIntClass x); 0x8000 MIC/ 12
int GetMyInt() { return myInt; }; mylint
protected:

- ins Addr.__| Variable | Value

void 0x8000 M|C/ 12
FriendIncrementFunction(MyIntClass *mic) myInt

{
}

mic->myInt++; €& 0x8004 mic 0x8000

int main()

{

MyIntClass MIC(12); €
FriendIncrementFunction(&MIC);
FriendIncrementFunction(&MIC);

cout << "My int is " << MIC.GetMyInt() << endl;

UNIVERSITY OF OREGON

O

How methods work under the covers (3/4)

class MyIntClass

{
public:
MyIntClass(int x) { myInt = x; };

friend void FriendIncrementFunction(MyIntClass x);

void IncrementMethod(void);

int GetMyInt() { return myInt; };

protected:

int myInt;
}
void
FriendIncrementFunction(MyIntClass *mic)
{

mic->myInt++;
}
void
MyIntCl ! tMethod id : -
¢ assrineTEnentietho (void) fawcett:330 childs$ g++ this.C

this—>myInt++; fawcett:330 childs$./a.out
} My int is 14
int main() fawcett:330 childs$ [
{

MyIntClass MIC(12);
FriendIncrementFunction(&MIC);
MIC.IncrementMethod();

cout << "My int 1s " << MIC.GetMyInt() << endl;

UNIVERSITY OF OREGON

O

How methods work under the covers (4/4)

class MyIntClass
{

The compiler secretly slips “this”

onto the stack whenever you make a M‘
2

method call. 0x8000 MIC/ 1
myint
It also automatically changes Vari
mylnt” to this->mylnt in methods. 0x8000 MIC/ 12
o mylnt
mic->myInt++; €——)
0x8004 mic 0x8000

void
MyIntClass::IncrementMethod(void)

{
thismyntee; ¢—— Addr.__| Variable | Value _
}

- 0x8000 MIC/ 13

int main() mylnt
MyIntClass MIC(12); €— .
FriendIncrementFunction (SMIC); 0x8004 this 0x8000

MIC.IncrementMethod();
cout << "My int is " << MIC.GetMyInt() << endl;

Virtual Function Tables

Virtual functions

* Virtual function: function defined in the base
type, but can be re-defined in derived type.

 When you call a virtual function, you get the
version defined by the derived type

UNIVERSITY OF OREGON

()

128-223-223-72-wireless:330 hank$ cat virtual.C
#include <stdio.h> . .
| Virtual functions:
struct SimplelID
{
int id; example

virtual int GetIdentifier() { return id; };

b

struct ComplexID : SimpleID
{
int extrald;
virtual int GetIdentifier() { return extraldx128+id; };

};

int main()
{

ComplexID cid;

cid.id = 3;

cid.extrald = 3;

printf("ID = %d\n", cid.GetIdentifier());
¥
128-223-223-72-wireless:330 hank$ g++ virtual.C
128-223-223-72-wireless:330 hank$./a.out

ID = 387

UNIVERSITY OF OREGON

O

Picking the right virtual function

class A
{
public:
virtual const char xGetType() { return "A"; };
H
class B : public A
{
public:
virtual const char xGetType() { return “B"; };
b ,]
It seems like the compiler
int main .
{ v should be able to figure
oo this out ...
it knows that a is of type A
cout << "a is " << a.GetType() << endl; d
cout << "b is " << b.GetType() << endl; an
}

it knows that b is of type B

fawcett:330 childs$ g++ virtual.C
fawcett:330 childs$./a.out

?P?7?7?7

UNIVERSITY OF OREGON

O

Picking the right virtual function

public:
virtual const char xGetType() { return "A"; };
h

class A
{

class B : public A

{
public:
virtual const char xGetType() { return "B"; };
}

void
ClassPrinter(A *ptrToA)
{

hy

cout << "ptr points to a " << ptrToA->GetType() << endl;

int main()

{ So how to does the

A a; .
compiler know?

