0 UNIVERSITY OF OREGON ‘ I S 3 3 o ([
[

/7717) /] /

) /_ _ _
ARV R VY Y VY Y Y Y VA Y Y
AV VAV VA A SR I A Y A A AV Y Y A A A R Y A A A I
___ /I I N ST IN_ NI NI T

Lecture 13:
more class,
C++ memory management

May 7%, 2018 Hank Childs, University of Oregon

Random Topics

UNIVERSITY OF OREGON

Operator Precedence

Precedence Operator Description Associativity

++ - - Suffix/postfix increment and decrement Left-to-right
() Function call

1 [] Array subscripting
- Structure and union member access
-> Structure and union member access through pointer
(type){list} Compound literal(cs9)
++ - - Prefix increment and decrement Right-to-left
+ - Unary plus and minus
|~ Logical NOT and bitwise NOT

2 (type) Type cast
% Indirection (dereference)
& Address-of
sizeof Size-of
_Alignof Alignment requirement(c11)

3 */% Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6 <<= For relational operators < and = respectively
>>= For relational operators > and = respectively

7 === For relational = and # respectively

8 & Bitwise AND

9 i Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 | Logical OR

13(note 1] [7. Ternary conditionall°te 2] Right-to-Left

= Simple assignment
+= -= Assignment by sum and difference

14 *= [= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
&= "= |= Assignment by bitwise AND, XOR, and OR

15 . Comma Left-to-right

Source: http://en.cppreference.com/w/c/language/operator_precedence

UNIVERSITY OF OREGON

O

performance of different fread options?
It seems like there are maybe three different ways to use fread:

option 1: fread(location, size_of_element, number_of_elements, file)
option 2: fread(location, size_of_element * number_of_elements, 1, file)
option 3: loop over i < number_of_elements: fread(location + i, size_of_element, 1, file)

You might want to use different options depending on the context, but supposing it
didn't matter, | was wondering which would be the best?

| figured option 3 would be the slowest because of all the function calls. | wrote a little
program and got running times: option 2 < option 1 << option 3

Does anyone know why option 2 is the fastest? If you're interested, the test program |
wrote is at: http://ix.cs.uoregon.edu/~hampton2/330/fread_test/

This isn't the most important thing in the world ... just goofing around :)

O

UNIVERSITY OF OREGON

DRAM vs NV-RAM

* DRAM: Dynamic Random Access Memory
— stores data
— each bit in separate capacitor within integrated circuit
— loses charge over time and must be refreshed
— - volatile memory

* NV-RAM: Non-Volatile Random Access Memory
— stores data
— information unaffected by power cycle

— examples: Read-Only Memory (ROM), flash, hard
drive, floppy drive, ...

CIS 415: Operating Systems, University of

0 UNIVERSITY OF OREGON

A
Seagate Expansion 5TB Desktop External Hard Drive USB 3.0
(STEB5000100)
by Seagate
$133.99 $469.99 Prime WRA RV v 1,394
Get it by Frlday, Nov 20 See more
More Buying Choices Trade-in eligible for an Amazon gift card
$133.99 new (68 offers) .)
$117.24 used (1 offer) Electronics: See all 94 items

Crucial Ballistix Sport 16GB Kit (8GBx2) DDR3 1600 MT/s (PC3-12800)

UDIMM Memory BLS2KIT8G3D1609DS1S00/ BLS2CP8G3D1609DS1S00
by Crucial

$74.99 $159.99 /Prime WRRRR v 1443

Get it by Thursday, Nov 19 Product Description

More Buying Choices ... is a 16GB kit consisting ... computers
$69.95 new (73 offers) that take DDR3 UDIMM memory ...

Electronics: See all 454,298 items

Corsair Vengeance 16GB (2x8GB) DDR3 1600 MHz (PC3 12800) Desktop
Memory (CMZ16GX3M2A1600C10)

by Corsair

$83.90 $448-70 Prime WRR R ¥ 912

Get it by Thursday, Nov 19 Product Features

More Buying Choices XMP Memory Profile for simple, safe

$72.50 new (101 offers) overclocking
$74.99 used (3 offers) Electronics: See all 454,298 items

Crucial 16GB Kit (8GBx2) DDR3/DDR3L-1600 MHz (PC3-12800) CL11 204-
Pin SODIMM Memory for Mac CT2K8G3S160BM / CT2C8G3S160BM
by Crucial

$72.99 $465.99 /Prime WRRRW v 3,247
Get it by Thursday, Nov 19

Product Description
More Buying Choices ... CT2K8G3S160BM is a 16GB kit
$71.29 new (99 offers) consisting of (2) 8GB DDR3L (DDR3 low ...

$62.00 used (8 offers) Electronics: See all 454,298 items

Relationship to File Systems

* File Systems could be implemented in DRAM.
* However, almost exclusively on NV-RAM

— Most often hard drives
* Therefore, properties and benefits of file

systems are often associated with properties
and benefits of NV-RAM.

