
University of OregonApril 12th, 2018

CIS 330:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lab: ssh, scp, gdb, valgrind

xkcd 1168

Unix	command:	ssh

• Problem:	you're	using	a	computer,	but	you	want	
to	be	using	a	different	computer …
– the	other	computer	is	far	away
– the	other	computer	is	inaccessible
– the	other	computer	doesn't	have	a	display	(server)
– etc.

• ssh lets	you	log	onto	another	machine

Unix	command:	ssh

Basic	Use:
• ssh username@machine
(equivalent	version	using	the	-l	flag)
• ssh -l	username	machine
• -Y	flag:	Enables	X11	forwarding	è Remote	use	of	
GUI	applications

DEMO

Unix	command:	ssh

From	demo:	don't	need	to	type	username	
/ machine	name	/ password	every	time!
• Instructions	for	accomplishing	this	could	be	
confusing	since	there	are	potentially	different	steps	
for	different	systems	…	ask	after	class	or	come	to	
office	hours	if	interested.

Unix	command:	scp

• Problem:	you	have	files	on	one	computer,	but	you	
want	those	files	on	a	different	computer ...

• scp lets	you	send	files	from	one	machine	to	
another	machine

Unix	command:	scp

Basic	Use:
• scp source	destination
• either	source	or	destination	might	be	a	remote	

machine	…	examples:
– scp my_file username@ix-dev.cs.uoregon.edu:~

(this	copies	my_file in	the	current	working	directory	to	HOME	directory	on	ix-dev)

– scp username@ix-dev.cs.uoregon.edu:/absolute/path/my_other_file .
(this	copies	my_other_file in	/absolute/path	on	ix-dev	to	the	current	working	directory)

– nothing	special	about	these	examples	... DEMO

Debugging

• Problem:	you	wrote	a	computer	program	and	it	
doesn't	work ...

Debugging

• Worse	problem:	someone	else	wrote	a	computer	
program	and	it	doesn't	work ...

Debugging:	lots	of	printf

• Method	#1:	just	print	everything	and	figure	it	out	
…	this	works	pretty	good	most	of	the	time!

Debugging:	lots	of	printf
• Method	#1:	sometimes	you	are	in	a	tough	spot!

when	I	run	this,	I	get	the	
value 1661289645	for	y

Debugging:	lots	of	printf
• Method	#1:	sometimes	you	are	in	a	tough	spot!

when	I	run	this,	I	get	7	for	
the	return	value	of	
my_func …	but	now	y	is	0???

Debugging:	lots	of	printf
• Method	#1:	sometimes	you	are	in	a	tough	spot!

This	example	is	kind	of	
contrived	…	a	more	typical	
situation	(for	me,	at	least)	is	
that	I'm	reading	some	code	
and	it's completely mind	
boggling,	and	putting	in	print	
statements	would	just	take	a	
really	long	time.

Debugging:	gdb

More	options	would	be	great!
–What	are	all	the	local	variables	defined	at	some	point	
in	the	program?

–What	are	the	values	of	each	variable?
–What	happens	if	we	change	the	value	of	a	variable?

Method	#2:	gdb can	do	all	of	this.	And	much	more!

Debugging:	gdb

Method	#2:	gdb
– Can	inspect	and	modify	code	as	it	runs	without	
recompiling!

– Similar	program	called	lldb on	macOS
– Run	from	the	command	line,	but	need	to	compile	with	
debug	info	(-g	flag).	Example:
• Compile:	gcc -g	-o	bad	incorrect_program.c
• Run:	gdb ./bad

Debugging:	gdb

DEMO:	I’ll	be	switching	over	to	Ubuntu	for	this…

• Newer	macOSX versions	stopped	supporting	gdb
– Encourage	the	use	of	comparable	lldb
– “brew	install	gdb”	still	there…but	errors	may	occur	
while	using	gdb

• Recommend:	use	lldb on	Mac;	gdb on	Linux	

Debugging:	gdb
Example	gdb session	
working	with	the	previous	
example	program.

DEMO

These	gdb commands,	and	
more,	explained on	next	
slide.

Debugging:	gdb
Useful	commands	in	gdb:

– break	N:	set	breakpoint	at	line	N
– break	my_func:	break	whenever	my_func is	called
– watch	my_var:	break	whenever	my_var is	changed
– run:	start	the	program
– continue:	go	until	the	next	breakpoint
– next:	do	the	next	line	of	code
– step:	do	the	next	line	of	code,	descending	into	function	calls
– info	locals:	display	local	variable	information
– backtrace:	show	frames	leading	to	crash
– print	x:	print	the	value	of	variable	x
– print	*A@N:	print	the	first	N	values	of	array	A
– set	var x=v:	set	the	value	of	variable	x	to	v

lldb/gdb comparison	commands:	
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/gdb
_to_lldb_transition_guide/document/lldb-command-
examples.html#//apple_ref/doc/uid/TP40012917-CH3-SW3

Debugging:	valgrind

Method	#3:	valgrind
– Need	to	compile	with	debug	info	(-g	flag).	Example:

• Compile:	gcc -g	-o	bad	incorrect_program.c
• Run:	valgrind ./bad

– Might	not	be	installed	by	default	on	macOS.
• Install	with	homebrew	(brew	install	valgrind)	
• Run	on	ix-dev	(already	installed)
• If	using	Ubuntu:	sudo apt-get	install	valgrind

Debugging:	valgrind

Valgrind finds	only	a	certain	type	of	error:	memory	errors.	
This	is	great,	though!	These	errors	can	be	really	tough.	Let's	
try	finding	the	memory	errors	in	this	program	using	valgrind.

Debugging:	valgrind

DEMO:	valgrind ./bad

Debugging:	valgrind

Debugging:	valgrind
What	about	the	other	output? Valgrind tells	us	that	there	is	a	"memory	leak"	…	
memory	allocated	on	the	heap	that	was	never	freed.	A	memory	leak	isn't	great	
because	the	program	is	unable	to	re-use	that	memory,	perhaps	leading	it	to	
exhaust	the	available	memory.	You	need	to	make	your	projects	leak	free!

