
Hank Childs, University of OregonMay 16th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 15:
Even more pointer stuff
Virtual function table

Any	3C,	3D	questions?

PNMreader::PNMreader(char	*f)

Project	3E

• You	will	need	to	think	about	how	to	
accomplish	the	data	flow	execution	pattern	
and	think	about	how	to	extend	your	
implementation	to	make	it	work.

• This	prompt	is	vaguer	than	some	previous	
ones
– …	not	all	of	the	details	are	there	on	how	to	do	it

Project	3E

Project	3E

• Worth	3%	of	your	grade
• Assigned	today,	due	May	23

Example	of	data	flow	(image	processing)
FileReader

Crop

Transpose

Invert Color

Concatenate

FileWriter

Make	it	easy	on	yourself	to	run…

Other	ways	to	make	life	easier

• tab	from	shell:	auto-completes
• Ctrl-R:	searches	backwards	in	your	shell	
history

More	on	Pointers

(Poor)	Analogy

• Safe	deposit	box

(Poor)	Analogy

• You	go	to	the	bank
• You	ask	for	a	safe	deposit	box
– The	key	to	the	box	is	a	pointer

• You	get	access	to	a	space	in	the	vault
– The	box	in	the	vault	is	the	memory	on	the	heap

Analogy	Continued

• You	go	to	teller	and	request	a	safe	deposit	box
• Teller	gives	you	a	key,	to	box	#105
• Then	you	go	back	the	next	day	and	request	another	
safe	deposit	box,	to	box	#107

• And	you	throw	out	the	key	to	box	#105	and	only	keep	
the	key	to	box	#107

• This	is	a	memory	leak
– No	one	will	ever	be	able	to	access	to	box	#105

Now	let’s	think	about	stack/heap

Code

Data

Heap

Stack

Free

Location			Value
buffer 0x7fff0			0x10000

0x10000	[1000]	vals

0x103E8	[100]	vals

0x103E8

Analogy	Continued

• You	go	to	teller	and	request	a	safe	deposit	box
• Teller	gives	you	a	key,	to	box	#105	(buffer)
• You	make	a	copy	of	the	key	for	your	friend	(buffer2)
• Now	you	and	your	friend	have	access	to	box	#105
• If	your	friend	changes	the	contents,	then	it	affects	you
• Terminology:	this	is	called	a	“shallow	copy”

Now	let’s	think	about	stack/heap

Code

Data

Heap

Stack

Free

Location			Value
buffer
buffer2

0x7fff0			0x10000
0x7ffec			0x10000

0x10000	[1000]	vals

Analogy	Continued	(But	Starting	to	Break	Down)

• You	go	to	teller	and	request	a	safe	deposit	box
• Teller	gives	you	a	key,	to	box	#105	(buffer)
• You	fill	the	box
• You	later	request	a	second	safe	deposit	box
• Teller	gives	you	a	key,	to	box	#107	(buffer2)
• You	examine	box	#105.		Whatever	is	in	105,	you	put	in	107

– Example:	$10K	in	105.		So	put	an	additional	$10K	in	107.	($20K	total)
• This	is	called	a	“deep	copy”

Now	let’s	think	about	stack/heap

Code

Data

Heap

Stack

Free

Location			Value
buffer
buffer2

0x7fff0			0x10000
0x7ffec			0x103E8

0x10000	[1000]	vals

0x103E8	[1000]	vals

Arrays	on	the	stack	are	different

Code

Data

Heap

Stack

Free

Location			Value
A 0x7fff0			0.5

0x7ffec			1.5
0x7ffe8		2.5

• You	cannot	re-assign	A	to	
another	value.
– A	is	bound	to	its	stack	location
– But	you	can	assign	a	pointer	to	
point	at	A’s	location.

– And	compiler	can	do	this	
automatically	(int *A_ptr =	A;)

Default	Methods

• C++	makes	4 methods	for	you	by	default:
– Default	constructor
– Copy	constructor
– Assignment	operator
– Destructor

What	if	there	are	data	members?