CIS 415: Operating Systems, University of

UNIVERSITY OF OREGON

DRAM vs NV-RAM properties

W Knignt Arena m

O

of Oregon """
Straub Hal

. Distance: a 20” map of Oregon is 1:100,000 scale

Cemetery 4.

e Time: 1 second to 27 hours is 1:100,000 scale

c
]

Time: 1 minute to 69 days is 1:100,000 scale

E

1S J9n0d

AMAZON

(9 2805-2¢

c
=k

CIS 415: Orating Systems, Univeréity of

UNIVERSITY OF OREGON

O

Announcements

* Projects
— 3B assigned Friday, due Wednesday
— 3C posted Wednesday, due May 18

— 3D posted Weds, also due May 18

* 3D is not required to do 3E, etc.
* So you can skip it, although you will lose points.

Announcements

* For Proj3, it is very important that you use my
interface
— Do not modify the files I tell you not to modify

— |If you do modify the files, it will be quite painful
when | had you ~100 regression tests that assume
the interface | have been providing

Project 3B

e Retrofit to use references
* Add useful routines for manipulating an image

— Halve in size

— Concatenate

— Crop

— Blend
* Assigned: May 2nd
* Due: Weds, May 9th

UNIVERSITY OF OREGON

Review

3 Big changes to structs in C++

1) You can associate “methods” (functions) with
structs

UNIVERSITY OF OREGON

Methods vs Functions

O

 Methods and Functions are both regions of code that
are called by name (“routines”)
* With functions:
— the data it operates on (i.e., arguments) are explicitly

passed
— the data it generates (i.e., return value) is explicitly passed

— stand-alone / no association with an object

 With methods:
— associated with an object & can work on object’s data
— still opportunity for explicit arguments and return value

UNIVERSITY OF OREGON

O

(left) function is separate from struct
(right) function (method) is part of struct

 CO2LNOOGFD58:330 hank$ cat/function.c ||typedef struct
typedef struct {
o int i;

int 1;
} Integer; . : : :

g void doubler(void) { i = 2xi; };

int doubler(int x) { return 2xx; }; } Integer;
int main() int main()
{ {

Integer 1; Integer 1i;

i.i=3; i = 3 !

i.i = doubler(i.i); e T
\ S~ i.doubler();

¥ \

‘ (left) arguments and return value are explicit
(right) arguments and return value are not necessary, since they

are associated with the object

UNIVERSITY OF OREGON

Tally Counter

3 Methods:
Increment Count
Get Count
Reset

UNIVERSITY OF OREGON

Methods & Tally Counter

O

 Methods and Functions are both regions of code that
are called by name (“routines”)
* With functions:
— the data it operates on (i.e., arguments) are explicitly

passed
— the data it generates (i.e., return value) is explicitly passed

— stand-alone / no association with an object

 With methods:
— associated with an object & can work on object’s data
— still opportunity for explicit arguments and return value

UNIVERSITY OF OREGON

O

- CO2LNOOGFD58:330 hank$ cat tallycounter.C
C++ Style #include <stdio.h>

implementation typedef struct

of TallyCounter int count;

void Reset() { count = 0; };

int GetCount() { return count; };

void IncrementCount() { count++; };
} TallyCounter;

int main()

{
--~.--,~,_§§§§~ﬁ>TallyCounter tc;
tc.count = 0;

tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();
printf("Count is %d\n", tc.GetCount());
}
CO2LNOOGFD58:330 hank$ g++ tallycounter.C
C02LNOOGFD58:330 hank$./a.out
Count 1is 4

UNIVERSITY OF OREGON

O

typedef struct
{

int count;

void Initialize() { count = 0; };

void Reset() { count = 0; };

int GetCount() { return count; };

void IncrementCount() { count++; };
} TallyCounter;

int main()

{

TallyCounter tc;
tc.Initialize(); =
tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();

printf("Count is %d\n", tc.GetCount());

UNIVERSITY OF OREGON

O

Constructors

* Constructor: method for constructing object.
— Called automatically

* There are several flavors of constructors:
— Parameterized constructors
— Default constructors

— Copy constructors
— Conversion constructors

UNIVERSITY OF OREGON

O

#include <stdio.h>
typedef struct struct TallyCounter
{ _ {
int count; int count:
i Initiali t=0; 5 .
void Initialize() { count = @ ; TallyCounter(void) { count = 0; };
void Reset() { count = 0; }; . - .
int GetCount() { return count: }; void Reset() { count = 0; };
void IncrementCount() { count++; }; int GetCount() { return count; };
} TallyCounter; void IncrementCount() { count++; };
};
int main()
{ int main()
TallyCounter tc; {
tc.Initialize(); TallyCounter tc;
tc.IncrementCount(); tc.IncrementCount();
tc.IncrementCount(); tc.IncrementCount();
Eﬁ'iﬂgﬁgmzziggﬂzizgf tc.IncrementCount();
« LNCTE A _ tc.IncrementCount();
) prlntf(Count is %d\n ’ tC-Getcount()); printf(ucount is o/od\n", tC.GetCount());
- }

