O

UNIVERSITY OF OREGON ‘ I S 3 3 0 []
[]

/1717 O /7 71 17 _ 7.
/117 NI Il T N1 I I
AV VAV VA YIS A Y A A AR A AN A A R I A A A Y I
__ /1L I N, LS IN_] N N___ I T

Lecture 10:
function pointers,
building large projects,
beginning C++,
C++ and structs

April 27™, 2018 Hank Childs, University of Oregon

UNIVERSITY OF OREGON

O

Project 2C

Worth 4% of your grade

Assignment: You will implement 3 structs and 9 functions. The prototypes for the
functions are located in the file prototypes.h (available on the website).

The three structs are Rectangle, Circle, and Triangle, and are described below.
The 3 structs refer to 3 different shapes: Triangle, Circle, and Rectangle.

For each shape, there are 3 functions: Initialize, GetArea, and GetBoundingBox.
You must implement 9 functions total (3*3).

The prototypes for these 9 functions are available in the file prototypes.h

There is also a driver program, and correct output for the driver program.

UNIVERSITY OF OREGON

O

Project 3A

Worth 4% of your grade

Please read this entire prompt!

Assignment: You will begin manipulation of images

1) Write a struct to store an image.

2) Write a function called ReadImage that reads an image from a file

3) Write a function called YellowDiagonal, which puts a yellow diagonal across
an image.

4) Write a function called WriteImage that writes an image to a file.

Note: I gave you a file (3A_c.c) to start with that has interfaces for the functions.

Note: your program should be run as:
./proj3A <input image file> <output image file>

Outline

* Review

e Building Large Projects
* Beginning C++

* C++ & Structs

Outline

e Building Large Projects
* Beginning C++
* C++ & Structs

UNIVERSITY OF OREGON

O

Function Pointers

* |dea:
— You have a pointer to a function
— This pointer can change based on circumstance

— When you call the function pointer, it is like calling
a known function

UNIVERSITY OF OREGON

O

Function Pointer Example

128-223-223-72-wireless:cli hank$ cat function_ptr.c
#include <stdio.h>
int doubler(int x) { return 2xx; }
int tripler(int x) { return 3xx; }
int main()
{
int (kmultiplier) (int);
multiplier = doubler;
printf("Multiplier of 3 = %d\n", multiplier(3));
multiplier = tripler;
printf("Multiplier of 3 = %d\n", multiplier(3));

Iy
128-223-223-72-wireless:cli hank$ gcc function_ptr.c

128-223-223-72-wireless:cli hank$./a.out
Multiplier of 3 =
Multiplier of 3

6
9

UNIVERSITY OF OREGON

O

Function Pointer Example #2

128-223-223-72-wireless:cli hank$ cat array_fp.c
#include <stdio.h>

void doubler(int xX) { X[0]lx=2; X[1]%x=2; };

void tripler(int xX) { X[0]%=3; X[11x=3; };

int main() F t int Part of f t [t
unction pointer art or runcuaon signature
{ / p / g

void (kmultiplier) (int x);
int A[2] =1{ 2, 3 };
multiplier = doubler;
multiplier(A);
printf("Multiplier of 3
multiplier = tripler;
multiplier(A);
printf("Multiplier of 3 = %d, %d\n", A[Q], A[1l]);

%d, %d\n", A[0], Al[1]);

+
128-223-223-72-wireless:cli hank$ gcc array_fp.c

128-223-223-72—-wireless:cli hank$./a.out

| Don't be scared of extra ‘*’s ... they just come about because of

pointers in the arguments or return values.

Simple-to-Exotic Function Pointer
Declarations

void (*foo)(void);
void (*foo)(int **, char **%*);
char ** (*foo)(int **, void (*)(int));

These sometimes come up on interviews.

UNIVERSITY OF OREGON

O

Function Pointers vs Conditionals

128-223-223-72-wireless:cli hank$ cat function_ptr2.c #include <stdio.h>
#include <stdio.h> int doubler(int x) { return 2xx; }
int doubler(int x) { return 2xx; } int tripler(int x) { return 3xx; }
int tripler(int x) { return 3xx; } int main()
int main() {
{ int val;
int (xmultiplier) (int);
int condition = 1; if (condition)
val = doubler(3);
if (condition) else
multiplier = doubler; val = tripler(3);
else
multiplier = doubler; printf("Multiplier of 3 = %d\n", val);
}
printf("Multiplier of 3 = %d\n", multiplier(3));
}

What are the pros and cons of each approach?

UNIVERSITY OF OREGON

O

Callbacks

e Callbacks: function that is called when a
condition is met

— Commonly used when interfacing between
modules that were developed separately.

— ... libraries use callbacks and developers who use
the libraries “register” callbacks.

O CHIVERSHTY OF ORECON 128-223-223-72-wireless:callback hank$ cat mylog.h
void RegisterErrorHandler(void (xeh)(char x));

double mylogarithm(double x);
Callback

128-223-223-72-wireless:callback hank$ cat mylog.c
#include <mylog.h>

example

#include <stdlib.h>
#include <math.h>

/* NULL is an invalid memory location.

