
http://www.cs.uoregon.edu/~fickas/REOS/

REOS Home Page

This is the home page for the Workshop on Requirements
Engineering and Open Systems (REOS).

September 8th, 2003, Monterey, CA

In conjunction with 11th IEEE International Requirements
Engineering Conference (RE03).

Workshop on Requirements Engineering in
Open Systems
Integration and interoperation have become the critical issues in engineering multi-stakeholder distributed systems
(MSDS) like the Internet electronic mail system, networks of web services, modern telephone networks, and the
Internet itself. MSDS require rethinking requirements engineering and validation, because they do not admit globally
consistent high level requirements, requiring instead a personalized and time-dependent view of requirements, and
because single stakeholders are largely ignorant of the detailed operation of nodes outside their sphere of control,
making validation problematic.

Target audience. This workshop is intended to bring together researchers and practitioners in the fields of

● requirements engineering
● component-based design (including Enterprise Application Integration (EAI))
● verification and validation
● ontology engineering and knowledge representation
● web services
● XML-based standards for representation (DAML+OIL, DAML-S, RDF and OWL)

and related fields to discuss the challenges of designing and using open systems.

Goals and structure. Our goals for the workshop are both to improve awareness of how open systems create novel
problems for requirements engineering and to begin to explore potential solutions. To help focus the discussion, we
have selected some open system scenarios (see full call for participation) and encourage each presentation to discuss
how its ideas address or relate to the problems illustrated in the scenarios. The format of the presentations will include
extra time for audience discussion of each presentation, hopefully allowing the group both to better understand each

http://www.cs.uoregon.edu/~fickas/REOS/ (1 of 6) [8/11/2003 11:52:47 AM]

http://conferences.computer.org/RE/
http://conferences.computer.org/RE/

http://www.cs.uoregon.edu/~fickas/REOS/

set of ideas and to relate them to other presentations and to the workshop themes.

A minimum two-page abstract should be submitted via e-mail to either of the workshop co-chairs in pdf (preferred) or
ascii text format. Please see The Call For Proposals (CFP) for more information.

Workshop papers due: June 27, 2003
Notification to authors: July 18, 2003
Camera-ready: August 4, 2003
Workshop date: September 8, 2003

Note that for workshop presentation choices, the committee will give preference to papers that address one or more of
the topics/examples below (or those closely related).

The workshop will be part of the larger 2003 International Requirements Engineering Conference - see the conference
web page at http://conferences.computer.org/RE/.

Detailed Description
Integration and interoperation have become the critical issues in engineering multi-stakeholder distributed systems
(MSDS) like the Internet electronic mail system, networks of web services, modern telephone networks, and the
Internet itself. Consistent, well defined protocols and other low level requirements enable these systems to function,
but higher level requirements placed by diverse users are often ephemeral and typically inconsistent when viewed
together. Thus, for the field of requirements engineering to deal with open MSDSs at all, we need to shift our thinking
from systems having consistent, global requirements to those in which requirements can be user-relative and
ephemeral.

Beyond that issue, however, lurks a second major challenge dubbed the "ignorance problem": since the nodes of an
MSDS are controlled by stakeholders with different goals, priorities, and capabilities, just knowing what they all do is
a challenge. For example, email features and functionality have grown so complex that merely knowing a host serves
TCP port 25 (SMTP) does not give enough information to know whether one's email message will be handled
correctly. Current web services provide the means to discover method signatures. However, formal service standards
have yet to be defined.

This workshop is intended to bring together researchers and practitioners in requirements engineering, component-
based design (including Enterprise Application Integration (EAI)), verification and validation, and related fields to
discuss the challenges of designing and using open systems in which requirements are ephemeral and user-relative,
and in which it is difficult or impossible to know the behaviors of all the parts of the system.

Topics of interest

1. In an open system, up front system analysis is at best of limited, heuristic usefulness. The system is amorphous
and dynamic: it comprises whatever components are available at the moment. The best one might hope for is
just-in-time analysis: can requirement R be met at this moment with system S?

2. Three new types of requirements are prevalent in open systems:

http://www.cs.uoregon.edu/~fickas/REOS/ (2 of 6) [8/11/2003 11:52:48 AM]

http://www.cs.uoregon.edu/~fickas/REOS/cfp.pdf
http://conferences.computer.org/RE/

http://www.cs.uoregon.edu/~fickas/REOS/

1. How do we capture and reason about ephemeral requirements? Ephemeral requirements have a lifetime
that can be measured in days, hours, minutes or even less. They may be recurring, but may also be one-
off.

2. How do we capture and reason about user-relative requirements, or what we might call "personal
requirements"? Personal requirements are not global to the system, but are specific to a single user or
stakeholder. They are highly contextual.