B b;

ClassPrinter(&a);
ClassPrinter(&b);
}

fawcett:330 childs$ g++ virtual2.C
fawcett:330 childs$./a.out

?PPPP7

How does it get “B” for
l(b” and IIAH for lla”?

UNIVERSITY OF OREGON

O

Virtual Function Table

e Let C be aclass and X be an instance of C.

e Let C have 3 virtual functions & 4 non-virtual
functions

e Chas a hidden data member called the “virtual
function table”

 This table has 3 rows

— Each row has the correct definition of the virtual
function to call for a “C”".

 When you call a virtual function, this table is
consulted to locate the correct definition.

UNIVERSITY OF OREGON

Showing the existence of the virtual
function pointer with sizeof()
Elass é |

empty objects have size of 1?
virtual
s why?!?

class B : pub===

O

{ : i
public: { Answer: s.o every object has a
N virtual | unique address.
glass C fawcett:330 childs$./a.out
public: Size of A is 8
const char *GetType() { return "C"; }; Size of a pointer is 8
b Size of C is 1
int main()
{
A a;
B b;

cout << "Size of A is " << sizeof(A) << endl;
cout << "Size of a pointer is " << sizeof(int %) << endl;

cout << "Size of C is " << sizeof(C) << endl;
| what will this print? \

Virtual Function Table

e Let C be aclass and X be an instance of C.

e Let C have 3 virtual functions & 4 non-virtual
functions

e Let D be a class that inherits from Cand Y be
an instance of D.

— Let D add a new virtual function

e D’s virtual function table has 4 rows

— Each row has the correct definition of the virtual
function to call for a “D”.

More notes on virtual function tables

* There is one instance of a virtual function
table for each class

— Each instance of a class shares the same virtual
function table

e Easy to overwrite (i.e., with a memory error)

— And then all your virtual function calls will be
corrupted

— Don’t do this! ;)

UNIVERSITY OF OREGON

O

Virtual function table: example

CIS 330: Project #2C

Assigned: April 17th, 2014

Due April 24th, 2014

(which means submitted by 6am on April 25t, 2014)
Worth 6% of your grade

Please read this entire prompt!

Assignment: You will implement subtypes with C.

1) Make a union called ShapeUnion with the three types (Circle, Rectangle,
Triangle).

2) Make a struct called FunctionTable that has pointers to functions.

3) Make an enum called ShapeType that identifies the three types.

4) Make a struct called Shape that has a ShapeUnion, a ShapeType, and a
FunctionTable.

5) Modify your 9 functions to deal with Shapes.

6) Integrate with the new driver function. Test that it produces the correct
output.

UNIVERSITY OF OREGON

O

Virtual function table: example

class Shape

{
virtual double GetArea() = 0;
virtual void GetBoundingBox(double x) = 0;
b
class Rectangle : public Shape
{
public:
Rectangle(double, double, double, double);
virtual double GetArea();
virtual void GetBoundingBox(double x);
protected:
double minX, maxX, minY, maxY;
b

class Triangle : public Shape
{
public:
Triangle(double, double, double, double);
virtual double GetArea();
virtual void GetBoundingBox(double x);
protected:
double ptlX, pt2X, minY, maxy;

};

O

UNIVERSITY OF OREGON

Questions

e What does the virtual function table look like

for a Shape?

typedef struct

{

double (xGetArea)(Shape x);

void (xGetBoundingBox) (Shape *, double x);
} VirtualFunctionTable;

 What does Shape’s virtual function table look
like?

— Trick question: Shape can’t be instantiated,
precisely because you can’t make a virtual
function table

* abstract type due to pure virtual functions

UNIVERSITY OF OREGON

O

Questions

e What is the virtual function table for
Rectangle?

c->ft.GetArea = GetRectangleArea;
c->ft.GetBoundingBox = GetRectangleBoundingBox;

* (this is a code fragment from my 2C solution)

UNIVERSITY OF OREGON

O

Calling a virtual function
 Let X be an instance of class C.

e Assume you want to call the 4t virtual
function

* Let the arguments to the virtual function be
an integer Y and a float Z.