* Useful for setting to something known, rather than
leaving uninitialized */

void (xerror_handler)(char %) = NULL;

void RegisterErrorHandler(void (xeh)(char x))

{
error_handler = eh;
}
void Error(char xmsg)
{
if (error_handler != NULL)
error_handler(msg);
}
double mylogarithm(double x)
{
if (x <= 0)
{
char msg[1024];
sprintf(msg, "Logarithm of a negative number: %f !!", x);
Error(msg);
return 9;

}

return log(x);

128-223-223-72-wireless:callback hank$ cat program.c
#include <mylog.h>
#include <stdio.h>

Ca I I baCk |FILE *F1 = NULL;

'void HanksErrorHandler(char *msg)

example C it k= o

UNIVERSITY OF OREGON

O

{
F1 = fopen("error", "w");
}
fprintf(F1, "Error: %s\n", msg);
}
int main()
{
RegisterErrorHandler(HanksErrorHandler);
mylogarithm(3);
mylogarithm(Q);
mylogarithm(-2);
mylogarithm(5);
if (F1 !'= NULL)
fclose(F1);
}
128-223-223-72-wireless:callback hank$
128-223-223-72-wireless:callback hank$./program
128-223-223-72-wireless:callback hank$
128-223-223-72-wireless:callback hank$ cat error

Error: Logarithm of a negative number: 0.000000 '!
Error: Logarithm of a negative number: -2.000000 !'!
128-223-223-72-wireless:callback hank$ l

Function Pointers

 We are going to use function pointers to
accomplish “sub-typing” in Project 2D.

Subtyping

O

UNIVERSITY OF OREGON

Subtyping

* Type: a data type (int, float, structs)
* Subtype / supertype:

— Supertype: the abstraction of a type
* (not specific)

— Subtype: a concrete implementation of the
supertype
* (specific)

The fancy term for this is “subtype polymorphism”

Subtyping: example

e Supertype: Shape
* Subtypes:

— Circle

— Rectangle

— Triangle

Subtyping works via interfaces

* Must define an interface for supertype/
subtypes

— Interfaces are the functions you can call on the
supertype/subtypes

* The set of functions is fixed

— Every subtype must define all functions

UNIVERSITY OF OREGON

O

Subtyping

e | write my routines to the supertype interface

* All subtypes can automatically use this code

— Don’t have to modify code when new subtypes are
added

* Example:
— | wrote code about Shapes.

— | don’t care about details of subtypes (Triangle,
Rectangle, Circle)

— When new subtypes are added (Square), my code
doesn’t change

Project 2D

* You will extend Project 2C
* You will do Subtyping

— You will make a union of all the structs
— You will make a struct of function pointers

* This will enable subtyping

e Goal: driver program works on “Shape”s and
doesn’t need to know if it is a Circle, Triangle,
or Rectangle.

Outline

* Review

e Building Large Projects
* Beginning C++

* C++ & Structs

UNIVERSITY OF OREGON

O

3 files: prototypes.h, rectangle.c, driver.c

prototypes.h

struct Rectangle;
void IntializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4);

ﬁcruct Rectangle rectangle.c \
{

double minX, maxX, minY, maxy;

|5

void IntializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4)

{
r->minX=vl, r->maxX=v2; r->minY =v3; r->maxY =v4;

) /

/ #include <prototypes.h> driver.c

int main()

{

struct Rectangler;
InitializeRectangle(r, 0, 1, 0, 1.5);
}

Review on compilation

e gcc —c: build an object file (.0), i.e., binary code
that can directly run on the architecture

* Then the binary can be generated from the
object files.

* Libraries are a mechanism for grouping up a
bunch of related object files

— They are assembled together using a program called
an archiver (ar)

* You can also just use object files directly when
linking.

UNIVERSITY OF OREGON

O

Makefiles

* Consists of rules

* Rule syntax:

target: dependencyl dep?2 ... depN
<tab>commandl

<tab>command?2

Quiz: write down a Makefile for a program called proj2B.
Again, the file names are prototypes.h, driver.c, rectangle.c

O UNIVERSITY OF OREGON

akefile for prototypes.h, rectangle.c,
driver.c

Makefile

4 N

proj2B: driver.c rectangle.c prototypes.h
gcc -1, -c rectangle.c
gcc -l. -c driver.c
gcc -0 proj2B driver.o rectangle.o

. /

Is this a good Makefile?
What’s the problem with it?

0 UNIVERSITY OF OREGON

akefile for prototypes.h, rectangle.c,
driver.c

Makefile

ﬁronB: rectangle.o driver.o \

gcc -0 proj2B driver.o rectangle.o

driver.o: prototypes.h driver.c
gcc -l. -c driver.c

rectangle.o: prototypes.h rectangle.c
gcc -l. -c rectangle.c /

UNIVERSITY OF OREGON

O

Definition of Rectangle in rectangle.c

Why is this a pro

prototypes.h

olem?

void IntializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4);

[struct Rectangle;

ﬁcruct Rectangle

)

rectangle.c

“gcc —c driver.c” needs to make an object file.

