
Hank Childs, University of OregonApril 30th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 10:
building large projects,

beginning C++,
C++ and structs

Outline

• Review
• Building	Large	Projects
• Beginning	C++
• C++	&	Structs

Function	Pointers

• Idea:
– You	have	a	pointer	to	a	function
– This	pointer	can	change	based	on	circumstance
–When	you	call	the	function	pointer,	it	is	like	calling	
a	known	function

Function	Pointer	Example

Function	Pointer	Example	#2

Function	pointer Part	of	function	signature

Don’t	be	scared	of	extra	‘*’s	…	they	just	come	about	because	of	
pointers	in	the	arguments	or	return	values.

Simple-to-Exotic	Function	Pointer	
Declarations

void	(*foo)(void);
void	(*foo)(int **,	char	***);
char	**	(*foo)(int **,	void	(*)(int));

These	sometimes	come	up	on	interviews.

Subtyping

Subtyping

• Type:	a	data	type	(int,	float,	structs)
• Subtype	/	supertype:
– Supertype:	the	abstraction	of	a	type
• (not	specific)

– Subtype:	a	concrete	implementation	of	the	
supertype
• (specific)

The	fancy	term	for	this	is	“subtype	polymorphism”

Subtyping:	example

• Supertype:	Shape
• Subtypes:
– Circle
– Rectangle
– Triangle

Subtyping	works	via	interfaces

• Must	define	an	interface	for	
supertype/subtypes
– Interfaces	are	the	functions	you	can	call	on	the	
supertype/subtypes

• The	set	of	functions	is	fixed
– Every	subtype	must	define	all	functions

Subtyping
• I	write	my	routines	to	the	supertype interface
• All	subtypes	can	automatically	use	this	code
– Don’t	have	to	modify	code	when	new	subtypes	are	
added

• Example:	
– I	wrote	code	about	Shapes.
– I	don’t	care	about	details	of	subtypes	(Triangle,	
Rectangle,	Circle)

– When	new	subtypes	are	added	(Square),	my	code	
doesn’t	change

Project	2D

• You	will	extend	Project	2C
• You	will	do	Subtyping
– You	will	make	a	union	of	all	the	structs
– You	will	make	a	struct of	function	pointers

• This	will	enable	subtyping
• Goal:	driver	program	works	on	“Shape”s and	
doesn’t	need	to	know	if	it	is	a	Circle,	Triangle,	
or	Rectangle.

Outline

• Review
• Building	Large	Projects
• Beginning	C++
• C++	&	Structs

3	files:	prototypes.h,	rectangle.c,	driver.c

struct Rectangle;
void	IntializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4);

prototypes.h

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

void	IntializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4)
{
r->minX =	v1; r->maxX =	v2;				r->minY =	v3;				r->maxY =	v4;

}

rectangle.c

#include	<prototypes.h>

int main()
{
struct Rectangle	r;	
InitializeRectangle(r,	0,	1,	0,	1.5);

}

driver.c

Makefile for	prototypes.h,	rectangle.c,	
driver.c

proj2B:	rectangle.o driver.o
gcc -o	proj2B	driver.o rectangle.o

driver.o:	prototypes.h driver.c
gcc -I.	-c	driver.c

rectangle.o:	prototypes.h rectangle.c
gcc -I.	-c	rectangle.c

Makefile

Definition	of	Rectangle	in	rectangle.c
Why	is	this	a	problem?

struct Rectangle;
void	IntializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4);

prototypes.h

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

void	IntializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4)
{
r->minX =	v1; r->maxX =	v2;				r->minY =	v3;				r->maxY =	v4;

}

rectangle.c

#include	<prototypes.h>

int main()
{
struct Rectangle	r;	
InitializeRectangle(&r,	0,	1,	0,	1.5);

}

driver.c

“gcc –c	driver.c”	needs	to	make	an	object	file.		
It	needs	info	about	Rectangle	then,	not	later.

New	gcc option:	“gcc –E”
#include	<prototypes.h>

int main()
{
struct Rectangle	r;	
InitializeRectangle(r,	0,	1,	0,	1.5);

}

driver.c

#	1	"driver.c"
#	1	"<built-in>"	1
#	1	"<built-in>"	3
#	162	"<built-in>"	3
#	1	"<command	line>"	1
#	1	"<built-in>"	2
#	1	"driver.c"	2
#	1	"./prototypes.h"	1

struct Rectangle;

void InitializeRectangle(struct Rectangle *r,	double v1,	double v2,	double v3,	double v4);
#	2	"driver.c"	2

int main()
{
struct Rectangle r;
InitializeRectangle(r,	0,	1,	0,	1.5);

}

gcc –E	–I.	driver.cgcc –E	shows	what	the	
compiler	sees	after	satisfying	

“preprocessing”,	which	
includes	steps	like	“#include”.