O CO2LNOOGFD58:330 hank$ cat tallycounterV4.C
#include <stdio.h>
struct TallyCounter
{
int count;
TallyCounter(void) { count = 0@; };
TallyCounter(int c) { count = c; };
void TReset() { count = 0; };
int GetCount() { return count; };
void IncrementCount() { count++; };
};
int main() Argument can be passed to
{ FallvCounter tc(10) constructor.

a ounter tc - .
tc.I?\IcrementCount() ; (This is the flavor called
tc.IncrementCount(); “parameterized constructor”)
tc.IncrementCount();
tc.IncrementCount();
printf("Count is %d\n", tc.GetCount());

}
CO2LNOOGFD58:330 hank$ g++ tallycounterV4.C

CO2LNOOGFD58:330 hank$./a.out
Coiint 1c 14

More traditional file organization

e struct definition is in .h file
— #ifndef / #define

* method definitions in .C file

e driver file includes headers for all structs it
needs

b . CO2LNOOGFD58:TC hank$ cat Makefile
OMwatradltIOnal flle main: main.o tallycounter.o

g++ —0 main main.o tallycounter.o

organization Coot $<

#include

CO2LN@OGFD58:TC hank$ cat tallycounter.h g++ -I. —c $<
#ifndef TALLY_COUNTER_H
#define TALLY COUNTER H CO2LNOOGFD58:TC hank$ cat tallycounter.C
- - #include <TallyCounter.h>
struct TallyCounter _
{ TallyCounter::TallyCounter(void)
int count; {
count = 0;
TallyCounter(void); }
TallyCounter(int c); .
void Reset(); TallyCounter::TallyCounter(int c)
int GetCount(); {
void IncrementCount(); count = ¢;
b }
#endif void
TallyCounter: :Reset()
CO2LNOOGFD58:TC hank$ cat main.C {
count = 0;

Methods can be defined outside the struct definition.
They use C++’s namespace concept, which is
automatically in place.

(e.g., TallyCounter::IncrementCount) |

"Count 1s %d\n", tc.GetCount ; count++;

O

UNIVERSITY OF OREGON

“this”: pointer to current object

* From within any struct’s method, you can
refer to the current object using “this”

TallyCounter::TallyCounter(int c)
{

count = c;
}

<————— >
L
t TallyCounter::TallyCounter(int c)
H{

2 this—>count = c;
|IIIIIIIIIIIIII}- IIIIIIIIIIIIIII

UNIVERSITY OF OREGON

O

Copy Constructor

* Copy constructor: a constructor that takes an
instance as an argument

— It is a way of making a new instance of an object
that is identical to an existing one.

struct TallyCounter
{
int count;
TallyCounter(void);
TallyCounter(int c);
TallyCounter(TallyCounter &);
void Reset();
int GetCount(): TallyCounter::TallyCounter(TallyCounter &c)
void IncrementCount();]|* _ _
}; , count = c.count;

UNIVERSITY OF OREGON

O

Constructor Types

struct TallyCounter
{

int count;

TallyCounter(void); T Default constructor

TallyCounter(int c);<— Parameterized
TallyCounter(TallyCounter &); | constructor
void Reset(); D Copy constructor
int GetCount();
void IncrementCount();

UNIVERSITY OF OREGON

O

Conversion Constructor

struct ImperialDistance

{
};

double miles;

struct MetricDistance

{

double kilometers;

MetricDistance() { kilometers = 0; };
MetricDistance(ImperialDistance &id)
{ kilometers = id.milesx1.609; };

3 big changes to structs in C++

1) You can associate “methods” (functions) with
structs

2) You can control access to data members and
methods

O

UNIVERSITY OF OREGON

Access Control

* New keywords: public and private
— public: accessible outside the struct

— private: accessible only inside the struct

* Also “protected” ... we will talk about that later
struct TallyCounter Everything following is

t private. Only will change
private: < when new access control
int count; keyword is encountered.

public: <—
TallyCounter(void)s
TallyCounter(int c);
TallyCounter(TallyCounter &);
void Reset();
GetCount();
IncrementCount();

Everything following is now
public. Only will change
when new access control
keyword is encountered.

UNIVERSITY OF OREGON

O

public / private

struct TallyCounter

{

public:
TallyCounter(void);
TallyCounter(int c);
TallyCounter(TallyCounter &);

private:

int count;
public: You can issue public

void Reset();
int GetCount();
void IncrementCount();

and private as many
times as you wish...

};

O

UNIVERSITY OF OREGON

The compiler prevents violations of
access controls.