It needs info about Rectangle then, not later.

r->minX=vl, r->maxX=v2; r->minY =v3; r->maxY =v4;

ﬁ#include <prototypes.h>

int main()

{

struct Rectangler;

driver.c

InitializeRectangle(&r, 0, 1, 0, 1.5);

}

UNIVERSITY OF OREGON

The fix is to make sure

driver.c has access to the
Rectangle struct definition.

struct Rectangler;
InitializeRectangle(r, 0, 1, 0, 1.5);

L

on: “gcc —E”

1 "driver.c"
1 "<built-in>" 1

1 "<built-in>" 3

162 "<built-in>" 3

#1 "<command line>" 1
1 "<built-in>" 2

#1 "driver.c" 2
#1"./prototypes.h" 1

struct Rectangle;

void InitializeRectangle(struct Rectangle *r, doui
2 "driver.c" 2

int main()
{
struct Rectangle r;
InitializeRectangle(r, 0, 1, 0, 1.5);
}

gcc —E shows what the
compiler sees after satisfying

“preprocessing”, which
includes steps like “H#include”.

This is it. If the compiler can’t
figure out how to make object
file with this, then it has to

give up.

UNIVERSITY OF OREGON

O

4 files: struct.h, prototypes.h, rectangle.c, driver.c

struct.h

struct Rectangle

{

double minX, maxX, minY, maxy;

|5

prototypes.h

#include <struct.h>
void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4);

;/

rectangle.c ™

/#include <struct.h>

#include <prototypes.h>
void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4)

{

r->minX =vl;, r->maxX=v2; r->minY =v3; r->maxY =v4;
\J /

ﬁ#include <struct.h> driver.c
#include <prototypes.h>
int main()

{

t
fni What is the problem with this configuration?

UNIVERSITY OF OREGON

O

Compilation error

CO2LNOOGFD58:project hank$ make

gcc -I. —c rectangle.c

In file included from rectangle.c:2:

In file included from ./prototypes.h:2:
./struct.h:2:8: error: redefinition of 'Rectangle’
struct Rectangle

./struct.h:2:8: note: previous definition is here
struct Rectangle

1 error generated.

gcc —E rectangle.c

02LNOOGFD58:project hank$ gcc —-E -I. rectangle.c
1 "rectangle.c"

1 "<built-in>" 1

1 "<built-in>" 3

162 "<built-in>" 3

1 "<command line>" 1

1 "<built-in>" 2

1 "rectangle.c" 2

1 "./struct.h" 1

HEHIFRFHRITO

struct Rectangle &
{

b
2 "rectangle.c" 2
1 "./prototypes.h" 1

double minX, maxX, minY, maxyY;

1 "./struct.h" 1

struct Rectangle
{

¥
3 "./prototypes.h" 2

double minX, maxX, minY, maxY;

void InitializeRectangle(struct Rectangle *r, double v1l, double v2, double v3, double v4);
3 "rectangle.c" 2

void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4)

{

r—>minX
r—>maxX
r—>minY

vl;
v2;
v3;
v4;

r—>maxyY

How to fix?

* Solution #1: don’t include it twice
— = Turns out, that is hard

e Solution #2: need more infrastructure —
Mmacros

— (This motivates the next ten slides)

UNIVERSITY OF OREGON

O

Preprocessor

* Preprocessor:
— takes an input program

— produces another program (which is then
compiled)

* Chas a separate language for preprocessing
— Different syntax than C

— Uses macros (“#”)

macro (“macroinstruction”): rule for replacing input
characters with output characters

Preprocessor Phases

* Resolve #includes
— (we understand #include phase)

* Conditional compilation (#ifdef)
* Macro replacement
e Special macros

UNIVERSITY OF OREGON

O

define compilation

CO2LNOOGFD58:330 hank$ cat defines.c
#define RV 2

int main()
{

return RV;
¥

CO2LNOOGFD58:330 hank$ gcc defines.c
CO2LNOOGFD58:330 hank$./a.out
CO2LNOOGFD58:330 hank$ echo $7?

2

This is an example of macro replacement.

UNIVERSITY OF OREGON

O

#define via gcc command-line option

CO2LNOOGFD58:330 hank$ cat defines.c

int main()
{

return RV;
}

CO2LNOOGFD58:330 hank$ gcc -DRV=4 defines.c
CO2LNOOGFD58:330 hank$./a.out
CO2LNOOGFD58:330 hank$ echo $7?

4

O

UNIVERSITY OF OREGON

Conflicting —D and #define

CO2LNOOGFD58:330 hank$ cat defines.c
#define RV 2

int main()
{

return RV;
}

CO2LNOOGFD58:330 hank$ gcc -DRV=4 defines.c
defines.c:1:9: warning: 'RV' macro redefined
#define RV 2

<command line>:1:9: note: previous definition is here
#define RV 4

1 warning generated.
CO2LNOOGFD58:330 hank$./a.out
CO2LNOOGFD58:330 hank$ echo $?
2

UNIVERSITY OF OREGON

Conditional compilation

O

CO2LNOOGFD58:330 hank$ cat conditional.c
#define USE_OPTION 1

int main()

{
DoMainCode();
#ifdef USE_OPTION
UseOption();
#endif
DoCleanupCode();

}

UNIVERSITY OF OREGON

Conditional compilation controlled via

compiler flags

CO2LNOOGFD58:330 hank$ cat conditionai;printf.c
#include <stdio.h>

O

int main()
{
#ifdef DO_PRINTF

printf("I am doing PRINTF!!\n");
#endif
}
CO2LNOOGFD58:330 hank$ gcc conditional_printf.c
CO2LNOOGFD58:330 hank$./a.out
CO2LNOOGFD58:330 hank$ gcc -DDO_PRINTF conditional_printf.c
CO2LNOOGFD58:330 hank$./a.out
I am doing PRINTF!!

This is how configure/cmake controls the compilation.

