
Hank Childs, University of OregonMay 9th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 14:
more class,

C++ streams

Announcements

• Projects
– 3B	assigned	Friday,	due	today
– 3C	posted	today,	due	May	16
– 3D	posted	today,	also	due	May	16
• 3D	is	not	required	to	do	3E,	etc.
• So	you	can	skip	it,	although	you	will	lose	points.

– OH:
• Weds	12-1	(in	Hank’s	office)
• Thurs	4-5	(in	Hank’s	office)

Schedule	rest	of	this	week

• Friday:	Lab	4	(Brent)
• Friday	OH:	with	Brent,	not	Hank
– Brent	will	announce	location	(125	MCK	or	100	
DES)

Project	3B

• Retrofit	to	use	references
• Add	useful	routines	for	manipulating	an	image
– Halve	in	size
– Concatenate
– Crop
– Blend

Review

Simple	inheritance	example
• Terminology
– B	inherits	from	A
– A	is	a	base	type	for	B
– B	is	a	derived	type	of	A

• Noteworthy
– “:”	(during	struct definition)	à
inherits	from
• Everything	from	A	is	accessible	in	B

– (b.x is	valid!!)

Object	sizes

Inheritance	+	TallyCounter

FancyTallyCounter inherits	all	of	
TallyCounter,	and	adds	a	new	
method:	DecrementCount

Virtual	functions

• Virtual	function:	function	defined	in	the	base	
type,	but	can	be	re-defined	in	derived	type.

• When	you	call	a	virtual	function,	you	get	the	
version	defined	by	the	derived	type

Virtual	functions:	
example

Virtual	functions:	
example

You	get	the	method	furthest	down	in	
the	inheritance	hierarchy

public	/	private	inheritance
• class	A	:	[public|private]	B
– à class	A	:	public	B
– à class	A	:	private	B

• So:
– For	public,	base	class's	public	members	will	be	public
– For	private,	base	class's	public	members	will	be	private

• Public	common
– I’ve	never	personally	used	anything	else

NEW	SLIDE
• public	inheritance	à no	restriction	beyond	
what	restrictions	in	base	class
– Example:	
• class	A	{	private:	int x;	};	class	B	:	public	A	{};
• à B	cannot	access	x

• private	inheritance	à *does*	restrict	beyond	
what	restrictions	in	base	class
– Example	2:
• class	A	{	public:	int x;	};	class	B	:	private	A	{};
• à B	again	cannot	access	x

public	/	private	inheritance

• class	A	:	public	B
– A “is	a”	B

• class	A	:	private	B
– A “is	implemented	using”	B
• And:	!(A	“is	a”	B)
• …	you	can’t	treat	A	as	a	B

One	more	access	control	word:	
protected

• Protected	means:
– It	cannot	be	accessed	outside	the	object
• Modulo	“friend”

– But	it	can	be	accessed	by	derived	types
• (assuming	public	inheritance)

Memory	Management

C++	memory	management

• C++	provides	new	constructs	for	requesting	
heap	memory	from	the	memory	manager
– stack	memory	management	is	not	changed
• (automatic	before,	automatic	now)

• Allocate	memory:	“new”
• Deallocate memory:	“delete”

new	/	delete	syntax
No	header	necessary

Allocating	array	and	
single	value	is	the	same.

Deleting	array	takes	[],	
deleting	single	value	
doesn’t.

new	knows	the	type	and	
allocates	the	right	amount.

new	intà 4	bytes
new	int[3]	à 12	bytes

new	calls	constructors	for	your	classes

• Declare	variable	in	the	stack:	constructor	
called

• Declare	variable	with	“malloc”:	constructor	
not	called
– C	knows	nothing	about	C++!

• Declare	variable	with	“new”:	constructor	
called

More	on	Classes

Destructors

• A	destructor	is	called	automatically	when	an	
object	goes	out	of	scope	(via	stack	or	delete)

• A	destructor’s	job	is	to	clean	up	before	the	
object	disappears
– Deleting	memory
– Other	cleanup	(e.g.,	linked	lists)

• Same	naming	convention	as	a	constructor,	but	
with	a	prepended	~	(tilde)

Destructors	example

Class	name	with	~	
prepended

Defined	like	any	
other	method,	does	
cleanup

If	Pixel	had	a	constructor	or	
destructor,	it	would	be	

getting	called	(a	bunch)	by	
the	new’s and	delete’s.