3. When a system will be used by (or affect) multiple users with different personal requirements (personal
utility functions), how do we reconcile their differing preferences in setting requirements for a system.
For instance, in an email setting, spam can be explained as a clash between the sender's personal
requirement (get a user to respond to the message) and the receiver's personal requirement (don't be
bothered by material that's irrelevant, often offensive, and possibly fraudulent). How do we reason
about utility-based requirements?

3. Requirements in open systems are often obstructed by the environment, i.e., by components not under the
user's control. It is less interesting to know that a requirement R cannot be met than knowing how it might fail.
Both runtime monitoring and failure-recovery mechanisms come to the fore.

4. Given that many components of the system will not be under a user's control, how can we reason about the
system's behaviors that may be relevant to the user? Can components provide an external description that will
allow us to reason about requirement achievement? Can components be made transparent (e.g., reflective) so
we can directly reason about their behavior?

5. Can open modeling standards be established that would allow personal requirements validation tools to help a
user discover and reason about personal requirements satisfaction? If so, how can communities of interest
establish shared ontologies/theories that can support capabilities like semantically meaningful model
composition, scenario simulation, animation, theorem proving, model checking, and other formal reasoning
tools? What information (beyond the standard OO entity-relationship information) must be included in such
shared theories? Are current web-based standards such as RDF, RDFS, or OWL, enough for these tasks in
terms of expressiveness, tractability, ease-of-use, etc.?

6. Deceptive practice is turning out to be a problem with some web sites in todays competitive market. For
instance, it is difficult to ascertain what the information-privacy policy is of some sites. Even when sites state
their policy, it is difficult to verify it. How do privacy and security fit into the larger picture of MSDS? Should
game theory be part of requirements analysis in an MSDS?

Examples

We list some examples to help with the focus of the workshop. Ideally, a submission would explicitly explain how
their approach, tool, idea, etc, would handle similar examples.

EXAMPLE 1: an email request and reply.

This example is drawn from a real project (contact fickas@cs.uoregon.edu for more details). User A wishes to get a
ride to the doctor from user B. User A decides to send an email request to B asking for the ride. In slightly more
formal terms, A's requirement is a yes or no answer from B to the ride request, in time to do A some good. The

http://www.cs.uoregon.edu/~fickas/REOS/ (3 of 6) [8/11/2003 11:52:48 AM]

http://www.cs.uoregon.edu/~fickas/REOS/

requirement is ephemeral: it endures for this ride request only, and may never come up again. The requirement is
personal: it is A's requirement and contextualized to the components in place, at the request moment, to get a question
to and reply from B.

It is an open system problem in that neither the Internet connectivity of A and B, the communication channel (the
SMTP servers and post-office server) between A and B, nor the email client of A and B are under the control of all
parties. In particular, A and/or B can be disconnected, email servers on either A's or B's side may filter email under
administrative policy, the actual email clients themselves can filter email. Further, from A's point of view, B (the
human) is part of the environment: B can ignore the request. In summary, the ride-request requirement can fail in
many ways and it is impractical to attempt to guarantee success.

The questions this example raise in terms of the workshop are as follows:

1. Can we reason at all about the potential success or failure of the ride request? Do we know or can we discover
what system components must be involved in the request? If we know the components, can we also know their
behavior? If we know their individual behavior, can we reason about success and failure from a system-wide
level?

2. Once we know how the request can fail, can we do more than hope for the best? Can we monitor its progress?
Can we be warned of impending failure and potentially circumvent it? If failure does occur, can we recover in
a way that keeps the request alive?

3. Is it feasible, in a limited domain like email, to develop a shared ontology, one that all email server and client
vendors might adopt?

4. Privacy issues arise in this problem. It may be the case that B's email client is willing to make explicit the
general rules it follows, (e.g., email from certain domains on a watch-list are deleted) without providing details
(e.g., whether A's domain is on the watch list).

EXAMPLE 2: A Web Services Example

This example comprises four stakeholders:

1. User C has a web browser. C knows what Internet web services he or she wishes to access. One of these is
UpToTheMinuteNews.com (U2M).

2. Corporate IT (IT) requires that all web requests traverse a web proxy on the corporate firewall.
3. A company called Acme Web Speedup Services (AWS) provides a caching proxy web service that is billed as

"speeding up the average web access by N%!!!"
4. UpToTheMinuteNews.com provides (for a fee) the very latest news stories on their web site.

IT decides to improve everyone's life (on average) by connecting the corporate web proxy to AWS. Soon after that
decision, C notices he or she is no longer receiving the latest news from U2M. This example has several relevant
characteristics for the workshop:

● No single stakeholder has the information necessary to anticipate or even diagnose the problem. Can we come
up with ways of decreasing the ignorance in this MSDS?