UNIVERSITY OF OREGON

O

4 files: struct.h, prototypes.h, rectangle.c, driver.c

struct.h

struct Rectangle

{

double minX, maxX, minY, maxy;

|5

prototypes.h

#include <struct.h>
void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4);

;/

rectangle.c ™

/#include <struct.h>

#include <prototypes.h>
void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4)

{

r->minX =vl;, r->maxX=v2; r->minY =v3; r->maxY =v4;
\J /

ﬁ#include <struct.h> driver.c
#include <prototypes.h>
int main()

{

t
fni What is the problem with this configuration?

UNIVERSITY OF OREGON

O

Compilation error

CO2LNOOGFD58:project hank$ make

gcc -I. —c rectangle.c

In file included from rectangle.c:2:

In file included from ./prototypes.h:2:
./struct.h:2:8: error: redefinition of 'Rectangle’
struct Rectangle

./struct.h:2:8: note: previous definition is here
struct Rectangle

1 error generated.

gcc —E rectangle.c

02LNOOGFD58:project hank$ gcc —-E -I. rectangle.c
1 "rectangle.c"

1 "<built-in>" 1

1 "<built-in>" 3

162 "<built-in>" 3

1 "<command line>" 1

1 "<built-in>" 2

1 "rectangle.c" 2

1 "./struct.h" 1

HEHIFRFHRITO

struct Rectangle &
{

b
2 "rectangle.c" 2
1 "./prototypes.h" 1

double minX, maxX, minY, maxyY;

1 "./struct.h" 1

struct Rectangle
{

¥
3 "./prototypes.h" 2

double minX, maxX, minY, maxY;

void InitializeRectangle(struct Rectangle *r, double v1l, double v2, double v3, double v4);
3 "rectangle.c" 2

void InitializeRectangle(struct Rectangle *r, double v1, double v2, double v3, double v4)

{

r—>minX
r—>maxX
r—>minY

vl;
v2;
v3;
v4;

r—>maxyY

UNIVERSITY OF OREGON

O

ifndef / #define to the rescue

struct.h
#ifndef RECTANGLE_330
#define RECTANGLE_330

struct Rectangle

{

double minX, maxX, minY, maxy;

|5

#endif

/

Why does this work?
‘ This problem comes up a lot with big projects, and

especially with C++.

UNIVERSITY OF OREGON

O

There is more to macros...

* Macros are powerful & can be used to
generate custom code.

— Beyond what we will do here.

 Two special macros that are useful:
— FILE__and _LINE__

printf("This print happens on line %d of file %s\n", __ LINE_ , _ FILE_);
printf("But this print happens on line %d\n", __ LINE_);

}

CO2LNOOGFD58:330 hank$ gcc macro.c

CO2LNOOGFD58:330 hank$./a.out
This print happens on line 5 of file macro.c

But this print happens on line 6

Outline

* Review

e Building Large Projects
* Beginning C++

* C++ & Structs

Relationship between C and C++

e C++ adds new features to C

— Increment operator!

* For the most part, C++ is a superset of C

— A few invalid C++ programs that are valid C
programs

e Early C++ “compilers” just converted
programs to C

O

UNIVERSITY OF OREGON

A new compiler: g++

* g++is the GNU C++ compiler
— Flags are the same
— Compiles C programs as well

* (except those that aren’t valid C++ programs)

UNIVERSITY OF OREGON

O

.cvs .C

* Unix is case sensitive
— (So are C and C++)

* Conventions:
—.c: Cfile
— .C: C++ file
— .cxx: C++ file

— .cpp: C++ file (this is pretty rare)

Gnu compiler will sometimes assume the language based

on the extension ... CLANG won'’t.

UNIVERSITY OF OREGON

Variable declaration (1/2)

* You can declare variables anywhere with C++!

O

void line C(double X1, double X2, double Y1, double Y2)
{

double slope;

double intercept;

(Y2-Y1)/(X2-X1);
Y1-slopexX1,;

s lope
intercept

}

void line CPP(double X1, double X2, double Y1, double Y2)

{
double slope
double intercept

(Y2-Y1)/(X2-X1);
Y1-slopexX1;

UNIVERSITY OF OREGON

Variable declaration (2/2)

* You can declare variables anywhere with C++!

O

—_lint C fun(void) | T N S S S
CO2LNOOGFD58:L10 hank$ g++ t.C
t.C:16:17: error: invalid '+=' at end of declaration; did you mean '='?

int sum += 1i;

A
~

t.C:18:12: error: use of undeclared identifier 'sum'’
return sum;

A

2 errors generated.

int CPP_fun(void) o
| would you get?
int sum = 0;
for (int 1 =0 ; i <10 ; i++)

{
}

return sum;

sum += 1ij;

UNIVERSITY OF OREGON

O

C-style Comments

/* Here 1s a single line comment */

/ %k
Here i1s a multi-line comment x/

Here 1is a

multi-line comment
that makes it clearer
that each line 1is a
comment

because of the x's

* X X X X X

5 .

UNIVERSITY OF OREGON

O

C++-style comments

// this is a comment

/* this 1s still a comment x/

// this 1s a
// multi-line C++ comment

When you type “//”, the rest of the line is a comment,
whether you want it to be or not.

