
Hank Childs, University of OregonMay 2nd, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 12:
C++ and structs

3A	– post	mortem

Why	Can’t	I	Modify	the	Input	in	Yellow	
Diagonal

• Imagine	I	handed	you	the	
Mona	Lisa	with	you	and	
asked	you	to	produce	a	
version	with	a	moustache…

• Would	you?:
– make	a	reproduction	and	add	
the	moustache	to	the	
reproduction

– vandalize	the	original

With	Respect	to	3B…

How	to	Make	a	Reproduction

REVIEW

Conditional	compilation

Conditional	compilation	controlled	via	
compiler	flags

This	is	how	configure/cmake controls	the	compilation.

4 files:	struct.h,	prototypes.h,	rectangle.c,	driver.c

#include	<struct.h>
void	InitializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4);

prototypes.h

#include	<struct.h>
#include	<prototypes.h>
void	InitializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4)
{
r->minX =	v1; r->maxX =	v2;				r->minY =	v3;				r->maxY =	v4;

}

rectangle.c

#include	<struct.h>
#include	<prototypes.h>
int main()
{
struct Rectangle	r;	
InitializeRectangle(&r,	0,	1,	0,	1.5);

}

driver.c

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

struct.h

What	is	the	problem	with	this	configuration?

Compilation	error

gcc –E	rectangle.c

#ifndef /	#define	to	the	rescue

#ifndef RECTANGLE_330
#define	RECTANGLE_330

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

#endif

struct.h

Why	does	this	work?

This	problem	comes	up	a	lot	with	big	projects,	and	
especially	with	C++.

There	is	more	to	macros…
• Macros	are	powerful	&	can	be	used	to	
generate	custom	code.
– Beyond	what	we	will	do	here.

• Two	special	macros	that	are	useful:
– __FILE__	and	__LINE__

(Do	an	example	with	__LINE__,	__FILE__)

C++	will	let	you	overload	functions	
with	different	types

C++	also	gives	you	access	to	mangling	
via	“namespaces”

Functions	or	variables	within	a	namespace	are	accessed	with	“::”
“::”	is	called	“scope	resolution	operator”

References

• A	reference	is	a	simplified	version	of	a	pointer.
• Key	differences:
– You	cannot	do	pointer	manipulations
– A	reference	is	always	valid
• a	pointer	is	not	always	valid

• Accomplished	with	&	(ampersand)
– &:	address	of	variable	(C-style,	still	valid)
– &:	reference	to	a	variable	(C++-style,	also	now	valid)

You	have	to	figure	out	how	‘&’	is	being	used	based	on	context.

Examples	of	References

References	vs Pointers	vs Call-By-Value

ref_doubler and	ptr_doubler are	both	examples	of	call-by-reference.
val_doubler is	an	example	of	call-by-value.

C++	and	Structs

Learning	classes	via	structs

• structs and	classes	are	closely	related	in	C++
• I	will	lecture	today	on	changes	on	how	“structs
in	C++”	are	different	than	“structs in	C”
– …	when	I	am	done	with	that	topic	(probably	1+	
lectures	more),	I	will	describe	how	classes	and	
structs in	C++	differ.

3	Big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

Methods	vs Functions
• Methods	and	Functions	are	both	regions	of	code	that	
are	called	by	name	(“routines”)

• With	functions:	
– the	data	it	operates	on	(i.e.,	arguments)	are	explicitly	
passed

– the	data	it	generates	(i.e.,	return	value)	is	explicitly	passed
– stand-alone	/	no	association	with	an	object

• With	methods:
– associated	with	an	object	&	can	work	on	object’s	data
– still	opportunity	for	explicit	arguments	and	return	value

Function	vs Method

(left)	arguments	and	return	value	are	explicit
(right)	arguments	and	return	value	are	not	necessary,	since	they	

are	associated	with	the	object

(left)	function	is	separate	from	struct
(right)	function	(method)	is	part	of	struct

Tally	Counter

3	Methods:
Increment	Count

Get	Count
Reset

• Methods	and	Functions	are	both	regions	of	code	that	
are	called	by	name	(“routines”)

• With	functions:	
– the	data	it	operates	on	(i.e.,	arguments)	are	explicitly	
passed

– the	data	it	generates	(i.e.,	return	value)	is	explicitly	passed
– stand-alone	/	no	association	with	an	object

• With	methods:
– associated	with	an	object	&	can	work	on	object’s	data
– still	opportunity	for	explicit	arguments	and	return	value

Methods	&	Tally	Counter

C-style	implementation	of	TallyCounter

C++-style	
implementation	
of	TallyCounter

Constructors

• Constructor:	method	for	constructing	object.
– Called	automatically

• There	are	several	flavors	of	constructors:
– Parameterized	constructors
– Default	constructors
– Copy	constructors
– Conversion	constructors

I	will	discuss	these	flavors	
in	upcoming	slides

Method	for	constructor	has	same	name	as	struct
Constructor	is	called	automatically	when	object	is	instantiated

(This	is	the	flavor	called	“default	constructor”)

Note	the	typedef went	away	…	not	needed	with	C++.

Argument	can	be	passed	to	
constructor.