● The problem arises dynamically. One day U is happily receiving the service for which he or she is paying, and
the next day an invisible (to C) change causes it to stop working. Thus, any analytic tool must be sensitive to
change. How can any proposed solution deal with the constant change that is prevalent in MSDSs?

● IT is making design decisions based upon imperfect understanding of the requirements or other stakeholders

http://www.cs.uoregon.edu/~fickas/REOS/ (4 of 6) [8/11/2003 11:52:48 AM]

http://www.cs.uoregon.edu/~fickas/REOS/

and/or the implementations of other nodes.
● AWS and U2M may not be implemented optimally or even correctly. Thus, can one stakeholder's tools

compensate for ignorance and imperfect design?

Note that it is difficult to know without detailed debugging knowledge what causes the problem. Here are some
alternative hypotheses. (1) AWS's contract has fine print explaining that it does not guarantee freshness of its pages,
(2) AWS's contract is purposely inaccurate or unclear on this point. This would be an example of deception in MSDSs
(see Example 3 below). (3) AWS's implementation is buggy, old, or incorrectly configured so that it does not honor
"no-cache" header information. Note that AWS's service would still be acceptable for all users who don't access time
critical sites. (4) U2M's implementation is buggy or incorrectly configured, so that it does not produce "no-cache"
headers with its pages. Note that in this case, U2M would still work perfectly well for all clients who do not use
caching. (5) IT failed to read or correctly interpret the AWS contract. (6) IT failed to realize that some of its users
required freshness. (7) C failed to communicate to IT that it needed access to a time critical web site, even though IT
surveyed its users on this point at some time previously. (Or maybe C's needs changed since the survey.)

Requirements and validation tools must deal with all these issues, since it is not reasonable to assume every node is
implemented well or even in compliance with published standards; it is not reasonable to assume all requirements are
accurately known, or that all stakeholders are honest; and it is not reasonable to assume that contracts (e.g. published
interfaces) are correct, complete, and unambiguous. Clearly, a stakeholder needs ways to discover actual behavioral
details, and to monitor plans as they execute for failures. How can we support these needs?

EXAMPLE 3: Deception

The previous two examples have shown the problems when well-intentioned components/stakeholders must be
brought together to meet a personal requirement. But components in either example could have hidden goals. For
instance, an SMTP server could be monitoring the email that it processes for marketing opportunities, harvesting
email addresses for further bulk mailing. The AWS component could be monitoring visited pages and making the
information available, for a price, to those interested in the surfing habits of the IT corporation. Ideally, we would like
to be able to have a clear-box view into the behavior of the components, thus making hidden goals transparent.
Barring that, are there other means of reasoning about deception in open systems? Are there ways to discourage it?
Can we borrow reasoning methods from other fields that deal with potentially dishonest agents, e.g., game theory?

Submissions

A minimum two-page abstract should be submitted via e-mail to either of the workshop co-chairs in pdf (preferred) or
ascii text format. Deadlines:

Workshop papers due: June 27, 2003
Notification to authors: July 18, 2003
Camera-ready: 8/4/03
Workshop date: September 8, 2003

Note that for workshop presentation choices, the committee will give preference to papers that address one or more of
the topics/examples below (or those closely related).

Workshop committee
http://www.cs.uoregon.edu/~fickas/REOS/ (5 of 6) [8/11/2003 11:52:48 AM]

http://www.cs.uoregon.edu/~fickas/REOS/

Workshop co-chairs:

 Stephen Fickas, University of Oregon, fickas@cs.uoregon.edu
 Robert J. Hall, AT&T Labs Research, Florham Park, NJ, hall@research.att.com
Workshop Program Committee:
 Annie Anton, North Carolina State University
 Carlo Ghezzi, Politecnico di Milano
 Klaus Havelund, NASA AMES
 William N. Robinson, Georgia State University
 Axel van Lamsweerde, Universite Catholique de Louvain

http://www.cs.uoregon.edu/~fickas/REOS/ (6 of 6) [8/11/2003 11:52:48 AM]

Workshop on Requirements Engineering for Open Systems

Co-Chairs
Stephen Fickas, University of Oregon
Robert J. Hall, AT&T Labs Research

September 8, 2003

830 Introduction
R.J. Hall

RE in Open Systems: Problems and Some Approaches

1000 Break

1030-1200 Formal Methods

L. Baresi, E. Di Nitto, C. Ghezzi
Inconsistency and ephemerality in a world of e-services

W. Robinson
Monitoring web service interactions

X. Fu, T. Bultan, J. Su
A top-down approach to modeling global behaviors of web services

1200 Lunch

1330-1500 Negotiation and Ontological Alignment

P. Gruenbacher, F. Stallinger, N. Maiden, X. Franch
A negotiation-based framework for requirements engineering in multi-
stakeholder distributed systems