OOOOOOOOOOOOOOOOOO

program

* We have now learned enough to spot one
(the?) valid C program that is not a valid C++
program

— (lectured on this earlier)

int main()
{
int y = 2;
int x =3 //x% 2 x/y;

T

UNIVERSITY OF OREGON

O

Problem with C...

CO2LNOOGFD58:330 hank$ cat doubler.c

float doubler(float f) { return 2xf; }
CA2LNOOGFD58:330 hank$ gcc —c doubler.c
CO2LNOOGFD58:330 hank$ cat doubler_example.c
#include <stdio.h>

int doubler(int);

int main()

{

}
CO2LNOOGFD58:330 hank$ gcc —c doubler_example.c

CA2LNOOGFD58:330 hank$ gcc —o doubler_example doubler.o doubler_example.o
CO2LNOOGFD58:330 hank$./doubler_example
Doubler of 10 is 2

printf("Doubler of 10 is %d\n", doubler(10));

Problem with C...

CO2LNOOGFD58:330 hank$ nm doubler.o
0000000000000048 s EH_frame0
0000000000000000 T _doubler =
0000000000000060 S _doubler.eh

CO2LNOOGFD58:330 hank$ nm doubler

doubler.c doubler_example doubler_example.o
doubler.o doubler_example.c doubler_user.o
CO2LNOOGFD58:330 hank$ nm doubler_example.o
0000000000000068 s EH_framed

0000000000000032 s L_.str

U _doubler =
0000000000000000 T _main
0000000000000080 S main.eh

U _printf

‘ No checking of type...

UNIVERSITY OF OREGON

O

Problem is fixed with C++...

CO2LNOOGFD58:330 hank$ cat doubler.c

float doubler(float f) { return 2xf; }

CO2LNOOGFD58:330 hank$ g++ —c doubler.c

clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated
CO2LNOOGFD58:330 hank$ cat doubler_example.c

#include <stdio.h>

int doubler(int);

int main()

{

}
CO2LNOOGFD58:330 hank$ g++ —c doubler_example.c
clang: warning: treating 'c' input as 'c++' when in C++ mode, this behavior is deprecated
CO2LNOOGFD58:330 hank$ g++ -0 doubler_example doubler_example.o doubler.o
Undefined symbols for architecture x86_64:

"doubler(int)", referenced from:

_main in doubler_example.o

1d: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
CO2LN@OGFD58:330 hank$ |

printf("Doubler of 10 is %d\n", doubler(10));

O

UNIVERSITY OF OREGON

Problem is fixed with C++...

CO2LNOOGFD58:330 hank$ nm doubler.o
0000000000000048 s EH_frame®
0000000000000000 T __ Z7doublerf -
0000000000000060 S _ Z7doublerf.eh
CO2LNOOGFD58:330 hank$ nm doubler_example.o
0000000000000068 s EH_frame®
0000000000000032 s L_.str

U 77doubleri +CA2LNAAGEDS8:330 hank$ nm doubler.o
0000000000000000 T _Eain 0000000000000048 s EH_frame®
0000000000000080 S _main.eh 0000000000000000 T _doubler
U _printf 0000000000000060 S _doubler.eh
CO2LNOOGFD58:330 hanks$ | CO2LNOOGFD58:330 hank$ nm doubler
r_example C

aublerc —dobler

example.c
This will affect you with C++. Before you got oubler_examr
unresolved symbols when you forgot to define |
the function. Now you will get it when the
arguments don’t match up. Is this good?

UNIVERSITY OF OREGON

O
Mangling

 Mangling refers to combining information
about arguments and “mangling” it with

function name.
— Way of ensuring that you don’t mix up functions.

— Return type not mangled, though
e Causes problems with compiler mismatches

— C++ compilers haven’t standardized.

— Can’t take library from icpc and combine it
with g++.

UNIVERSITY OF OREGON

C++ will let you overload functions
with different types

O

CO2LNOOGFD58:330 hank$ cat t.c

float doubler(float f) { return 2xf; }

int doubler(int f) { return 2xf; }
CO2LNOOGFD58:330 hank$ gcc —-c t.c

t.c:2:5: error: conflicting types for 'doubler’
int doubler(int f) { return 2xf; }

t.c:1:7: note: previous definition is here
float doubler(float f) { return 2xf; }

1 error generated.
CO2LNOOGFD58:330 hank$ g++ —c t.C
CO2LNOOGFD58:330 hank$ |

UNIVERSITY OF OREGON

C++ also gives you access to mangling
via “namespaces”

CO2LNOOGFD58:330 hank$ cat cis330.C
#include <stdio.h>

O

namespace CIS330 <

{
int GetNumberOfStudents(void) { return 56; };
}
namespace CIS610
{
int GetNumberOfStudents(void) { return 9; };
}
int main()
{

printf("Number of students in 330 is %d, but in 610 was %d\n",
—— (CIS330::GetNumber0fStudents(),
CIS610: :GetNumberOfStudents());

| Functions or variables within a namespace are accessed with “::”

“w,.n :

::” is called “scope resolution operator”

UNIVERSITY OF OREGON

C++ also gives you access to mangling
via “namespaces”

CO2LNOOGFD58:330 hank$ cat cis330.C

O

The “using” keyword makes all functions and variables from a

“w,.n

namespace available without needing “::”.