° Then ca IJ/ The 4t virtual function has index 3 (0-indexing)
(X.vptr[3])(&X, Y, Z);

The pointer to the virtual \

function pointer (often

called a vptr) is a data

Secretly pass “this” as first argument to method

UNIVERSITY OF OREGON

O Inheritance and Virtual Function

class A Tables
{
public: _

Location of
Fool

This whole scheme gets much harder with multiple
inheritance, and you have to carry around multiple _

Location of
Fool

virtual function tables.

Location of
Foo2

class C :publicB . o Fool Location of
{ dame as b's Fool

public: This is how you can

virtual void Fool(); treataCasaB e LD i
virtual void Foo2(): Foo2

virtual void Foo3(); Location of
}; Foo3

UNIVERSITY OF OREGON

O

Virtual Function Table: Summary

* Virtual functions require machinery to ensure the
correct form of a virtual function is called

* This is implemented through a virtual function
table

* Every instance of a class that has virtual functions
has a pointer to its class’s virtual function table

* The virtual function is called via following
pointers

— Performance issue -

O

UNIVERSITY OF OREGON

Now show Project 2D in C++

* Comment:
— C/C++ great because of performance

— Performance partially comes because of a
philosophy of not adding “magic” to make
programmer’s life easier

— C has very little pixie dust sprinkled in

* Exception: \O’ to terminate strings

— C++ has more

* Hopefully this will demystify one of those things (virtual
functions)

0 UNIVERSITY OF OREGON
vptr. C

fawcett:vptr childs$ cat vptr.C
#include <iostream>

using std::cerr;

using std::endl;

class Shape

"In GetArea for Triangle" << endl; return 1;};
%) { cerr << "In GetBBox for Triangle" << endl; };

"In GetArea for Rectangle" << endl; return 2; };
x) { cerr << "In GetBBox for Rectangle" << endl; };

{
public:
int s;
virtual double GetArea() = 0;
virtual void GetBoundingBox(double *) = 0;
IH
class Triangle : public Shape
{
public:
virtual double GetArea() { cerr <<
virtual void GetBoundingBox(double
| H
class Rectangle : public Shape
{
public:
virtual double GetArea() { cerr <<
virtual void GetBoundingBox(double
b
struct VirtualFunctionTable
{
double (xGetArea)(Shape x);
void (*GetBoundingBox) (Shape *, double *);
I
int main()
{

Rectangle r;

cerr << "Size of rectangle is " << sizeof(r) << endl;

VirtualFunctionTable xvft = x((VirtualFunctionTablexx)&r);

cerr << "Vptr = " << vft << endl;
double d = vft->GetArea(&r);
cerr << "Value = " << d << endl;

double bbox[4];
vft->GetBoundingBox(&r, bbox);

UNIVERSITY OF OREGON

Pitfalls

O

UNIVERSITY OF OREGON

Pitfall #1

void AllocateBuffer(int w, int h, unsigned char xxbuffer)
{
xbuffer = new unsigned char|[3xwxh];
}
int main()
{
int w = 1000, h = 1000;
unsigned char xbuffer = NULL;
AllocateBuffer(w, h, &buffer);
}

' This is using call-by-value, not call-by-reference. I

UNIVERSITY OF OREGON

O

Pitfall #2

struct Image

{

int width;

int height;

unsigned char xbuffer;
h

Image xReadFromFile(char xfilename)

{

Image xrv = NULL;

/* OPEN FILE, descriptor = f x/

VES es s */

/* set up width w, and height h x/
VES es s */

rv = malloc(sizeof(Image));

rv->width = w;

rv=>height = h;

fread(rv->buffer, sizeof(unsigned char), wxh, f);

Pitfall #3

* int *s = new int[6*sizeof(int)];

UNIVERSITY OF OREGON

O

Pitfall #4

int main()

