
Hank Childs, University of OregonMay 7th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 13:
more class,

C++ memory management

Random	Topics

Operator	Precedence	

Source:	http://en.cppreference.com/w/c/language/operator_precedence

DRAM	vs NV-RAM

• DRAM:	Dynamic	Random	Access	Memory
– stores	data
– each	bit	in	separate	capacitor	within	integrated	circuit
– loses	charge	over	time	and	must	be	refreshed
– à volatile	memory

• NV-RAM:	Non-Volatile	Random	Access	Memory
– stores	data
– information	unaffected	by	power	cycle
– examples:	Read-Only	Memory	(ROM),	flash,	hard	
drive,	floppy	drive,	…

CIS	415:	Operating	Systems,	University	of	
Oregon,	Fall	2015

5

Amazon.com…

CIS	415:	Operating	Systems,	University	of	
Oregon,	Fall	2015

6

Relationship	to	File	Systems

• File	Systems	could	be	implemented	in	DRAM.
• However,	almost	exclusively	on	NV-RAM
–Most	often	hard	drives

• Therefore,	properties	and	benefits	of	file	
systems	are	often	associated	with	properties	
and	benefits	of	NV-RAM.

CIS	415:	Operating	Systems,	University	of	
Oregon,	Fall	2015

7

DRAM	vs NV-RAM	properties

CIS	415:	Operating	Systems,	University	of	
Oregon,	Fall	2015

8

Property DRAM NV-RAM

Capacity ~10GB ~10TB

Cost $5/GB $0.03/GB

Latency <100	nanoseconds ~10 milliseconds

5	orders	of	magnitude!!
What	does	100000:1	mean?

Distance:	a	20”	map	of	Oregon	is	1:100,000	scale

Time:	1	second	to	27	hours	is	1:100,000	scale

Time:	1	minute	to	69	days	is	1:100,000	scale

Time:	1	hour	to	11	years	is	1:100,000	scale

Time:	1	day	to	273	years	is	1:100,000	scale

Announcements

• Projects
– 3B	assigned	Friday,	due	Wednesday
– 3C	posted	Wednesday,	due	May	18
– 3D	posted	Weds,	also	due	May	18
• 3D	is	not	required	to	do	3E,	etc.
• So	you	can	skip	it,	although	you	will	lose	points.

Announcements

• For	Proj3,	it	is	very	important	that	you	use	my	
interface		
– Do	not	modify	the	files	I	tell	you	not	to	modify
– If	you	do	modify	the	files,	it	will	be	quite	painful	
when	I	had	you	~100	regression	tests	that	assume	
the	interface	I	have	been	providing

Project	3B

• Retrofit	to	use	references
• Add	useful	routines	for	manipulating	an	image
– Halve	in	size
– Concatenate
– Crop
– Blend

• Assigned:	May	2nd
• Due:	Weds,	May	9th

Review

3	Big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

Methods	vs Functions
• Methods	and	Functions	are	both	regions	of	code	that	
are	called	by	name	(“routines”)

• With	functions:	
– the	data	it	operates	on	(i.e.,	arguments)	are	explicitly	
passed

– the	data	it	generates	(i.e.,	return	value)	is	explicitly	passed
– stand-alone	/	no	association	with	an	object

• With	methods:
– associated	with	an	object	&	can	work	on	object’s	data
– still	opportunity	for	explicit	arguments	and	return	value

Function	vs Method

(left)	arguments	and	return	value	are	explicit
(right)	arguments	and	return	value	are	not	necessary,	since	they	

are	associated	with	the	object

(left)	function	is	separate	from	struct
(right)	function	(method)	is	part	of	struct

Tally	Counter

3	Methods:
Increment	Count

Get	Count
Reset

• Methods	and	Functions	are	both	regions	of	code	that	
are	called	by	name	(“routines”)

• With	functions:	
– the	data	it	operates	on	(i.e.,	arguments)	are	explicitly	
passed

– the	data	it	generates	(i.e.,	return	value)	is	explicitly	passed
– stand-alone	/	no	association	with	an	object

• With	methods:
– associated	with	an	object	&	can	work	on	object’s	data
– still	opportunity	for	explicit	arguments	and	return	value

Methods	&	Tally	Counter

C++-style	
implementation	
of	TallyCounter

Constructors

• Constructor:	method	for	constructing	object.
– Called	automatically

• There	are	several	flavors	of	constructors:
– Parameterized	constructors
– Default	constructors
– Copy	constructors
– Conversion	constructors

Method	for	constructor	has	same	name	as	struct
Constructor	is	called	automatically	when	object	is	instantiated

(This	is	the	flavor	called	“default	constructor”)

Note	the	typedef went	away	…	not	needed	with	C++.