And you can still access other namespaces.

namespace CIS610
{

by

int GetNumberOfStudents(void) { return 9; };

using namespace CIS330; *

int main()
{

printf("Number of students in 330 is %d, but in 610 was %d\n",

=t GetNumberOfStudents(),
CIS610: :GetNumber0fStudents());

}
CO2LNOOGFD58:330 hank$ g++ cis330.C
CO2LNOOGFD58:330 hank$./a.out
Number of students in 330 is 56, but in 610 was 9
CO2LNOOGFD58:330 hank$ |

UNIVERSITY OF OREGON

O

References

* Areference is a simplified version of a pointer.
e Key differences:

— You cannot do pointer manipulations
— A reference is always valid

e a pointer is not always valid
e Accomplished with & (ampersand)

— &: address of variable (C-style, still valid)
— &: reference to a variable (C++-style, also now valid)

You have to figure out how ‘&’ is being used based on context.

UNIVERSITY OF OREGON

O

Examples of References

CO2LNOOGFD58:330 hank$ cat ref.C
#include <stdio.h>

void ref _doubler(int &x) { x = 2%x; };

int main()
{

int x1 = 2;

ref_doubler(x1);

printf("Val is %d\n", x1);
}
CO2LNOOGFD58:330 hank$ g++ ref.C
CO2LNOOGFD58:330 hank$./a.out
Val 1is 4

O

UNIVERSITY OF OREGON

References vs Pointers vs Call-By-Value

CO2LNOOGFD58:330 hank$ cat reference.C
#include <stdio.h>

void ref_doubler(int &x) { x = 2xx; };
void ptr_doubler(int xx) { *x = 2%kx; };
void val_doubler(int x) { x = 2xx; };

int main()
{
int x1 =2, x2 =2, X3 = 2;
ref_doubler(x1);
ptr_doubler(&x2);
val _doubler(x3);
printf("Vals are %d, %d, %d\n", x1, x2, x3);

| ref _doubler and ptr_doubler are both examples of call-by-reference.

val_doubler is an example of call-by-value.

O

UNIVERSITY OF OREGON

References

* Simplified version of a pointer.
e Key differences:

— You cannot manipulate it

* Meaning: you are given a reference to exactly one
instance ... you can’t do pointer arithmetic to skip
forward in an array to find another object

— A reference is always valid

* No equivalent of a NULL pointer ... must be a valid
instance

O

UNIVERSITY OF OREGON

Different Misc C++ Topic: initialization
during declaration using parentheses

CO2LNOOGFD58:330 hank$ cat decl_paren;E
#include <stdio.h>

int main()
{
| int x(3);

printf("X is %d\n", x);
}

CO2LNOOGFD58:330 hank$ g++ decl_paren.C
CO2LNOOGFD58:330 hank$./a.out
X is 3

This isn’t that useful for simple types, but it will be useful when

we start dealing with objects.

Outline

* Review

e Building Large Projects
* Beginning C++

e C++ & Structs

Learning classes via structs

e structs and classes are closely related in C++

* | will lecture today on changes on how “structs
in C++” are different than “structs in C”

e ...at the end of the lecture, | will describe how
classes and structs in C++ differ.

3 Big changes to structs in C++

1) You can associate “methods” (functions) with
structs

UNIVERSITY OF OREGON

Methods vs Functions

O

 Methods and Functions are both regions of code that
are called by name (“routines”)
* With functions:

— the data it operates on (i.e., arguments) are explicitly

passed
— the data it generates (i.e., return value) is explicitly passed

— stand-alone / no association with an object

 With methods:
— associated with an object & can work on object’s data
— still opportunity for explicit arguments and return value

UNIVERSITY OF OREGON

O

(left) function is separate from struct
(right) function (method) is part of struct

 CO2LNOOGFD58:330 hank$ cat/function.c ||typedef struct
typedef struct {
0 int i;

int 1;
} Integer; . : : :

9 void doubler(void) { i = 2xi; };

int doubler(int x) { return 2xx; }; } Integer;
int main() int main()
: | {

Integer 1; Integer ij;

i.1 = 3; i.i = 3o

i.i = doubler(i.i); T
y ~ i.doubler();

} \

I (left) arguments and return value are explicit |
(right) arguments and return value are not necessary, since they

are associated with the object

3 Methods:
Increment Count
Get Count
Reset

UNIVERSITY OF OREGON

Methods & Tally Counter

O

 Methods and Functions are both regions of code that
are called by name (“routines”)
* With functions:

— the data it operates on (i.e., arguments) are explicitly

passed
— the data it generates (i.e., return value) is explicitly passed

— stand-alone / no association with an object

 With methods:
— associated with an object & can work on object’s data
— still opportunity for explicit arguments and return value

UNIVERSITY OF OREGON

C-style implementation of TallyCounter

CO2LNOOGFD58:TC hank$ cat tallycounter_c.c
#include <stdio.h>

O

typedef struct
{
| int count;

} TallyCounter;

void ResetTallyCounter(TallyCounter xtc) { tc—>count = 0; }
int GetCountFromTallyCounter(TallyCounter xtc) { return tc—>count; }
void TallyCounterIncrementCount(TallyCounter xtc) { tc—>count++; }

int main()
i {
: TallyCounter tc;
tc.count = 0;
- TallyCounterIncrementCount (&tc);
E TallyCounterIncrementCount (&tc);
E TallyCounterIncrementCount (&tc);
: TallyCounterIncrementCount (&tc);

printf("Count is %d\n", GetCountFromTallyCounter(&tc));
}

) CO2LNOOGFD58:TC hank$ gcc tallycounter_c.c
CO2LNOOGFD58:TC hank$./a.out

Count 1is 4

UNIVERSITY OF OREGON

O

_ CO2LN@OOGFD58:330 hank$ cat tallycounter.C
C++ Style #include <stdio.h>

implementation typedef struct
of TallyCounter it count:

void Reset() { count = 0; };

int GetCount() { return count; };

void IncrementCount() { count++; };
} TallyCounter;

int main()