128-223-223-72—-wireless:TC hank$ cat main.C
#include <stdio.h>
#include <TallyCounter.h>

int main()

{
TallyCounter tc;
tc.count = 10;

}

128-223-223-72-wireless:TC hank$ make

g++ -I. —-c main.C

main.C:7:8: error: 'count' is a private member of 'TallyCounter’
tc.count = 10;

./TallyCounter.h:12:12: note: declared private here
int count;

A

1 error generated.
make: xxx [main.o] Error 1

O

struct TallyCounter

{

UNIVERSITY OF OREGON

The friend keyword can override

access controls.
e Note that the struct

| | | declares who its
friend int main(); . .
friends are, not vice-
public: versa
TallyCounter(void); ,
TallyCounter(int c); — You can’t declare
TallyCounter(TallyCounter &); yourself a friend and
. start accessing data
private: b
int count; memapers.

e friend is used most
often to allow
objects to access
other objects.

This will compile, since main now
has access to the private data
member “count”.

UNIVERSITY OF OREGON

O

class vs struct

e class is new keyword in C++

* classes are very similar to structs

— the only differences are in access control

* primary difference: struct has public access by default, class
has private access by default

* Almost all C++ developers use classes and not
structs

— C++ developers tend to use structs when they want to
collect data types together (i.e., C-style usage)

— C++ developers use classes for objects ... which is most
of the time

You should use classes!

Even though there isn’t much difference ...

3 big changes to structs in C++

1) You can associate “methods” (functions) with
structs

2) You can control access to data members and
methods

3) Inheritance

New Stuff

O

UNIVERSITY OF OREGON

Simple inheritance example

struct A

{ * Terminology
Int X; . .
}; e — B inherits from A
struct B : A — Ais a base type for B
{ n .
int y; B is a derived type of A
% * Noteworthy
{i"t main() — “” (during struct definition) =
B b; inherits from
E;‘ : 2' * Everything from A is accessible in B

} — (b.x is valid!!)

UNIVERSITY OF OREGON

O

Object sizes

128-223-223-72-wireless:330 hank$ cat simple_inheritance.C
#include <stdio.h>

struct A
{
int x;
b
struct B : A
{
int y;
b
int main()
{
B b;
b.x = 3;
b.y = 4;
printf("Size of A = %lu, size of B = %lu\n", sizeof(A), sizeof(B));
}
128-223-223-72-wireless:330 hank$ g++ simple_inheritance.C

128-223-223-72-wireless:330 hank$./a.out
Size of A = 4, size of B = 8

UNIVERSITY OF OREGON

O

Inheritance + TallyCounter

struct TallyCounter

{
friend int main();
public:
TallyCounter(void);
TallyCounter(int c);
TallyCounter(TallyCounter &);
P e unt FancyTallyCounter inherits all of
TallyCounter, and adds a new
ublic:
P ol Reset () : method: DecrementCount
int GetCount();
void IncrementCount();
i

struct FancyTallyCounter : TallyCounter
{

}

void DecrementCount() { count——; }

Virtual functions

* Virtual function: function defined in the base
type, but can be re-defined in derived type.

 When you call a virtual function, you get the
version defined by the derived type

UNIVERSITY OF OREGON

()

128-223-223-72—-wireless:330 hank$ cat virtual.C

#include <stdio.h>

struct SimplelID
{

int id;

Virtual functions:
example

virtual int GetIdentifier() { return id; };

b

struct ComplexID : SimplelD
{

int extrald;

virtual int GetIdentifier() { return extralIdx128+id; };

};

int main()

{
ComplexID cid;
cid.id = 3;
cid.extrald = 3;

printf("ID = %d\n", cid.GetIdentifier());

}

128-223-223-72-wireless:330 hank$ g++ virtual.C
128-223-223-72-wireless:330 hank$./a.out

ID = 387

|
'128—223—223—72—wire1ess:330 hank$ cat virtual2.C
#include <stdio.h>

struct Sinpleld Virtual functions:
int id;
virtual int GetIdentifier() { return id; }; example
b
struct ComplexID : SimpleID
{
int extrald;
virtual int GetIdentifier() { return extraldx128+id; };
I
struct C3 : ComplexID
{ .
,, T extrabxtrald; You get the method furthest down in
| , the inheritance hierarchy
int main()
{
C3 cid;
cid.id = 3;
cid.extrald = 3;
cid.extraExtrald = 4;
printf("ID = %d\n", cid.GetIdentifier());
¥

128-223-223-72-wireless:330 hank$ g++ virtual2.C
128-223-223-72-wireless:330 hank$./a.out

(\ YYYYYYYYYYYYYYYYYYYYYY
128-223-223-72-wireless:330 hank$ cat virtual3.C
#include <stdio.h>