Inheritance	and	
Constructors/Destructors:	Example

• Constructors	from	base	class	called	first,	then	
next	derived	type	second,	and	so	on.

• Destructor	from	base	class	called	last,	then	
next	derived	type	second	to	last,	and	so	on.

• Derived	type	always	assumes	base	class	exists	
and	is	set	up
– …	base	class	never	needs	to	know	anything	about	
derived	types

Inheritance	and	
Constructors/Destructors:	Example

Possible	to	get	the	wrong	destructor

• With	a	constructor,	you	always	know	what	
type	you	are	constructing.

• With	a	destructor,	you	don’t	always	know	
what	type	you	are	destructing.

• This	can	sometimes	lead	to	the	wrong	
destructor	getting	called.

Getting	the	wrong	destructor

Virtual	destructors

• Solution	to	this	problem:
Make	the	destructor	be	declared	virtual

• Then	existing	infrastructure	will	solve	the	
problem
– …	this	is	what	virtual	functions	do!

Virtual	destructors

NEW	STUFF

Objects	in	objects

By	the	time	you	enter	B’s	
constructor,	a1	and	a2	are	

already	valid.

Objects	in	objects

Objects	in	objects:	order	is	important

Initializers

• New	syntax	to	have	variables	initialized	before	
even	entering	the	constructor

Initializers

• Initializers	are	a	mechanism	to	have	a	
constructor	pass	arguments	to	another	
constructor

• Needed	because
– Base	class	constructors	are	called	before	derived	
constructors	&	need	to	pass	arguments	in	derived	
constructor	to	base	class

– Constructors	for	objects	contained	in	a	class	are	
called	before	the	container	class	&	need	to	pass	
arguments	in	container	class’s	destructor

Initializers

• Needed	because
– Constructors	for	objects	
contained	in	a	class	are	
called	before	the	
container	class	&	need	to	
pass	arguments	in	
container	class’s	
destructor

Initializers

• Needed	because
– Base	class	constructors	
are	called	before	derived	
constructors	&	need	to	
pass	arguments	in	derived	
constructor	to	base	class

Calling	base
class	constructor

Initializing	
data	member

Quiz

What’s	the	output?

The	“is	a”	test

• Inheritance	should	be	used	when	the	“is	a”	
test	is	true

• Base	class:	Shape
• Derived	types:	Triangle,	Rectangle,	Circle
– A	triangle	“is	a”	shape
– A	rectangle	“is	a”	shape
– A	circle	“is	a”	shape

You	can	define	an	interface	for	Shapes,	and	
the	derived	types	can	fill	out	that	interface.

I	will	do	a	live	coding	example	of	this	next	
week,	and	will	discuss	how	C++	implements	

virtual	functions.

Multiple	inheritance

• A	class	can	inherit	from	more	than	one	base	
type

• This	happens	when	it	“is	a”	for	each	of	the	
base	types
– Inherits	data	members	and	methods	of	both	base	
types

Multiple	inheritance

Diamond-Shaped	Inheritance

• Base	A,	has	derived	types	B	and	C,	and	D	
inherits	from	both	B	and	C.
–Which	A	is	D	dealing	with??

• Diamond-shaped	inheritance	is	
controversial	&	really	only	for
experts
– (For	what	it	is	worth,	we	make	heavy	use	of	
diamond-shaped	inheritance	in	my	project)

A

B C

D

Diamond-Shaped	Inheritance	Example

Diamond-Shaped	Inheritance	Pitfalls

Diamond-Shaped	Inheritance	Pitfalls

This	can	get	stickier	with	
virtual	functions.

You	should	avoid	diamond-
shaped	inheritance	until	you	feel	
really	comfortable	with	OOP.

Pure	Virtual	Functions

• Pure	Virtual	Function:	define	a	function	to	be	
part	of	the	interface	for	a	class,	but	do	not	
provide	a	definition.

• Syntax:	add	“=0”	after	the	function	definition.
• This	makes	the	class	be	“abstract”
– It	cannot	be	instantiated

• When	derived	types	define	the	function,	then	
are	“concrete”
– They	can	be	instantiated

Pure	Virtual	Functions	Example

Data	Flow	Networks

• This	is	not	a	C++	idea
• It	is	used	for	image	processing,	visualization,	
etc

• So	we	need	to	know	it	for	Project	C

Data	Flow	Overview

• Basic	idea:
– You	have	many	modules
• Hundreds!!