{
-----,_,_§_§§§ﬁ>TallyCounter tc;
tc.count = 0;

tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();
printf("Count is %d\n", tc.GetCount());
}
CO2LNOOGFD58:330 hank$ g++ tallycounter.C
CO2LNOOGFD58:330 hank$./a.out
Count 1is 4

UNIVERSITY OF OREGON

O

typedef struct
{

int count;

void Initialize() { count = 0; };

void Reset() { count = 0; };

int GetCount() { return count; };

void IncrementCount() { count++; };
} TallyCounter;

int main()

{

TallyCounter tc;
tc.Initialize(); =
tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();
tc.IncrementCount();

printf("Count is %d\n", tc.GetCount());

UNIVERSITY OF OREGON

O

Constructors

e Constructor: method for constructing object.
— Called automatically

e There are several flavors of constructors:
— Parameterized constructors

— Default constructors

— Copy constructors | will discuss these flavors
, in upcoming slides
— Conversion constructors

UNIVERSITY OF OREGON

O

#include <stdio.h>
Eypedef struct struct TallyCounter
. _ {
int count; int count;
void Initialize() { CE””F =_0; b TallyCounter(void) { count = 0; };
void Reset() { count = 0; }; . -
int GetCount() { return count; }; void Reset() { count = 0; };
void IncrementCount() { count++; }; int GetCount() { return count; };
} TallyCounter; void IncrementCount() { count++; };
b
int main()
{ int main()
TallyCounter tc; {
tc.Initialize(); TallyCounter tc;
tc.IncrementCount(); tc.IncrementCount();
tc.IncrementCount(); tc.IncrementCount();
tc. IncrementCount(); tc.IncrementCount();
tc.IncrementCount(); .
- LNCre A _ tc.IncrementCount();
} prlntf(Count is %d\n ’ tC-GetCOUnt()); prin‘tf("Count is o/od\n", ‘tC.Ge‘tC0un‘t());
- }
| Note the typedef went away ... not needed with C++.

—_—

IS IS the Tlavor called “detault constructor

T}

O CO2LNOOGFD58:330 hank$ cat tallycounterV4.C
#include <stdio.h>
struct TallyCounter
{
int count;
TallyCounter(void) { count = 0@; };
TallyCounter(int c) { count = c; };
void "Reset() { count = 0; };
int GetCount() { return count; };
void IncrementCount() { count++; };
H
int main() Argument can be passed to
{ allvCounter tc(10) constructor.

a ounter tc ; .
tc.I?\IcrementCount(¥ (This is the flavor called
tc.IncrementCount(); “parameterized constructor”)
tc.IncrementCount();
tc.IncrementCount();
printf("Count is %d\n", tc.GetCount());

}
CO2LNOOGFD58:330 hank$ g++ tallycounterV4.C

CO2LNOOGFD58:330 hank$./a.out
Coiint 1c 14

More traditional file organization

e struct definitionis in .h file
— #tifndef / #define

* method definitions in .C file

e driver file includes headers for all structs it
needs

°o . CO2LNOOGFD58:TC hank$ cat Makefile
OMbRrTé)Ftlr(édltlonal ﬁle main: main.o tallycounter.o
g++ —0 main main.o tallycounter.o
organization .C.0: $<

CO2LN@OGFD58:TC hank$ cat tallycounter.h g++ -I. —-c $<

#ifndef TALLY_COUNTER_H
#define TALLY COUNTER H CO2LNOOGFD58:TC hank$ cat tallycounter.C
- - #include <TallyCounter.h>

struct TallyCounter

{ TallyCounter::TallyCounter(void)
int count; {
count = 0;
TallyCounter(void); ¥

TallyCounter(int c);

void Reset(); TallyCounter::TallyCounter(int c)

int GetCount(); {
void IncrementCount(); count = c;
}; }
#endif void
= TallyCounter: :Reset()

CO2LNOOGFD58:TC hank$ cat main.C {

count = 0;

#include

Methods can be defined outside the struct definition.
They use C++’s namespace concept, which is

automatically in place.
(e.g., TallyCounter::IncrementCount)

"Count 1is %d\n", tc.GetCount

UNIVERSITY OF OREGON

O

“this”: pointer to current object

* From within any struct’s method, you can
refer to the current object using “this”

TallyCounter::TallyCounter(int c)

{
count = c;
}
<————— >
L
t TallyCounter::TallyCounter(int c)
H{

2 this—>count = c;
|IIIIIIIIIIIIII}- IIIIIIIIIIIIIII

O

UNIVERSITY OF OREGON

Copy Constructor

* Copy constructor: a constructor that takes an
instance as an argument

— |t is a way of making a new instance of an object
that is identical to an existing one.