Argument	can	be	passed	to	
constructor.

(This	is	the	flavor	called	
“parameterized	constructor”)

More	traditional	file	organization

• struct definition	is	in	.h	file
– #ifndef /	#define

• method	definitions	in	.C	file
• driver	file	includes	headers	for	all	structs it	
needs

More	traditional	file	
organization

Methods	can	be	defined	outside	the	struct definition.		
They	use	C++’s	namespace	concept,	which	is	

automatically	in	place.
(e.g.,	TallyCounter::IncrementCount)

“this”:	pointer	to	current	object

• From	within	any	struct’s method,	you	can	
refer	to	the	current	object	using	“this”

Copy	Constructor
• Copy	constructor:	a	constructor	that	takes	an	
instance	as	an	argument
– It	is	a	way	of	making	a	new	instance	of	an	object	
that	is	identical	to	an	existing	one.

Constructor	Types

Default	constructor
Parameterized	
constructor
Copy constructor

Conversion	Constructor

3	big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

2) You	can	control	access	to	data	members	and	
methods

Access	Control
• New	keywords:	public	and	private
– public:	accessible	outside	the	struct
– private:	accessible	only	inside	the	struct
• Also	“protected”	…	we	will	talk	about	that	later

Everything	following	is	
private.		Only	will	change	
when	new	access	control	
keyword	is	encountered.

Everything	following	is	now	
public.		Only	will	change	
when	new	access	control	
keyword	is	encountered.

public	/	private

You	can	issue	public	
and	private	as	many	
times	as	you	wish…

The	compiler	prevents	violations	of	
access	controls.

The	friend	keyword	can	override	
access	controls.

• Note	that	the	struct
declares	who	its	
friends	are,	not	vice-
versa
– You	can’t	declare	
yourself	a	friend	and	
start	accessing	data	
members.

• friend	is	used	most	
often	to	allow	
objects	to	access	
other	objects.

This	will	compile,	since	main	now	
has	access	to	the	private	data	

member	“count”.

class	vs struct
• class	is	new	keyword	in	C++
• classes	are	very	similar	to	structs
– the	only	differences	are	in	access	control

• primary	difference:	struct has	public	access	by	default,	class	
has	private	access	by	default

• Almost	all	C++	developers	use	classes	and	not	
structs
– C++	developers	tend	to	use	structs when	they	want	to	
collect	data	types	together	(i.e.,	C-style	usage)

– C++	developers	use	classes	for	objects	…	which	is	most	
of	the	time

You	should	use	classes!		
Even	though	there	isn’t	much	difference	…

3	big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

2) You	can	control	access	to	data	members	and	
methods

3) Inheritance

New	Stuff

Simple	inheritance	example
• Terminology
– B	inherits	from	A
– A	is	a	base	type	for	B
– B	is	a	derived	type	of	A

• Noteworthy
– “:”	(during	struct definition)	à
inherits	from
• Everything	from	A	is	accessible	in	B

– (b.x is	valid!!)

Object	sizes

Inheritance	+	TallyCounter

FancyTallyCounter inherits	all	of	
TallyCounter,	and	adds	a	new	
method:	DecrementCount

Virtual	functions

• Virtual	function:	function	defined	in	the	base	
type,	but	can	be	re-defined	in	derived	type.

• When	you	call	a	virtual	function,	you	get	the	
version	defined	by	the	derived	type

Virtual	functions:	
example

Virtual	functions:	
example

You	get	the	method	furthest	down	in	
the	inheritance	hierarchy

Virtual	functions:	
example

You	can	specify	the	method	you	
want	to	call	by	specifying	it	explicitly

public	/	private	inheritance
• class	A	:	[public|private]	B
– à class	A	:	public	B
– à class	A	:	private	B

• So:
– For	public,	base	class's	public	members	will	be	public
– For	private,	base	class's	public	members	will	be	private

• Public	common
– I’ve	never	personally	used	anything	else

public	/	private	inheritance
• public	inheritance	à no	restriction	beyond	
what	restrictions	in	base	class
– Example:	
• class	A	{	private:	int x;	};	class	B	:	public	A	{};
• à B	cannot	access	x

• private	inheritance	à *does*	restrict	beyond	
what	restrictions	in	base	class
– Example	2:
• class	A	{	public:	int x;	};	class	B	:	private	A	{};
• à B	again	cannot	access	x

public	/	private	inheritance

• class	A	:	public	B
– A “is	a”	B

• class	A	:	private	B
– A “is	implemented	using”	B
• And:	!(A	“is	a”	B)
• …	you	can’t	treat	A	as	a	B

Access	controls	and	inheritance

B	and	C	are	the	same.
public	is	the	default	
inheritance	for	structs

Public	inheritance:	derived	
types	gets	access	to	base	type’s	
data	members	and	methods

Private	inheritance:	
derived	types	don’t	

get	access.