?truct SimplelD Vlrtual funCtlonS:
int id;
virtual int GetIdentifier() { return id; }; example

b

struct ComplexID : SimplelD
{
int extrald;
virtual int GetIdentifier() { return extraldx128+id; };

b
struct C3 : ComplexID
{

int extraExtrald; .
}; You can specify the method you
int main() want to call by specifying it explicitly
{

C3 cid;

cid.id = 3;

cid.extrald = 3;
cid.extraExtrald = 4;
printf("ID = %d, %d\n", cid.SimplelID::GetIdentifier(), cid.GetIdentifier());
}
128-223-223-72-wireless:330 hank$ g++ virtual3.C
128-223-223-72-wireless:330 hank$./a.out
ID = 3, 387

UNIVERSITY OF OREGON

O

public / private inheritance

e class A : [public|private] B
— —> class A : public B
— > class A : private B

* So:
— For public, base class's public members will be public
— For private, base class's public members will be private

* Public common
— |'ve never personally used anything else

UNIVERSITY OF OREGON

public / private inheritance

O

* public inheritance = no restriction beyond
what restrictions in base class
— Example:
» class A { private: int x; }; class B : public A {};
= B cannot access X
* private inheritance = *does* restrict beyond
what restrictions in base class
— Example 2:

 class A { public: int x; }; class B : private A {};
e = B again cannot access x

public / private inheritance

* class A : public B
—A“isa” B
* class A : private B

— A “is implemented using” B
* And: (A “is a” B)
e ..youcan'ttreat AasaB

O e Access controls and inheritance

CO2LNOOGFD58:330 hank$ cat inheritance.C

struct A { int x; };
struct B : A { inty; }; <€ B and C are the same.

struct C : public A { int y; }ie— public is the default
struct D : private A { int y; }; inheritance for structs

int main()

Yo Public inheritance: derived Private inheritance:
S 2; types gets access to base type’s derived types don’t
d.x = 2; data members and methods get access.

One more access control word:
protected

* Protected means:

— It cannot be accessed outside the object
* Modulo “friend”

— But it can be accessed by derived types

e (assuming public inheritance)

Public, private, protected

Accessed |Accessed

by derived |outside

types* o] o] [
Public Yes Yes
Protected Yes No
Private No No

—
* = with public inheritance

UNIVERSITY OF OREGON

O

protected example

128-223-223-73-wireless:CV hank$ cat protected.C
class A

{
protected:
int x;

};

class B : public A

{
public:
int foo() { return x; };

};

int main()

{

o @

b;
« X 2;
int y = b.foo();
}

128-223-
protecte

b.x

23-73-wireless:CV hank$ g++ protected.C
.C:16:7: error: 'x' is a protected member of 'A'
2

nanNn < |

protected.C:4:9: note: declared protected here
int x;

1l error generated.

proctected inheritance

e class A : [public|protected|private] B

e class A : protected B

— can’t find practical reasons to do this

More on virtual functions upcoming

° HIS AH
 Multiple inheritance
* Virtual function table

 Examples
— (Shape)

Memory Management

C memory management

* Malloc: request memory manager for memory
from heap

* Free: tell memory manager that previously
allocated memory can be returned

* All operations are in bytes
Struct *image = malloc(sizeof(image)*1);

O

UNIVERSITY OF OREGON

C++ memory management

* C++ provides new constructs for requesting
heap memory from the memory manager

— stack memory management is not changed

* (automatic before, automatic now)

* Allocate memory: “new”
* Deallocate memory: “delete”

O

UNIVERSITY OF OREGON

new / delete syntax

No header necessary

fawcetz;330—CHETaiz_Egi—;;;TE————>

int main()
{ Allocating array and
int koneInt = new int: single value is the same.
- ’
xonelnt = 3; o

int xintArray = new int[3];
intArray[0] = intArray[1l] = intArray[2] = 5;

delete onelnt;
delete [] intArray;

Deleting array takes [],

deleting single value
doesn’t.

new knows the type and
allocates the right amount.

new int 2 4 bytes
new int[3] 2 12 bytes

) o oromeon

new calls constructors for your classes

e Declare variable in the stack: constructor
called

 Declare variable with “malloc”: constructor
not called

— C knows nothing about C++!

e Declare variable with “new”: constructor
called

UNIVERSITY OF OREGON

O

new calls constructors for your classes

fawcett:330 childs$ cat counter.C
#include <stdio.h>

int counter = 0;
class Counter

{
public:

Counter() { counter++; };
};

void PrintCount(char xlocation)

{
printf("Count at %s is %d\n",

location, counter);

int main()

{

}

PrintCount("beginning");

Counter c;

PrintCount("after one");

Counter *c2 = new Counter;
PrintCount("after heap one");

Counter *c3 = new Counter[10];
PrintCount("after heap ten");

Counter xxc4 = new Counterx[10];
PrintCount("after heap-pointer-ten");
for (int i =0 ; i <10 ; i++)

{
}

PrintCount("after allocating heap-pointer-ten");

c4[i] = new Counter;

fawcett:330 childs$./a.out
Count
Count
Count
Count
Count

at
at
at
at
at
at

beginning is @
after one is 1
after
after
after
after

Count

heap one is 2

heap ten is 12
heap-pointer-ten is 12
allocating heap-pointer-ten is 22

new & malloc

* Never mix new/free & malloc/delete.