struct TallyCounter
{
int count;
TallyCounter(void);
TallyCounter(int c);
TallyCounter(TallyCounter &);
void Reset();
int GetCount(): TallyCounter::TallyCounter(TallyCounter &c)
void IncrementCount();!|* _ _
}; , count = c.count;

UNIVERSITY OF OREGON

O

Constructor Types

struct TallyCounter
{

int count;

TallyCounter(void) - Default constructor

TallyCounter(int c);«- Parameterized
TallyCounter(TallyCounter &); | constructor
void Reset(); —
int GetCount();
void IncrementCount();

- Copy constructor

UNIVERSITY OF OREGON

O

Example of 3 Constructors

CO2LNOOGFD58:TC hank$ cat main.C
#include <stdio.h>
#include <TallyCounter.h>

int main()

{
TallyCounter tc; /* Default constructor x/
tc.IncrementCount();

TallyCounter tc2(10); /x Parameterized constructor x/
tc2.IncrementCount(); tc2.IncrementCount();

TallyCounter tc3(tc); /* copy constructor x/
tc3.IncrementCount(); tc3.IncrementCount(); tc3.IncrementCount();

printf("Counts are %d, %d, %d\n", tc.GetCount(),
tc2.GetCount(), tc3.GetCount());

}
CO2LNOOGFD58:TC hank$./main

PPPPPPRRPRRRRP??

UNIVERSITY OF OREGON

O

Conversion Constructor

struct ImperialDistance

{
};

double miles;

struct MetricDistance

{

double kilometers:;

MetricDistance() { kilometers = 0; };
MetricDistance(ImperialDistance &id)
{ kilometers = id.milesx1.609; };

3 big changes to structs in C++

1) You can associate “methods” (functions) with
structs

2) You can control access to data members and
methods

O

UNIVERSITY OF OREGON

Access Control

* New keywords: public and private
— public: accessible outside the struct
— private: accessible only inside the struct

* Also “protected” ... we will talk about that later
struct TallyCounter Everything following is

t private. Only will change
prJ_-Vite : € - when new access control
in count, keyword is encountered.

public: <—
TallyCounter(voio)s;
TallyCounter(int c);
TallyCounter(TallyCounter &); when NEWacess control
void Reset(): keyword is encountered.
GetCount();
IncrementCount();

Everything following is now
public. Only will change

UNIVERSITY OF OREGON

O

public / private

struct TallyCounter

{

public:
TallyCounter(void);
TallyCounter(int c);
TallyCounter(TallyCounter &);

private:

int count;
public: You can issue public

void Reset():
int GetCount();
void IncrementCount();

and private as many
times as you wish...

};

O

UNIVERSITY OF OREGON

The compiler prevents violations of
access controls.

128-223-223-72—-wireless:TC hank$ cat main.C
#include <stdio.h>
#include <TallyCounter.h>

int main()

{
TallyCounter tc;
tc.count = 10;

}

128-223-223-72-wireless:TC hank$ make

g++ -I. —-c main.C

main.C:7:8: error: 'count' is a private member of 'TallyCounter’
tc.count = 10;

./TallyCounter.h:12:12: note: declared private here
int count;

A

1 error generated.
make: xxx [main.o] Error 1

O

st
{

UNIVERSITY OF OREGON

The friend keyword can override

access controls.

ruct TallyCounter

friend int main();

public:
TallyCounter(void);
TallyCounter(int c);
TallyCounter(TallyCounter &);
private:
int count;

This will compile, since main now
has access to the private data
member “count”.

Note that the struct
declares who its
friends are, not vice-
versa
— You can’t declare
yourself a friend and

start accessing data
members.

friend is used most
often to allow objects
to access other
objects.

UNIVERSITY OF OREGON

O

class vs struct

* class is new keyword in C++

* classes are very similar to structs

— the only differences are in access control

e primary difference: struct has public access by default, class
has private access by default

* Almost all C++ developers use classes and not
structs

— C++ developers tend to use structs when they want to
collect data types together (i.e., C-style usage)

— C++ developers use classes for objects ... which is
most of the time

You should use classes!

Even though there isn’t much difference ...

3 big changes to structs in C++

1) You can associate “methods” (functions) with
structs

2) You can control access to data members and
methods

3) Inheritance

We will discuss inheritance next week.

Bonus Topics

UNIVERSITY OF OREGON

O

Backgrounding

e “&”:tell shell to run a job in the background

— Background means that the shell acts as normal,
but the command you invoke is running at the
same time.

e “sleep 60” vs “sleep 60 &”

When would backgrounding be useful?

UNIVERSITY OF OREGON

O

Suspending Jobs

* You can suspend a job that is running
Press “Ctrl-Z2”

* The OS will then stop job from running and not
schedule it to run.

* You can then:

— make the job run in the background.
* Type “bg”
— make the job run in the foreground.
* Type “fg”
— like you never suspended it at all!!

Web pages

e ssh —| <user name> ix.cs.uoregon.edu
* cd public_html

e put something in index.html

* = it will show up as

http://ix.cs.uoregon.edu/~<username>

UNIVERSITY OF OREGON

O

Web pages

* You can also exchange files this way

— scp file.pdf <username>@ix.cs.uoregon.edu:~/
public_html

— point people to http://ix.cs.uoregon.edu/
~<username>/file.pdf

Note that ~/public_html/dirl shows up as
http://ix.cs.uoregon.edu/~<username>/dirl

(“~/dirl” is not accessible via web)