One	more	access	control	word:	
protected

• Protected	means:
– It	cannot	be	accessed	outside	the	object
• Modulo	“friend”

– But	it	can	be	accessed	by	derived	types
• (assuming	public	inheritance)

Public,	private,	protected

Accessed	
by	derived	
types*

Accessed
outside	
object

Public Yes Yes
Protected Yes No
Private No No

*	=	with	public	inheritance

protected	example

proctected inheritance

• class	A	:	[public|protected|private]	B

• class	A	:	protected	B
– ….	can’t	find	practical	reasons	to	do	this

More	on	virtual	functions	upcoming

• “Is	A”
• Multiple	inheritance
• Virtual	function	table
• Examples
– (Shape)

Memory	Management

C	memory	management

• Malloc:	request	memory	manager	for	memory	
from	heap

• Free:	tell	memory	manager	that	previously	
allocated	memory	can	be	returned

• All	operations	are	in	bytes
Struct *image	=	malloc(sizeof(image)*1);

C++	memory	management

• C++	provides	new	constructs	for	requesting	
heap	memory	from	the	memory	manager
– stack	memory	management	is	not	changed
• (automatic	before,	automatic	now)

• Allocate	memory:	“new”
• Deallocate memory:	“delete”

new	/	delete	syntax
No	header	necessary

Allocating	array	and	
single	value	is	the	same.

Deleting	array	takes	[],	
deleting	single	value	
doesn’t.

new	knows	the	type	and	
allocates	the	right	amount.

new	intà 4	bytes
new	int[3]	à 12	bytes

new	calls	constructors	for	your	classes

• Declare	variable	in	the	stack:	constructor	
called

• Declare	variable	with	“malloc”:	constructor	
not	called
– C	knows	nothing	about	C++!

• Declare	variable	with	“new”:	constructor	
called

new	calls	constructors	for	your	classes

“Quiz”:	please	write	down	the	value	of	
count	at	each	print	statement

new	&	malloc

• Never	mix	new/free	&	malloc/delete.
• They	are	different	&	have	separate	accesses	to	
heap.

• New	error	code:	FMM	(Freeing	mismatched	
memory)

More	on	Classes

Destructors

• A	destructor	is	called	automatically	when	an	
object	goes	out	of	scope	(via	stack	or	delete)

• A	destructor’s	job	is	to	clean	up	before	the	
object	disappears
– Deleting	memory
– Other	cleanup	(e.g.,	linked	lists)

• Same	naming	convention	as	a	constructor,	but	
with	a	prepended	~	(tilde)

Destructors	example

Class	name	with	~	
prepended

Defined	like	any	
other	method,	does	
cleanup

If	Pixel	had	a	constructor	or	
destructor,	it	would	be	

getting	called	(a	bunch)	by	
the	new’s and	delete’s.

Inheritance	and	
Constructors/Destructors:	Example

• Constructors	from	base	class	called	first,	then	
next	derived	type	second,	and	so	on.

• Destructor	from	base	class	called	last,	then	
next	derived	type	second	to	last,	and	so	on.

• Derived	type	always	assumes	base	class	exists	
and	is	set	up
– …	base	class	never	needs	to	know	anything	about	
derived	types

Inheritance	and	
Constructors/Destructors:	Example

Possible	to	get	the	wrong	destructor

• With	a	constructor,	you	always	know	what	
type	you	are	constructing.

• With	a	destructor,	you	don’t	always	know	
what	type	you	are	destructing.

• This	can	sometimes	lead	to	the	wrong	
destructor	getting	called.

Getting	the	wrong	destructor

Virtual	destructors

• Solution	to	this	problem:
Make	the	destructor	be	declared	virtual

• Then	existing	infrastructure	will	solve	the	
problem
– …	this	is	what	virtual	functions	do!

Virtual	destructors

Virtual	inheritance	is	forever

I	didn’t	need	to	put	virtual	
there.

If	the	base	class	has	a	
virtual	function,	then	the	
derived	function	is	virtual,	
whether	or	not	you	put	the	

keyword	in.