* They are different & have separate accesses to
heap.

* New error code: FMM (Freeing mismatched
memory)

More on Classes

Destructors

e A destructor is called automatically when an
object goes out of scope (via stack or delete)

* A destructor’s job is to clean up before the
object disappears
— Deleting memory

— Other cleanup (e.g., linked lists)

 Same naming convention as a constructor, but
with a prepended ~ (tilde)

UNIVERSITY OF OREGON

O

Destructors example

struct Pixel

{
unsigned char R, G, B;
H
class Image
{ bli Class name with ~
public:
Image(int w, int h); prepended
~Image(); - S—
private:

int width, height;
Pixel xbuffer;
b Defined like any

, , other method, does
Image::Image(int w, int h)
{ cleanup

width = w; height = h;
buffer = new Pixel[widthxheight];

If Pixel had a constructor or
destructor, it would be
getting called (a bunch) by
the new’s and delete’s.

|

Image: :~Image()

{
l delete [] buffer;
} 3

Inheritance and
Constructors/Destructors: Example

* Constructors from base class called first, then
next derived type second, and so on.

 Destructor from base class called last, then
next derived type second to last, and so on.

* Derived type always assumes base class exists
and is set up

— ... base class never needs to know anything about
derived types

O

{

};

{

};

}

class D :

UNIVERSITY OF OREGON

Inheritance and
Constructors/Destructors: Example

#include <stdio.h>

class C

public:
C() { printf("Constructing C\n"); };
~C() { printf("Destructing C\n"); };

public C
public:

D() { printf("Constructing D\n"); };
~D() { printf("Destructing D\n"); };

int main()

{

printf("“Making a D\n");
{

D b;
}

printf("“Making another D\n");
{

D b;
}

Making a D
Constructing C
Constructing D
Destructing D
Destructing C
Making another D
Constructing C
Constructing D
Destructing D
Destructing C

Possible to get the wrong destructor

* With a constructor, you always know what
type you are constructing.

* With a destructor, you don’t always know
what type you are destructing.

* This can sometimes lead to the wrong
destructor getting called.

UNIVERSITY OF OREGON

O

Getting the wrong destructor

#include <stdio.h>

class C
{
public:
C() { printf("Constructing C\n"); };

~C() { printf("Destructing C\n"); }; y .
}: Pran SoRTHERIg B fawcett:330 childs$./a.out

_ Constructing C
class D : public C

!

{ iConstructing D

pug}.:)lC:{ intf("Constructing D\n"); } Constructing C

prin onstructing D\n"); }; ~ .

~D() { printf("Destructing D\n"); }; Construct.lng D
}; Destructing C
Dx D_as_D_Creator() { return new D; }; DeStrUCt".mg D
Cx D_as_C_Creator() { return new D; }; Destructing C B
int main()
{

Cx ¢ = D_as_C_Creator();

Dx d

D_as_D_Creator();

delete c;
delete d;

Virtual destructors

e Solution to this problem:

Make the destructor be declared virtual

* Then existing infrastructure will solve the
problem

— ... this is what virtual functions do!

UNIVERSITY OF OREGON

O

Virtual destructors

#include <stdio.h>

class C

{
public:
C() { printf("Constructing C\n"); };
virtual ~C() { printf("Destructing C\n"); };
H

class D : public C

{
public:

D() { printf("Constructing D\n"); };

y, Virwat =p0 L printr("bestructing D\n™)i 3 Ifaycett:330 childs$./a.out

o } Constructing C

Dx D_as_D_Creator return new D; }; :

Cx D_as_C_Creator() { return new D; }; Construct}ng D
Constructing C

{int main() Constructing D
Cx ¢ = D_as_C_Creator(); DeStrUCtlng D
Dx d = D_as_D_Creator(); Destructing C

delete c; Destructing D

delete d; Destructing C

UNIVERSITY OF OREGON

O

Virtual inheritance is forever

#include <stdio.h>

class C

{
public:
C() { printf("Constructing C\n"); };

virtual ~C() { printf("Destructing C\n"); };

};

class D

{
public:
D() { printf("Constructing D\n"); };

: public C

virtual ~D() { printf("Destructing D\n"); };

};

Dx D_as_D_Creator() { return new D; };
Cx D_as_C_Creator() { return new D; };

int main()

{

D_as_C_Creator();
D_as_D_Creator();

delete c;
delete d;

| didn’t need to put virtual
there.
If the base class has a

virtual function, then the
derived function is virtual,
whether or not you put the
keyword in.

| recommend you still put it
in ... it is like a comment,
reminding anyone who
looks at the code.