(This	is	the	flavor	called	
“parameterized	constructor”)

More	traditional	file	organization

• struct definition	is	in	.h	file
– #ifndef /	#define

• method	definitions	in	.C	file
• driver	file	includes	headers	for	all	structs it	
needs

More	traditional	file	
organization

Methods	can	be	defined	outside	the	struct definition.		
They	use	C++’s	namespace	concept,	which	is	

automatically	in	place.
(e.g.,	TallyCounter::IncrementCount)

“this”:	pointer	to	current	object

• From	within	any	struct’s method,	you	can	
refer	to	the	current	object	using	“this”

Copy	Constructor
• Copy	constructor:	a	constructor	that	takes	an	
instance	as	an	argument
– It	is	a	way	of	making	a	new	instance	of	an	object	
that	is	identical	to	an	existing	one.

Constructor	Types

Default	constructor
Parameterized	
constructor
Copy constructor

Example	of	3	Constructors

????????????????

Conversion	Constructor

3	big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

2) You	can	control	access	to	data	members	and	
methods

Access	Control
• New	keywords:	public	and	private
– public:	accessible	outside	the	struct
– private:	accessible	only	inside	the	struct
• Also	“protected”	…	we	will	talk	about	that	later

Everything	following	is	
private.		Only	will	change	
when	new	access	control	
keyword	is	encountered.

Everything	following	is	now	
public.		Only	will	change	
when	new	access	control	
keyword	is	encountered.

public	/	private

You	can	issue	public	
and	private	as	many	
times	as	you	wish…

The	compiler	prevents	violations	of	
access	controls.

The	friend	keyword	can	override	
access	controls.

• Note	that	the	struct
declares	who	its	
friends	are,	not	vice-
versa
– You	can’t	declare	
yourself	a	friend	and	
start	accessing	data	
members.

• friend	is	used	most	
often	to	allow	
objects	to	access	
other	objects.

This	will	compile,	since	main	now	
has	access	to	the	private	data	

member	“count”.

class	vs struct
• class	is	new	keyword	in	C++
• classes	are	very	similar	to	structs
– the	only	differences	are	in	access	control

• primary	difference:	struct has	public	access	by	default,	class	
has	private	access	by	default

• Almost	all	C++	developers	use	classes	and	not	
structs
– C++	developers	tend	to	use	structs when	they	want	to	
collect	data	types	together	(i.e.,	C-style	usage)

– C++	developers	use	classes	for	objects	…	which	is	most	
of	the	time

You	should	use	classes!		
Even	though	there	isn’t	much	difference	…

3	big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

2) You	can	control	access	to	data	members	and	
methods

3) Inheritance

Simple	inheritance	example
• Terminology
– B	inherits	from	A
– A	is	a	base	type	for	B
– B	is	a	derived	type	of	A

• Noteworthy
– “:”	(during	struct definition)	à
inherits	from
• Everything	from	A	is	accessible	in	B

– (b.x is	valid!!)

Object	sizes

Inheritance	+	TallyCounter

FancyTallyCounter inherits	all	of	
TallyCounter,	and	adds	a	new	
method:	DecrementCount

Virtual	functions

• Virtual	function:	function	defined	in	the	base	
type,	but	can	be	re-defined	in	derived	type.

• When	you	call	a	virtual	function,	you	get	the	
version	defined	by	the	derived	type

Virtual	functions:	
example

Virtual	functions:	
example

You	get	the	method	furthest	down	in	
the	inheritance	hierarchy

Virtual	functions:	
example

You	can	specify	the	method	you	
want	to	call	by	specifying	it	explicitly

Access	controls	and	inheritance

B	and	C	are	the	same.
public	is	the	default	
inheritance	for	structs

Public	inheritance:	derived	
types	gets	access	to	base	type’s	
data	members	and	methods

Private	inheritance:	
derived	types	don’t	

get	access.

One	more	access	control	word:	
protected

• Protected	means:
– It	cannot	be	accessed	outside	the	object
• Modulo	“friend”

– But	it	can	be	accessed	by	derived	types
• (assuming	public	inheritance)

Public,	private,	protected

Accessed	
by	derived	
types*

Accessed
outside	
object

Public Yes Yes
Protected Yes No
Private No No

*	=	with	public	inheritance

More	on	virtual	functions	upcoming

• “Is	A”
• Multiple	inheritance
• Virtual	function	table
• Examples
– (Shape)

Bonus	Topics

Backgrounding

• “&”:	tell	shell	to	run	a	job	in	the	background
– Background	means	that	the	shell	acts	as	normal,	
but	the	command	you	invoke	is	running	at	the	
same	time.

• “sleep	60”	vs “sleep	60	&”

When	would	backgrounding be	useful?

Suspending	Jobs

• You	can	suspend	a	job	that	is	running
Press	“Ctrl-Z”

• The	OS	will	then	stop	job	from	running	and	not	
schedule	it	to	run.

• You	can	then:
– make	the	job	run	in	the	background.

• Type	“bg”
– make	the	job	run	in	the	foreground.

• Type	“fg”
– like	you	never	suspended	it	at	all!!

Web	pages

• ssh –l	<user	name>	ix.cs.uoregon.edu
• cd	public_html
• put	something	in	index.html
• à it	will	show	up	as	

http://ix.cs.uoregon.edu/~<username>

Web	pages

• You	can	also	exchange	files	this	way
– scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

– point	people	to	
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note	that	~/public_html/dir1 shows	up	as	
http://ix.cs.uoregon.edu/~<username>/dir1

(“~/dir1”	is	not	accessible	via	web)