I	recommend	you	still	put	it	
in	…	it	is	like	a	comment,	
reminding	anyone	who	

looks	at	the	code.

Objects	in	objects

By	the	time	you	enter	B’s	
constructor,	a1	and	a2	are	

already	valid.

Objects	in	objects

Objects	in	objects:	order	is	important

Initializers

• New	syntax	to	have	variables	initialized	before	
even	entering	the	constructor

Initializers

• Initializers	are	a	mechanism	to	have	a	
constructor	pass	arguments	to	another	
constructor

• Needed	because
– Base	class	constructors	are	called	before	derived	
constructors	&	need	to	pass	arguments	in	derived	
constructor	to	base	class

– Constructors	for	objects	contained	in	a	class	are	
called	before	the	container	class	&	need	to	pass	
arguments	in	container	class’s	destructor

Initializers

• Needed	because
– Constructors	for	objects	
contained	in	a	class	are	
called	before	the	
container	class	&	need	to	
pass	arguments	in	
container	class’s	
destructor

Initializers

• Needed	because
– Base	class	constructors	
are	called	before	derived	
constructors	&	need	to	
pass	arguments	in	derived	
constructor	to	base	class

Calling	base
class	constructor

Initializing	
data	member

Quiz

What’s	the	output?

The	“is	a”	test

• Inheritance	should	be	used	when	the	“is	a”	
test	is	true

• Base	class:	Shape
• Derived	types:	Triangle,	Rectangle,	Circle
– A	triangle	“is	a”	shape
– A	rectangle	“is	a”	shape
– A	circle	“is	a”	shape

You	can	define	an	interface	for	Shapes,	and	
the	derived	types	can	fill	out	that	interface.

I	will	do	a	live	coding	example	of	this	next	
week,	and	will	discuss	how	C++	implements	

virtual	functions.

Multiple	inheritance

• A	class	can	inherit	from	more	than	one	base	
type

• This	happens	when	it	“is	a”	for	each	of	the	
base	types
– Inherits	data	members	and	methods	of	both	base	
types

Multiple	inheritance

Diamond-Shaped	Inheritance

• Base	A,	has	derived	types	B	and	C,	and	D	
inherits	from	both	B	and	C.
–Which	A	is	D	dealing	with??

• Diamond-shaped	inheritance	is	
controversial	&	really	only	for
experts
– (For	what	it	is	worth,	we	make	heavy	use	of	
diamond-shaped	inheritance	in	my	project)

A

B C

D

Diamond-Shaped	Inheritance	Example

Diamond-Shaped	Inheritance	Pitfalls

Diamond-Shaped	Inheritance	Pitfalls

This	can	get	stickier	with	
virtual	functions.

You	should	avoid	diamond-
shaped	inheritance	until	you	feel	
really	comfortable	with	OOP.

Pure	Virtual	Functions

• Pure	Virtual	Function:	define	a	function	to	be	
part	of	the	interface	for	a	class,	but	do	not	
provide	a	definition.

• Syntax:	add	“=0”	after	the	function	definition.
• This	makes	the	class	be	“abstract”
– It	cannot	be	instantiated

• When	derived	types	define	the	function,	then	
are	“concrete”
– They	can	be	instantiated

Pure	Virtual	Functions	Example

More	on	virtual	functions	upcoming

• “Is	A”
• Multiple	inheritance
• Virtual	function	table
• Examples
– (Shape)

Bonus	Topics

Backgrounding

• “&”:	tell	shell	to	run	a	job	in	the	background
– Background	means	that	the	shell	acts	as	normal,	
but	the	command	you	invoke	is	running	at	the	
same	time.

• “sleep	60”	vs “sleep	60	&”

When	would	backgrounding be	useful?

Suspending	Jobs

• You	can	suspend	a	job	that	is	running
Press	“Ctrl-Z”

• The	OS	will	then	stop	job	from	running	and	not	
schedule	it	to	run.

• You	can	then:
– make	the	job	run	in	the	background.

• Type	“bg”
– make	the	job	run	in	the	foreground.

• Type	“fg”
– like	you	never	suspended	it	at	all!!

Web	pages

• ssh –l	<user	name>	ix.cs.uoregon.edu
• cd	public_html
• put	something	in	index.html
• à it	will	show	up	as	

http://ix.cs.uoregon.edu/~<username>

Web	pages

• You	can	also	exchange	files	this	way
– scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

– point	people	to	
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note	that	~/public_html/dir1 shows	up	as	
http://ix.cs.uoregon.edu/~<username>/dir1

(“~/dir1”	is	not	accessible	via	web)