This	is	it.		If	the	compiler	can’t	
figure	out	how	to	make	object	
file	with	this,	then	it	has	to	

give	up.

The	fix	is	to	make	sure	driver.c
has	access	to	the	Rectangle	

struct definition.

4 files:	struct.h,	prototypes.h,	rectangle.c,	driver.c

#include	<struct.h>
void	InitializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4);

prototypes.h

#include	<struct.h>
#include	<prototypes.h>
void	InitializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4)
{
r->minX =	v1; r->maxX =	v2;				r->minY =	v3;				r->maxY =	v4;

}

rectangle.c

#include	<struct.h>
#include	<prototypes.h>
int main()
{
struct Rectangle	r;	
InitializeRectangle(&r,	0,	1,	0,	1.5);

}

driver.c

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

struct.h

What	is	the	problem	with	this	configuration?

Compilation	error

gcc –E	rectangle.c

How	to	fix?

• Solution	#1:	don’t	include	it	twice
–à Turns	out,	that	is	hard

• Solution	#2:	need	more	infrastructure	–
macros
– (This	motivates	the	next	ten	slides)

Preprocessor	

• Preprocessor:
– takes	an	input	program
– produces	another	program	(which	is	then	
compiled)

• C	has	a	separate	language	for	preprocessing
– Different	syntax	than	C
– Uses	macros	(“#”)

macro	(“macroinstruction”):	rule	for	replacing	input	
characters	with	output	characters

Preprocessor	Phases

• Resolve	#includes
– (we	understand	#include	phase)

• Conditional	compilation	(#ifdef)
• Macro	replacement
• Special	macros

#define	compilation

This	is	an	example	of	macro	replacement.

#define	via	gcc command-line	option

Conflicting	–D	and	#define

Conditional	compilation

Conditional	compilation	controlled	via	
compiler	flags

This	is	how	configure/cmake controls	the	compilation.

4 files:	struct.h,	prototypes.h,	rectangle.c,	driver.c

#include	<struct.h>
void	InitializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4);

prototypes.h

#include	<struct.h>
#include	<prototypes.h>
void	InitializeRectangle(struct Rectangle	*r,	double	v1,	double	v2,	double	v3,	double	v4)
{
r->minX =	v1; r->maxX =	v2;				r->minY =	v3;				r->maxY =	v4;

}

rectangle.c

#include	<struct.h>
#include	<prototypes.h>
int main()
{
struct Rectangle	r;	
InitializeRectangle(&r,	0,	1,	0,	1.5);

}

driver.c

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

struct.h

What	is	the	problem	with	this	configuration?

Compilation	error

gcc –E	rectangle.c

#ifndef /	#define	to	the	rescue

#ifndef RECTANGLE_330
#define	RECTANGLE_330

struct Rectangle
{
double	minX,	maxX,	minY,	maxY;

};

#endif

struct.h

Why	does	this	work?

This	problem	comes	up	a	lot	with	big	projects,	and	
especially	with	C++.

There	is	more	to	macros…
• Macros	are	powerful	&	can	be	used	to	
generate	custom	code.
– Beyond	what	we	will	do	here.

• Two	special	macros	that	are	useful:
– __FILE__	and	__LINE__

(Do	an	example	with	__LINE__,	__FILE__)

Outline

• Review
• Building	Large	Projects
• Beginning	C++
• C++	&	Structs

Relationship	between	C	and	C++

• C++	adds	new	features	to	C
– Increment	operator!

• For	the	most	part,	C++	is	a	superset	of	C
– A	few	invalid	C++	programs	that	are	valid	C	
programs

• Early	C++	“compilers”	just	converted	programs	
to	C

A	new	compiler:	g++

• g++	is	the	GNU	C++	compiler
– Flags	are	the	same
– Compiles	C	programs	as	well
• (except	those	that	aren’t	valid	C++	programs)

.c	vs .C

• Unix	is	case	sensitive
– (So	are	C	and	C++)

• Conventions:
– .c:	C	file
– .C:	C++	file
– .cxx:	C++	file
– .cpp:	C++	file	(this	is	pretty	rare)

Gnu	compiler	will	sometimes	assume	the	language	based	
on	the	extension	…	CLANG	won’t.

Variable	declaration	(1/2)
• You	can	declare	variables	anywhere	with	C++!

Variable	declaration	(2/2)
• You	can	declare	variables	anywhere	with	C++!

Why	is	this	bad?

What	compiler	error
would	you	get?

C-style	Comments

C++-style	comments

When	you	type	“//”,	the	rest	of	the	line	is	a	comment,	
whether	you	want	it	to	be	or	not.