UNIVERSITY OF OREGON

O

_Obj_ects in objects

#include <stdio.h>'

class A
{
public:
A() { printf("Constructing A\n"); };
~A() { printf("Destructing A\n"); };

By the time you enter B’s

b constructor, al and a2 are
class B already valid.
public:
B() { printf("Constructing B\n"); };
~B() { printf("Destructing B\n"); };
ivate: .
ol a2; Destructing A
}i Making another B
int main() Constructing A
h :
orintf("Making a B\n"); Constructing A
{ Constructing B
, o Destructing B

Destructing A
Destructing A

printf(“Making another B\n");

B b;
}
} .

UNIVERSITY OF OREGON

O

Objects in objects

#include <stdio.h>

class A
{
public:
A() { printf("Constructing A\n"); };
~A() { printf("Destructing A\n"); };

h
class B fawcett:330 childs$./a.out
mgHLE intf("Constructing B\n"); } Constructing B
prin onstructing n-j,; ’ .
~B() { printf("Destructing B\n"); }; Constructlng B
b Constructing C
class C Destructing C
{ ’
oubLic: Destructing B
C() { printf("Constructing C\n"); }; Destructing A
~C() { printf("Destructing C\n"); }; —
private:
A a;
B b;
h
int main()
{
Cc;

}

UNIVERSITY OF OREGON

O

Objects in objects: order is important

#include <stdio.h>

class A
{
public:
A() { printf("Constructing A\n"); };
~A() { printf("Destructing A\n"); };
};

class B
{
public:
B() { printf("Constructing B\n"); };
~B() { printf("Destructing B\n"); };
¥

class C
{
public:
C() { printf("Constructing C\n"); };
~C() { printf("Destructing C\n"); };

private: —

int main()

{
}

C c;

fawcett:330 childs$./a.out
Constructing B
Constructing A

| Constructing C

Destructing C
Destructing A
Destructing B

UNIVERSITY OF OREGON

O

Initializers

* New syntax to have variables initialized before
even entering the constructor

#include <stdio.h>

class A

{
public:

A() : x(5)
{

};

private:

}s int x; fawcett:330 childs$./a.out
X is 5

printf("x is %d\n", x);

int main()

{

A a;

}

UNIVERSITY OF OREGON

O

Initializers

e |nitializers are a mechanism to have a
constructor pass arguments to another
constructor

* Needed because

— Base class constructors are called before derived
constructors & need to pass arguments in derived
constructor to base class

— Constructors for objects contained in a class are
called before the container class & need to pass
arguments in container class’s destructor

UNIVERSITY OF OREGON

O

Initializers

* Needed because

— Constructors for objects
contained in a class are
called before the
container class & need to
pass arguments in
container class’s
destructor

#include <stdio.h>

class A
{
public:
A(int x) { v =x; };
private:
int v;

};

class B

{
public:

B(int x) {v=x; };
private:
int v;

};

class C
{
public:
C(int x, int y) : b(x), aly) { };
private:
B b;
A a;
};

int main()

{
C c(3,5);

}

UNIVERSITY OF OREGON

O

Initializers
class A
{
public: * Needed because
A(int x) {v=x;};
prmtsf — Base class constructors
}; are called before derived
Elass C : public A constructors & need to
public: pass arguments in derived
C(int x, int y) : Aly), z(x) { };
private: ? constructor to base class
int z;
};
int main()
{

C c(3,5); . e s
} (3,5) Calling base Initializing

class constructor data member

UNIVERSITY OF OREGON

O

Quiz

#include <stdio.h>

gt doubler{int X) fawcett:330 childs$./a.out
printf("In doubler\n"); In doubler
) return 2#X; In A's constructor
In B's constructor
class A
{
public:
A(int x) { printf("In A's constructor\n"); };
}
class B : public A
{
public:
B(int x) : A(doubler(x)) { printf("In B's constructor\n"); };
}
int main()

{
}

B b(3);

What'’s the output?

UNIVERSITY OF OREGON

O

The “is a” test

| will do a live coding example of this next |

test week, and will discuss how C++ implements

virtual functions.
dape

e Base CIass: S

* Derived types: Triangle, Rectangle, Circle
— A triangle “is a” shape
— A rectangle “is a” shape

— A circle “is a” shape

You can define an interface for Shapes, and |

the derived types can fill out that interface.

Multiple inheritance

e A class can inherit from more than one base
type
* This happens when it “is a” for each of the
base types
— Inherits data members and methods of both base
types

UNIVERSITY OF OREGON

O

Multiple inheritance

class Professor

{

void Teach():

void Grade():

void Research():
b
class Father
{

void Hug();

void Discipline();
b

class Hank : public Father, public Professor

{
};

Diamond-Shaped Inheritance

* Base A, has derived types Band C, and D
inherits from both B and C.