– You	compose	modules	together	to	perform	some	
desired	functionality

• Advantages:
– Customizability
– Design	fosters	interoperability	between	modules	
to	the	extent	possible

Data	Flow	Overview
• Participants:
– Source:	a	module	that	
produces	data
• It	creates	an	output

– Sink:	a	module	that	
consumes	data
• It	operates	on	an	input

– Filter:	a	module	that	
transforms	input	data	to	
create	output	data

Source Sink

Filter

• Nominal	inheritance	
hierarchy:
– A	filter	“is	a”	source
– A filter	“is	a”	sink

Example	of	data	flow	(image	processing)

• Sources:
– FileReader:	reader	from	file
– Color:	generate	image	with	one	color

• Filters:
– Crop:	crop	image,	leaving	only	a	sub-portion
– Transpose:	view	image	as	a	2D	matrix	and	transpose	it
– Invert:	invert	colors
– Concatenate:	paste	two	images	together

• Sinks:
– FileWriter:	write	to	file

Example	of	data	flow	(image	processing)
FileReader

Crop

Transpose

Invert Color

Concatenate

FileWriter

Example	of	data	flow	(image	processing)
FileReader

Crop

Transpose

Invert Color

Concatenate

FileWriter

• Participants:
– Source:	a	module	that	
produces	data
• It	creates	an	output

– Sink:	a	module	that	consumes	
data
• It	operates	on	an	input

– Filter:	a	module	that	
transforms	input	data	to	
create	output	data

• Pipeline:	a	collection	of	
sources,	filters,	and	sinks	
connected	together

Benefits	of	the	Data	Flow	Design
• Extensible!
– write	infrastructure	that	
knows	about	abstract	
types	(source,	sink,	
filter,	and	data	object)

– write	as	many	derived	
types	as	you	want

• Composable!
– combine	filters,	sources,	
and	sinks	in	custom	
configurations

What	do	you	think	the	benefits	are?

Drawbacks	of	Data	Flow	Design

• Operations	happen	in	stages
– Extra	memory	needed	for	intermediate	results
– Not	cache	efficient

• Compartmentalization	can	limit	possible	
optimizations

What	do	you	think	the	drawbacks	are?

Data	Flow	Networks

• Idea:
–Many	modules	that	manipulate	data
• Called	filters

– Dynamically	compose	filters	together	to	create	
“networks”	that	do	useful	things

– Instances	of	networks	are	also	called	“pipelines”
• Data	flows	through	pipelines

– There	are	multiple	techniques	to	make	a	network	
“execute”	…	we	won’t	worry	about	those	yet

Data	Flow	Network:	the	players

• Source:	produces	data
• Sink:	accepts	data
– Never	modifies	the	data	it	accepts,	since	that	data	
might	be	used	elsewhere

• Filter:	accepts	data	and	produces	data
– A	filter	“is	a”	sink	and	it	“is	a”	source

Source,	Sink,	and	Filter	are	abstract	types.		The	code	
associated	with	them	facilitates	the	data	flow.

There	are	concrete	types	derived	from	them,	and	they	do	
the	real	work	(and	don’t	need	to	worry	about	data	flow!).

Project	3C

• Due	in	one	week
• 3D	also	due	in	one	week
– 3D	not	needed	for	3E,	3F,	etc.
– So	you	can	“skip”
– But	you	will	get	0	points	for	3D	if	you	“skip”

Assignment:	make	your	code	base	be	
data	flow	networks	with	OOP

Source Sink

FilterPNMreader PNMwriter

Shrinker LRConcat TBConcat Blender

Topics	for	3D

C++	lets	you	define	operators

• You	declare	a	method	that	uses	an	operator	in	
conjunction	with	a	class
– +,	-,	/,	!,	++,	etc.

• You	can	then	use	your	operator	in	your	code,	
since	the	compiler	now	understands	how	to	
use	the	operator	with	your	class

• This	is	called	“operator	overloading”
– …	we	are	overloading	the	use	of	the	operator	for	
more	than	just	the	simple	types.

You	can	also	do	this	with	functions.

Example	of	operator	overloading

Declare	operator	++	will	be	
overloaded	for	MyInt

Define	operator	++	for	
MyInt

Call	operator	++	on	
MyInt.

We	will	learn	more	about	operator	
overloading	later	in	the	quarter.