For	Image

THIS	WILL	CRASH

Solution

• This	will	prevent	you	from	accidentally	calling	
copy	constructor	or	assignment	operator

• (You	should	add	this	to	your	Image	class)

And	you	may	be	using	assignment	
operators	right	now	without	knowing	it…

• …	so	“=“	is	
doing	more	
work	than	you	
might	expect

Inline	function

• inlined functions:
– hint	to	a	compiler	that	can	
improve	performance

– basic	idea:	don’t	actually	
make	this	be	a	separate	
function	that	is	called
• Instead,	just	pull	the	code	
out	of	it	and	place	it	inside	
the	current	function

– new	keyword:	inline
The	compiler	sometimes	refuses	your	inline	request	(when	it	thinks	

inlining won’t	improve	performance),	but	it	does	it	silently.

Inlines can	be	automatically	done	
within	class	definitions

• Even	though	you	don’t	declare	this	as	inline,	
the	compiler	treats	it	as	an	inline

You	should	only	do	inlines within	
header	files

Left:	function	is	inlined in	every	.C	that	includes	it
…	no	problem

Right:	function	is	defined	in	every	.C	that	includes	it
…	duplicate	symbols

int Doubler(int X);

New	Content

How	C++	Does	Methods

“this”:	pointer	to	current	object

• From	within	any	struct’s method,	you	can	
refer	to	the	current	object	using	“this”

How	methods	work	under	the	covers	(1/4)

How	methods	work	under	the	covers	(2/4)

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

12

0x8004 mic 0x8000

How	methods	work	under	the	covers	(3/4)

How	methods	work	under	the	covers	(4/4)

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

12

0x8004 mic 0x8000

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

13

0x8004 this 0x8000

The	compiler	secretly	slips	“this”	
onto	the	stack	whenever	you	make	a	

method	call.

It	also	automatically	changes	
“myInt”	to	this->myInt in	methods.

Virtual	Function	Tables

Virtual	functions

• Virtual	function:	function	defined	in	the	base	
type,	but	can	be	re-defined	in	derived	type.

• When	you	call	a	virtual	function,	you	get	the	
version	defined	by	the	derived	type

Virtual	functions:	
example

Picking	the	right	virtual	function

??????

It	seems	like	the	compiler	
should	be	able	to	figure	

this	out	...
it	knows	that	a	is	of	type	A	

and
it	knows	that	b	is	of	type	B

Picking	the	right	virtual	function

??????

So	how	to	does	the	
compiler	know?

How	does	it	get	“B”	for	
“b”	and	“A”	for	“a”?

Virtual	Function	Table
• Let	C	be	a	class	and	X	be	an	instance	of	C.
• Let	C	have	3	virtual	functions	&	4	non-virtual	
functions

• C	has	a	hidden	data	member	called	the	“virtual	
function	table”

• This	table	has	3	rows
– Each	row	has	the	correct	definition	of	the	virtual	
function	to	call	for	a	“C”.

• When	you	call	a	virtual	function,	this	table	is	
consulted	to	locate	the	correct	definition.

Showing	the	existence	of	the	virtual	
function	pointer	with	sizeof()

what	will	this	print?

empty	objects	have	size	of	1?
why?!?

Answer:	so	every	object	has	a	
unique	address.

Virtual	Function	Table

• Let	C	be	a	class	and	X	be	an	instance	of	C.
• Let	C	have	3	virtual	functions	&	4	non-virtual	
functions

• Let	D	be	a	class	that	inherits	from	C	and	Y	be	
an	instance	of	D.
– Let	D	add	a	new	virtual	function

• D’s	virtual	function	table	has	4	rows
– Each	row	has	the	correct	definition	of	the	virtual	
function	to	call	for	a	“D”.

More	notes	on	virtual	function	tables

• There	is	one	instance	of	a	virtual	function	
table	for	each	class
– Each	instance	of	a	class	shares	the	same	virtual	
function	table

• Easy	to	overwrite	(i.e.,	with	a	memory	error)
– And	then	all	your	virtual	function	calls	will	be	
corrupted

– Don’t	do	this!	;)

Virtual	function	table:	example

Virtual	function	table:	example

Questions
• What	does	the	virtual	function	table	look	like	
for	a	Shape?