— Which A is D dealing with??

* Diamond-shaped inheritance is
controversial & really only for
experts

— (For what it is worth, we make heavy use of
diamond-shaped inheritance in my project)

UNIVERSITY OF OREGON

O

Diamond-Shaped Inheritance Example

class Person

{
int X;
};
class Professor : public Person
{
void Teach();
void Grade();
void Research();
};
class Father : public Person
{
void Hug();
void Discipline();
};

class Hank : public Father, public Professor
{
};

UNIVERSITY OF OREGON

O

Diamond-Shaped Inheritance Pitfalls

#include <stdio.h> class Hank : public Father, public Professor
{
class Person public:
{ int GetHoursPerWeek() { return hoursPerWeek; };
public: H
Person(int h) { hoursPerWeek = h; };|]|. t main()
protected: %n main
int hoursPerWeek; Hank hrc;
}i printf("HPW = %d\n", hrc.GetHoursPerWeek());
}
class Professor : public Person
{
public:
Professor() : Person(90) { ; };
void Teach();
void Grade();
}s fawcett:330 childs$ g++ diamond_inheritance.C

diamond_inheritance.C: In member function ‘int Hank::GetHoursPerWeek()':
claldiamond_inheritance.C:31: error: reference to ‘hoursPerWeek’ is ambiguous
{ |diamond_inheritance.C:8: error: candidates are: int Person::hoursPerWeek
p/diamond_inheritance.C:8: error: int Person::hoursPerWeek
diamond_inheritance.C:31: error: reference to ‘hoursPerWeek’ is ambiguous
diamond_inheritance.C:8: error: candidates are: int Person::hoursPerWeek
diamond_inheritance.C:8: error: int Person::hoursPerWeek

};

UNIVERSITY OF OREGON

O

Diamond-Shaped Inheritance Pitfalls

#include <stdio.h>

class Person

{
public:
Person(int h) { hoursPerWeek = h; };
protected:
int hoursPerWeek;
h
class Professor : public Person
{
public:
Professor() : Person(90) { : }:
void Teach();
void Grade();
void Research():
};

class Father :

{

public Person

public:
Father() : Person(20) { ; };
void Hug();
void Discipline();

};

class Hank : public Father, public Professor
{

public:
int GetHoursPerWeek() { return Professor::hoursPerWeek+
Father::hoursPerWeek; };

};
int main()
{
Hank hrc;

printf("HPW = %d\n", hrc.GetHoursPerWeek());

}

fawcett:330 childs$./a.out
HPW = 110

This can get stickier with

virtual functions.

‘ You should avoid diamond- |

shaped inheritance until you feel
really comfortable with OOP.

Pure Virtual Functions

* Pure Virtual Function: define a function to be
part of the interface for a class, but do not
provide a definition.

e Syntax: add “=0" after the function definition.
 This makes the class be “abstract”
— It cannot be instantiated

 When derived types define the function, then
are “concrete”

— They can be instantiated

UNIVERSITY OF OREGON

O

Pure Virtual Functions Example

class Shape

{
public:
virtual double GetArea(void) = 0;
};

class Rectangle : public Shape

{
public:
virtual double GetArea() { return 4; }:
};

int main()

{
Shape s;
Rectangle r;

}

fawcett:330 childs$ g++ pure_virtual.C

pure_virtual.C: In function ‘int main()’:

pure_virtual.C:15: error: cannot declare variable ‘s’ to be of abstract type ‘Shape’
pure_virtual.C:2: note: Dbecause the following virtual functions are pure within ‘Shape’:
pure_virtual.C:4: note: virtual double Shape::GetArea()
Y

More on virtual functions upcoming

° HIS AH
 Multiple inheritance
* Virtual function table

 Examples
— (Shape)

Bonus Topics

UNIVERSITY OF OREGON

O

Backgrounding

e “&”: tell shell to run a job in the background

— Background means that the shell acts as normal,
but the command you invoke is running at the
same time.

e “sleep 60" vs “sleep 60 &”

When would backgrounding be useful?

UNIVERSITY OF OREGON

O

Suspending Jobs

* You can suspend a job that is running
Press “Ctrl-2”

* The OS will then stop job from running and not
schedule it to run.

 You can then:

— make the job run in the background.
* Type “bg”
— make the job run in the foreground.
* Type “fg”
— like you never suspended it at all!!

Web pages

* ssh —| <user name> ix.cs.uoregon.edu
e cd public_html

e put something in index.html

* = it will show up as

http://ix.cs.uoregon.edu/~<username>

O

UNIVERSITY OF OREGON

Web pages

* You can also exchange files this way

— scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

— point people to
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note that ~/public_html/dirl shows up as
http://ix.cs.uoregon.edu/~<username>/dirl

(“~/dirl” is not accessible via web)