New	operators:	<<	and	>>

• “<<”:	Insertion	operator
• “>>”:	Extraction	operator
– Operator	overloading:	you	can	define	what	it	
means	to	insert	or	extract	your	object.

• Often	used	in	conjunction	with	“streams”
– Recall	our	earlier	experience	with	C	streams
• stderr,	stdout,	stdin

– Streams	are	communication	channels

cout:	the	C++	way	of	accessing	stdout
New	header	file	(and	

no	“.h”!)

New	way	of	accessing	
stdout stream.

Insertion	operation	(<<)

cout is	in	the	“standard”	namespace

“using”	command	puts	the	
“cout”	portion	of	the	standard	
namespace	(“std”)	in	the	global	

namespace.

Don’t	need	“std::cout”	any	
more…

endl:	the	C++	endline mechanism

• prints	a	newline
• flushes	the	stream
– C	version:	fflush(stdout)
– This	is	because	printf doesn’t	always	print	when	
you	ask	it	to.
• It	buffers	the	requests	when	you	make	them.
• This	is	a	problem	for	debugging!!

endl in	action

<<	and	>>	have	a	return	value

• ostream &	ostream::operator<<(int);
– (The	signature	for	a	function	that	prints	an	
integer)

• The	return	value	is	itself
– i.e.,	the	cout object	returns	“cout”

• This	allows	you	to	combine	many	insertions	
(or	extractions)	in	a	single	line.
– This	is	called	“cascading”.

Cascading	in	action

Putting	it	all	together

Three	pre-defined	streams

• cout <=	=>	fprintf(stdout,	…
• cerr <=	=>	fprintf(stderr,	…
• cin <=	=>	fscanf(stdin,	…

cin in	action

cerr

• Works	like	cout,	but	
prints	to	stderr

• Always	flushes	
everything	
immediately!

“See	the	error”

fstream

• ifstream:	input	stream	that	does	file	I/O
• ofstream:	output	stream	that	does	file	I/O

• Not	lecturing	on	this,	since	it	follows	from:
– C	file	I/O
– C++	streams

http://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

Project	3D

• Assigned:	today,	5/9
• Due:	Weds,	5/16
• Important:	if	you	skip	this	project,	you	will	still	
be	able	to	do	future	projects	(3E,	3F,	etc)

• Assignment:
–Write	PNMreaderCPP and	PNMwriterCPP …	new	
version	of	the	file	reader	and	writer	that	use	
fstream.

Inline	function

• inlined functions:
– hint	to	a	compiler	that	can	
improve	performance

– basic	idea:	don’t	actually	
make	this	be	a	separate	
function	that	is	called
• Instead,	just	pull	the	code	
out	of	it	and	place	it	inside	
the	current	function

– new	keyword:	inline
The	compiler	sometimes	refuses	your	inline	request	(when	it	thinks	

inlining won’t	improve	performance),	but	it	does	it	silently.

Inlines can	be	automatically	done	
within	class	definitions

• Even	though	you	don’t	declare	this	as	inline,	
the	compiler	treats	it	as	an	inline

You	should	only	do	inlines within	
header	files

Left:	function	is	inlined in	every	.C	that	includes	it
…	no	problem

Right:	function	is	defined	in	every	.C	that	includes	it
…	duplicate	symbols

Bonus	Topics

Backgrounding

• “&”:	tell	shell	to	run	a	job	in	the	background
– Background	means	that	the	shell	acts	as	normal,	
but	the	command	you	invoke	is	running	at	the	
same	time.

• “sleep	60”	vs “sleep	60	&”

When	would	backgrounding be	useful?

Suspending	Jobs

• You	can	suspend	a	job	that	is	running
Press	“Ctrl-Z”

• The	OS	will	then	stop	job	from	running	and	not	
schedule	it	to	run.

• You	can	then:
– make	the	job	run	in	the	background.

• Type	“bg”
– make	the	job	run	in	the	foreground.

• Type	“fg”
– like	you	never	suspended	it	at	all!!

Web	pages

• ssh –l	<user	name>	ix.cs.uoregon.edu
• cd	public_html
• put	something	in	index.html
• à it	will	show	up	as	

http://ix.cs.uoregon.edu/~<username>

Web	pages

• You	can	also	exchange	files	this	way
– scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

– point	people	to	
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note	that	~/public_html/dir1 shows	up	as	
http://ix.cs.uoregon.edu/~<username>/dir1

(“~/dir1”	is	not	accessible	via	web)