Valid	C	program	that	is	not	a	valid	C++	
program

• We	have	now	learned	enough	to	spot	one	
(the?)	valid	C	program	that	is	not	a	valid	C++	
program
– (lectured	on	this	earlier)

Problem	with	C…

Problem	with	C…

No	checking	of	type…

Problem	is	fixed	with	C++…

Problem	is	fixed	with	C++…

This	will	affect	you	with	C++.		Before	you	got	
unresolved	symbols	when	you	forgot	to	define	
the	function.		Now	you	will	get	it	when	the	
arguments	don’t	match	up.		Is	this	good?

Mangling

• Mangling	refers	to	combining	information	
about	arguments	and	“mangling”	it	with	
function	name.
–Way	of	ensuring	that	you	don’t	mix	up	functions.
– Return	type	not	mangled,	though

• Causes	problems	with	compiler	mismatches
– C++	compilers	haven’t	standardized.
– Can’t	take	library	from	icpc and	combine	it	

with	g++.

C++	will	let	you	overload	functions	
with	different	types

C++	also	gives	you	access	to	mangling	
via	“namespaces”

Functions	or	variables	within	a	namespace	are	accessed	with	“::”
“::”	is	called	“scope	resolution	operator”

C++	also	gives	you	access	to	mangling	
via	“namespaces”

The	“using”	keyword	makes	all	functions	and	variables	from	a	
namespace	available	without	needing	“::”.	
And	you	can	still	access	other	namespaces.

References

• A	reference	is	a	simplified	version	of	a	pointer.
• Key	differences:
– You	cannot	do	pointer	manipulations
– A	reference	is	always	valid
• a	pointer	is	not	always	valid

• Accomplished	with	&	(ampersand)
– &:	address	of	variable	(C-style,	still	valid)
– &:	reference	to	a	variable	(C++-style,	also	now	valid)

You	have	to	figure	out	how	‘&’	is	being	used	based	on	context.

Examples	of	References

References	vs Pointers	vs Call-By-Value

ref_doubler and	ptr_doubler are	both	examples	of	call-by-reference.
val_doubler is	an	example	of	call-by-value.

References

• Simplified	version	of	a	pointer.
• Key	differences:
– You	cannot	manipulate	it
• Meaning:	you	are	given	a	reference	to	exactly	one	
instance	…	you	can’t	do	pointer	arithmetic	to	skip	forward	
in	an	array	to	find	another	object

– A	reference	is	always	valid
• No	equivalent	of	a	NULL	pointer	…	must	be	a	valid	
instance

Different	Misc C++	Topic:	initialization	
during	declaration	using	parentheses

This	isn’t	that	useful	for	simple	types,	but	it	will	be	useful	when	
we	start	dealing	with	objects.

Outline

• Review
• Building	Large	Projects
• Beginning	C++
• C++	&	Structs

Learning	classes	via	structs

• structs and	classes	are	closely	related	in	C++
• I	will	lecture	today	on	changes	on	how	“structs
in	C++”	are	different	than	“structs in	C”
– …	when	I	am	done	with	that	topic	(probably	1+	
lectures	more),	I	will	describe	how	classes	and	
structs in	C++	differ.

3	Big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

Methods	vs Functions
• Methods	and	Functions	are	both	regions	of	code	that	
are	called	by	name	(“routines”)

• With	functions:	
– the	data	it	operates	on	(i.e.,	arguments)	are	explicitly	
passed

– the	data	it	generates	(i.e.,	return	value)	is	explicitly	passed
– stand-alone	/	no	association	with	an	object

• With	methods:
– associated	with	an	object	&	can	work	on	object’s	data
– still	opportunity	for	explicit	arguments	and	return	value

Function	vs Method

(left)	arguments	and	return	value	are	explicit
(right)	arguments	and	return	value	are	not	necessary,	since	they	

are	associated	with	the	object

(left)	function	is	separate	from	struct
(right)	function	(method)	is	part	of	struct

Tally	Counter

3	Methods:
Increment	Count

Get	Count
Reset

• Methods	and	Functions	are	both	regions	of	code	that	
are	called	by	name	(“routines”)

• With	functions:	
– the	data	it	operates	on	(i.e.,	arguments)	are	explicitly	
passed

– the	data	it	generates	(i.e.,	return	value)	is	explicitly	passed
– stand-alone	/	no	association	with	an	object

• With	methods:
– associated	with	an	object	&	can	work	on	object’s	data
– still	opportunity	for	explicit	arguments	and	return	value

Methods	&	Tally	Counter

C-style	implementation	of	TallyCounter

C++-style	
implementation	
of	TallyCounter

Constructors

• Constructor:	method	for	constructing	object.
– Called	automatically

• There	are	several	flavors	of	constructors:
– Parameterized	constructors
– Default	constructors
– Copy	constructors
– Conversion	constructors

I	will	discuss	these	flavors	
in	upcoming	slides

Method	for	constructor	has	same	name	as	struct
Constructor	is	called	automatically	when	object	is	instantiated

(This	is	the	flavor	called	“default	constructor”)

Note	the	typedef went	away	…	not	needed	with	C++.

