UNIVERSITY OF OREGON

O

CIS 330:

/177) /17 / /7 /__
AR VAR VY Y Y VA Y A Y YV A A Y
/11111l < L1 1Tl]
___ LI N LI IN_ N NI T
Lab: ssh, scp, gdb, valgrind
208! TO DISARM THE BOMB,
o SIMPLY ENTER A VALID
WU USE UNIX! tar COMMAND ON YOUR ...ROB?
FIRST TRY. NO GOOGLING
CG"‘E QOICK' You HF\VE SECONDs. I_'NSOW
%ﬁa 1
xked 1168

April 121, 2018

University of Oregon

UNIVERSITY OF OREGON

O

Unix command: ssh

* Problem: you're using a computer, but you want
to be using a different computer ...

— the other computer is far away

— the other computer is inaccessible

— the other computer doesn't have a display (server)
— etc.

* ssh lets you log onto another machine

UNIVERSITY OF OREGON

Unix command: ssh

Basic Use:
* ssh username@machine
(equivalent version using the -l flag)
* ssh -l username machine

* -Y flag: Enables X11 forwarding = Remote use of
GUI applications

UNIVERSITY OF OREGON

Unix command: ssh

From demo: don't need to type username

/ machine name / password every time!
* Instructions for accomplishing this could be
confusing since there are potentially different steps

for different systems ... ask after class or come to
office hours if interested.

Unix command: scp

* Problem: you have files on one computer, but you
want those files on a different computer ...

* scp lets you send files from one machine to
another machine

UNIVERSITY OF OREGON

O

Unix command: scp

Basic Use:
e scp source destination

* either source or destination might be a remote
machine ... examples:

— scp my_file username@ix-dev.cs.uoregon.edu:™

(this copies my _file in the current working directory to HOME directory on ix-dev)
— scp username@ix-dev.cs.uoregon.edu:/absolute/path/my_other _file.

(this copies my_other_file in /absolute/path on ix-dev to the current working directory)

— nothing special about these examples ...

UNIVERSITY OF OREGON

O

Debugging

* Problem: you wrote a computer program and it
doesn't work ...

minclude
#include

int main(void){
int my_variable;
~intf("%d\n",

UNIVERSITY OF OREGON

O

Debugging

* Worse problem: someone else wrote a computer
program and it doesn't work ...

finclude
#include

int main(void)
int my_variable =
int A[8] =

/* a billion lines of code */

/* another billion lines of code */

'Lﬂt X = Almv ;_«:;;_f_._

Debugging: lots of printf

 Method #1: just print everything and figure it out
... this works pretty good most of the time!

minclude
#include

int main(void
int my _variable = 2;
int A[8] =

/* a billion lines of code */

/* another billion lines of code */

printf %d\n , ";7‘:71‘_5;": :

Debugging: lots of printf

* Method #1: sometimes you are in a tough spot!

finclude
#include

int my

/* a billion lines of code */

my_variable <<=

/* another billion lines of code */

printf("%d\n", my_variable); when | run thiS, | get the

int x = A[my_variable]; value 1661289645 for y
[my_func(A)]];

int y = A[A[my_
pr intf (%d\n , Y)

Debugging: lots of printf

* Method #1: sometimes you are in a tough spot!

finclude
#include

int main(void){
int my_variable = 2;
int A[8] = {0,0,0,0,0,0,0,0};

/* a billion lines of code */

my_variable <<=

/* another billion lines of code when | run this, | get 7 for
e P the return value of

Printry(%d\n , My_Vvarila ble) ’ .

int x = A[my_variable]; my_func ... but now y is 0???

printf(%d\n , my_func(A));

:Lnt = A|lA]| 1‘7'7:‘ UNC \ \’ -
printf("%d\n", y);

Debugging: lots of printf

* Method #1: sometimes you are in a tough spot!

Minclude
#include

This example is kind of

int my_func(int *p): contrived ... a more typical

L iffjj - : situation (for me, at least) is

that I'm reading some code
and it's completely mind
tnt matn(Uotd)e boggling, and putting in print
int my variable ; .
int A[8] = {0,0,0,0,0,0,0, }; statements would just take a
/* a billion lines of code */ really long time.
my_variable <<=
/* another billion lines of code */

printf("%d\n", my_variable);
int x A[my_variable];

pr intf w %d \ n, my_ func (\' A -
Lz A[A[my_func(A)]]1;
printf("%d\n", y);

1,1 All

O

UNIVERSITY OF OREGON

Debugging: gdb

More options would be great!

— What are all the local variables defined at some point
in the program?

— What are the values of each variable?
— What happens if we change the value of a variable?

Method #2: gdb can do all of this. And much more!

O

UNIVERSITY OF OREGON

Debugging: gdb

Method #2: gdb

— Can inspect and modify code as it runs without
recompiling!

— Similar program called lldb on macOS

— Run from the command line, but need to compile with
debug info (-g flag). Example:

* Compile: gcc -g -0 bad incorrect_program.c
* Run: gdb ./bad

Debugging: gdb

DEMO: I'll be switching over to Ubuntu for this...

* Newer macOSX versions stopped supporting gdb
— Encourage the use of comparable lldb

— “brew install gdb” still there...but errors may occur
while using gdb

* Recommend: use lldb on Mac; gdb on Linux

O

UNIVERSITY OF OREGON

Debugging: gdb

Example gdb session
working with the previous
example program.

These gdb commands, and
more, explained on next
slide.

UNIVERSITY OF OREGON

O

Debugging: gdb

Useful commands in gdb:
— break N: set breakpoint at line N
— break my_func: break whenever my_func is called
— watch my_var: break whenever my_var is changed
— run: start the program
— continue: go until the next breakpoint
— next: do the next line of code
— step: do the next line of code, descending into function calls
— info locals: display local variable information
— backtrace: show frames leading to crash
— print x: print the value of variable x
— print *A@N: print the first N values of array A
— set var x=v: set the value of variable x to v

lldb/gdb comparison commands:
htt [

UNIVERSITY OF OREGON

Debugging: valgrind

O

Method #3: valgrind

— Need to compile with debug info (-g flag). Example:
* Compile: gcc -g -0 bad incorrect_program.c
* Run: valgrind ./bad

— Might not be installed by default on macOS.
* Install with homebrew (brew install valgrind)

* Run on ix-dev (already installed)
* |f using Ubuntu: sudo apt-get install valgrind

UNIVERSITY OF OREGON

O

Debugging: valgrind

minclude
#include

int main(void){
int X[3] =

o= X[4];

Valgrind finds only a certain type of error: memory errors.
This is great, though! These errors can be really tough. Let's
try finding the memory errors in this program using valgrind.

DEMO: valgrind ./bad

Debugging: valgrind

minclude
#include

int main(void)/
int X[3] = :
int w = X[4]; /* valgrind can struggle with memory errors */
X[5] : /* on the stack a little bit ... * /
int g X[- | /* had to work to find this one! * [

int *Y = malloc ‘int

/* misses the uninitialized memory read */
/* but easily catches the invalid write */

O

UNIVERSITY OF OREGON

Debugging: valgrind

What about the other output? Valgrind tells us that there is a "memory leak" ...
memory allocated on the heap that was never freed. A memory leak isn't great
because the program is unable to re-use that memory, perhaps leading it to
exhaust the available memory. You need to make your projects leak free!

l |

| -

I NN NN SNNNNN
| oo n nnnn
| (I I Y O N N O Y { A |