{
// new black image
int height = 1000, width = 1000;
unsigned char xbuffer = new unsigned char[3xwidthxheight];
for (int 1 = @ ; i < sizeof(buffer) ; i++)

{

}
b e Assume:

int *X = new int[100];
 What is sizeof(X)?
 What is sizeof(*X)?

buffer[i] = ©;

UNIVERSITY OF OREGON

O

Pitfall #5

/* struct definition x/
struct Image

{
};

/* data members x/

/* prototypes x/
void WriteImage(Image *, const char x);

fawcett:330 childs$ g++ write_image.c
Undefined symbols:

(* maiﬂ */ "WriteImage(Imagex, char constx)", referenced from:
int main() _main in ccSjCéw2.0
{ ld: symbol(s) not found

Image *img = NULL; collect2: 1d returned 1 exit status
/* set up Image */ -

const char xfilename = "out.pnm";
WriteImage(img, filename);

}

I/* WriteImage function x/
| void WriteImage(char xfilename, Image *img)

{

/* code to write img to filename x/

}

UNIVERSITY OF OREGON

O

(not-a-)Pitfall #6

unsigned charx Image::getPixel(int i, int j) {
int pixStart = 3xixthis->width+3+j;
unsigned char xpixel = new unsigned char[3];
pixel[@] = this->data[pixStart];
pixel[1l] = this->data[pixStart + 1];
pixel[2] = this->datal[pixStart + 2];
return pixel;

}

unsigned charx Image::getPixel(int i, int j) {
int pixStart = 3xixthis->width+3+j;
return this->data+pixStart;

! .

i Top requires memory allocation / deletion, and does extra copy. I

UNIVERSITY OF OREGON

O

Pitfall #7

* For objects on the stack, the destructors are
called when a function goes out of scope

— You may have a perfectly good function, but it
seg-faults on return

* Especially tricky for main

— program ran to completion, and crashed at the
very end

UNIVERSITY OF OREGON

O

#include <stdlib.h>

class Image

{
public:

Image() { width = @; height
virtual ~Image() { delete [] buffer; };
void ResetSize(int width, int height);
unsigned char *GetBuffer(void) { return buffer;

private:
int width, height;
unsigned char *buffer;
};
void

Image::ResetSize(int w, int h)
{
width w;
height h;
if (buffer != NULL)
delete [] buffer;

buffer = new unsigned char[3*widthxheight];

Pitfall

@; buffer = NULL; };

};

int main()

{

Image img;
unsigned char *buffer = img.GetBuffer();
img.ResetSize(1000, 1000);
for (int 1 =0 ; 1 < 1000 ; i++)
for (int j =0 ;] < 1000 ; j++)
for (int k = 0 ; k < 1000 ; k++)
buffer[3%(1%1000+])+k] = 0;

Bonus Topics

UNIVERSITY OF OREGON

O

Backgrounding

e “&”:tell shell to run a job in the background

— Background means that the shell acts as normal,
but the command you invoke is running at the
same time.

e “sleep 60” vs “sleep 60 &”

When would backgrounding be useful?

UNIVERSITY OF OREGON

O

Suspending Jobs

* You can suspend a job that is running
Press “Ctrl-Z2”

* The OS will then stop job from running and not
schedule it to run.

* You can then:

— make the job run in the background.
* Type “bg”
— make the job run in the foreground.
* Type “fg”
— like you never suspended it at all!!

Web pages

e ssh —| <user name> ix.cs.uoregon.edu
* cd public_html

e put something in index.html

* = it will show up as

http://ix.cs.uoregon.edu/~<username>

UNIVERSITY OF OREGON

O

Web pages

* You can also exchange files this way

— scp file.pdf <username>@ix.cs.uoregon.edu:~/
public_html

— point people to http://ix.cs.uoregon.edu/
~<username>/file.pdf

Note that ~/public_html/dirl shows up as
http://ix.cs.uoregon.edu/~<username>/dirl

(“~/dirl” is not accessible via web)