Argument	can	be	passed	to	
constructor.

(This	is	the	flavor	called	
“parameterized	constructor”)

More	traditional	file	organization

• struct definition	is	in	.h	file
– #ifndef /	#define

• method	definitions	in	.C	file
• driver	file	includes	headers	for	all	structs it	
needs

More	traditional	file	
organization

Methods	can	be	defined	outside	the	struct definition.		
They	use	C++’s	namespace	concept,	which	is	

automatically	in	place.
(e.g.,	TallyCounter::IncrementCount)

“this”:	pointer	to	current	object

• From	within	any	struct’s method,	you	can	
refer	to	the	current	object	using	“this”

Copy	Constructor
• Copy	constructor:	a	constructor	that	takes	an	
instance	as	an	argument
– It	is	a	way	of	making	a	new	instance	of	an	object	
that	is	identical	to	an	existing	one.

Constructor	Types

Default	constructor
Parameterized	
constructor
Copy constructor

Example	of	3	Constructors

????????????????

Conversion	Constructor

3	big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

2) You	can	control	access	to	data	members	and	
methods

Access	Control
• New	keywords:	public	and	private
– public:	accessible	outside	the	struct
– private:	accessible	only	inside	the	struct
• Also	“protected”	…	we	will	talk	about	that	later

Everything	following	is	
private.		Only	will	change	
when	new	access	control	
keyword	is	encountered.

Everything	following	is	now	
public.		Only	will	change	
when	new	access	control	
keyword	is	encountered.

public	/	private

You	can	issue	public	
and	private	as	many	
times	as	you	wish…

The	compiler	prevents	violations	of	
access	controls.

The	friend	keyword	can	override	
access	controls.

• Note	that	the	struct
declares	who	its	
friends	are,	not	vice-
versa
– You	can’t	declare	
yourself	a	friend	and	
start	accessing	data	
members.

• friend	is	used	most	
often	to	allow	objects	
to	access	other	objects.This	will	compile,	since	main	now	

has	access	to	the	private	data	
member	“count”.

class	vs struct
• class	is	new	keyword	in	C++
• classes	are	very	similar	to	structs
– the	only	differences	are	in	access	control

• primary	difference:	struct has	public	access	by	default,	class	
has	private	access	by	default

• Almost	all	C++	developers	use	classes	and	not	
structs
– C++	developers	tend	to	use	structs when	they	want	to	
collect	data	types	together	(i.e.,	C-style	usage)

– C++	developers	use	classes	for	objects	…	which	is	most	
of	the	time

You	should	use	classes!		
Even	though	there	isn’t	much	difference	…

3	big	changes	to	structs in	C++

1) You	can	associate	“methods”	(functions)	with	
structs

2) You	can	control	access	to	data	members	and	
methods

3) Inheritance

We	will	discuss	inheritance	in	a	future	lecture.

Bonus	Topics

Backgrounding

• “&”:	tell	shell	to	run	a	job	in	the	background
– Background	means	that	the	shell	acts	as	normal,	
but	the	command	you	invoke	is	running	at	the	
same	time.

• “sleep	60”	vs “sleep	60	&”

When	would	backgrounding be	useful?

Suspending	Jobs

• You	can	suspend	a	job	that	is	running
Press	“Ctrl-Z”

• The	OS	will	then	stop	job	from	running	and	not	
schedule	it	to	run.

• You	can	then:
– make	the	job	run	in	the	background.

• Type	“bg”
– make	the	job	run	in	the	foreground.

• Type	“fg”
– like	you	never	suspended	it	at	all!!

Web	pages

• ssh –l	<user	name>	ix.cs.uoregon.edu
• cd	public_html
• put	something	in	index.html
• à it	will	show	up	as	

http://ix.cs.uoregon.edu/~<username>

Web	pages

• You	can	also	exchange	files	this	way
– scp file.pdf
<username>@ix.cs.uoregon.edu:~/public_html

– point	people	to	
http://ix.cs.uoregon.edu/~<username>/file.pdf

Note	that	~/public_html/dir1 shows	up	as	
http://ix.cs.uoregon.edu/~<username>/dir1

(“~/dir1”	is	not	accessible	via	web)