• What	does	Shape’s	virtual	function	table	look	
like?
– Trick	question:	Shape	can’t	be	instantiated,	
precisely	because	you	can’t	make	a	virtual	
function	table
• abstract	type	due	to	pure	virtual	functions

Questions

• What	is	the	virtual	function	table	for	
Rectangle?

• (this	is	a	code	fragment	from	my	2C	solution)

Calling	a	virtual	function
• Let	X	be	an	instance	of	class	C.
• Assume	you	want	to	call	the	4th virtual	
function	

• Let	the	arguments	to	the	virtual	function	be	
an	integer	Y	and	a	float	Z.

• Then	call:
(X.vptr[3])(&X,	Y,	Z);

The	pointer	to	the	virtual	
function	pointer	(often	
called	a	vptr)	is	a	data	
member	of	X

The	4th virtual	function	has	index	3	(0-indexing)

Secretly	pass	“this”	as	first	argument	to	method

Inheritance	and	Virtual	Function	
Tables

A

Foo1 Location of	
Foo1

B

Foo1 Location of	
Foo1

Foo2 Location	of	
Foo2

C

Foo1 Location of	
Foo1

Foo2 Location	of	
Foo2

Foo3 Location of	
Foo3

Same	as	B’s
This	is	how	you	can	
treat	a	C	as	a	B

This	whole	scheme	gets	much	harder	with	multiple	
inheritance,	and	you	have	to	carry	around	multiple	

virtual	function	tables.

:	public	B

Virtual	Function	Table:	Summary

• Virtual	functions	require	machinery	to	ensure	the	
correct	form	of	a	virtual	function	is	called

• This	is	implemented	through	a	virtual	function	
table

• Every	instance	of	a	class	that	has	virtual	functions	
has	a	pointer	to	its	class’s	virtual	function	table

• The	virtual	function	is	called	via	following	
pointers
– Performance	issue

Now	show	Project	2D	in	C++

• Comment:
– C/C++	great	because	of	performance
– Performance	partially	comes	because	of	a	
philosophy	of	not	adding	“magic”	to	make	
programmer’s	life	easier

– C	has	very	little	pixie	dust	sprinkled	in
• Exception:	‘\0’	to	terminate	strings

– C++	has	more
• Hopefully	this	will	demystify	one	of	those	things	(virtual	
functions)

vptr.C

Pitfalls

Pitfall	#1

This	is	using	call-by-value,	not	call-by-reference.

Pitfall	#2

Pitfall	#3

• int *s	=	new	int[6*sizeof(int)];

Pitfall	#4

• Assume:
int *X	=	new	int[100];

• What	is	sizeof(X)?
• What	is	sizeof(*X)?

Pitfall	#5

(not-a-)Pitfall	#6

Top	requires	memory	allocation	/	deletion,	and	does	extra	copy.

Pitfall	#7

• For	objects	on	the	stack,	the	destructors	are	
called	when	a	function	goes	out	of	scope
– You	may	have	a	perfectly	good	function,	but	it	seg-
faults	on	return

• Especially	tricky	for	main
– program	ran	to	completion,	and	crashed	at	the	
very	end

Pitfall	#8

Bonus	Topics

Backgrounding

• “&”:	tell	shell	to	run	a	job	in	the	background
– Background	means	that	the	shell	acts	as	normal,	
but	the	command	you	invoke	is	running	at	the	
same	time.

• “sleep	60”	vs “sleep	60	&”

When	would	backgrounding be	useful?

Suspending	Jobs

• You	can	suspend	a	job	that	is	running
Press	“Ctrl-Z”

• The	OS	will	then	stop	job	from	running	and	not	
schedule	it	to	run.

• You	can	then:
– make	the	job	run	in	the	background.

• Type	“bg”
– make	the	job	run	in	the	foreground.

• Type	“fg”
– like	you	never	suspended	it	at	all!!

Web	pages

• ssh –l	<user	name>	ix.cs.uoregon.edu
• cd	public_html
• put	something	in	index.html
• à it	will	show	up	as	

http://ix.cs.uoregon.edu/~<username>

Web	pages

• You	can	also	exchange	files	this	way
– scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

– point	people	to	
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note	that	~/public_html/dir1 shows	up	as	
http://ix.cs.uoregon.edu/~<username>/dir1

(“~/dir1”	is	not	accessible	via	web)