K. Breitman
Semantic interoperability by aligning ontologies

F. Marschall, M. Schoenmakers
Classifying requirement conflicts for multi-stakeholder distributed systems

1500 Break

1530 Discussion and Summary of Themes

Inconsistency and Ephemerality in a World of e-Services

Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi

Politecnico di Milano – Dipartimento di Elettronica e Informazione
piazza L. da Vinci, 32 I-20133 Milano (Italy)

baresi|dinitto|ghezzi@elet.polimi.it

ABSTRACT
Service-based systems comprise components owned by different
organizations and providing so callede-Services.e-Services opera-
tions are published through interfaces that focus almost exclusively
on defining syntactical aspects. The distributed ownership of com-
ponents and the partial visibility of their behavior complicate sys-
tem management and preclude the capability of reasoning at design
time on the system as a whole. These new problems require the
definition of new techniques to support the composition of services
and validate the result. In addition, this implies capabilities to deal
with run-time misbehaviors and dynamic reconfigurations that go
far beyond the currently available approaches.

The many standards proposed in these years for composinge-
Services do not address the consistency of designed cooperations.
In this position paper, we briefly describe a possible solution to en-
force consistency and deal with ephemeral requirements in a world
of e-Services. In such a world, services can be selected dynami-
cally, stake-holders may change their services, users may change
the context in which they use the system, or simply change their
needs and taste. Static analysis techniques are not enough to ensure
consistency in this case. Our proposal emphasizes pre and post con-
ditions to both describe the functionality provided by thee-Services
and how they should be used in deployed compositions. Based on
pre and post conditions, run-time monitors may trigger possible in-
consistencies between supplied services and how they are supposed
to behave.

1. INTRODUCTION
Service-oriented architectures are becoming the means to inte-

grate and deploy complex distributed systems. Typically, they com-
prise components supplied by different organizations and offering
e-Services published through someinterfaces. Such interfaces are
usually focused on the syntactical aspects related to the definition
and invocation of operations, but hide all other details (e.g., the se-
mantics of invocation, the meaning of results, etc.). Such a frame-
work poses two interesting problems: the distributed ownership of
components and the partial visibility of their behavior. The former
makes system management more complex and does not allow the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2003 ACM 0-00000-00-0/00/00 ...$5.00.

user to trust a single provider: We need a mean to “negotiate” the
services supplied by each provider on the basis of particular qual-
ity of services. The latter precludes the capability of reasoning on
the behavior of the system as a whole. We must require that the
e-Services expose as much information as possible to let design-
ers “reason” on the systems they deploy. Indeed, we must provide
proper mechanisms to support composition ofe-Services and vali-
dation of the resulting system.

In these years, we are assisting to a proliferation of different
XML-based proposals that should pave the ground to the solution
of the problems described so far. WSDL (Web Service Descrip-
tion Language, [2]) is already the de-facto standard to describee-
Service interfaces, that is, sets of operations supplied by a single
provider, WSOL (Web Service Offerings Language, [12]) is just
one of the many proposals to negotiate the quality of required ser-
vices, and BPEL4WS (Business Process Execution Language for
Web Services, [3]) is the most recent proposal for composinge-
Services to build more complex services. Orthogonally, we can also
mention DAML-S (DARPA Agent Markup Language - Services,
[1]), which with its three layers – profile, model, and grounding –
covers both the description of services and their composition.

Even if all these proposals aim at a seamless and easy deploy-
ment of service-based systems, they all assume that designers be in
charge of theconsistencyof the system. Almost all proposals con-
centrate on modeling, but offer little or no support to the validation
phase. Thus, how can we composee-Services in a consistent way?
Are the simple syntactical interfaces of operations enough to this
end? The feeling is that composition ofe-Services requires more
knowledge on the operations they offer than what is actually pub-
lished. Important information ranges from aspects related to quality
of service to a specification of how the operations behave, what se-
quence of operations can be correctly executed, etc. Only DAML-
S goes in the direction of disclosing such information by allowing
designers to specify operations in terms of pre and post conditions.
However, it leaves designers free to use the language they want,
thus resulting in a difficulty of automatically interpret and evaluate
such conditions. Indeed, DAML-S does not provide any suggestion
on how to exploit the defined pre and post conditions through the
life cycle ofe-Services.

In a closed environment, where we can trust and control
providers, we could think of exploiting pre and post conditions
to performstatic analysisto reason on the consistency of service-
oriented systems. But, if component services are outside our con-
trol, they can change freely, and we cannot assume the consistency
between their published interfaces and the corresponding running
implementations. So, even if the former could be compatible with
our expectations, the latter could be faulty. In this case, the only
mean toreason onconsistency is throughrun-time monitoring.

Similar problems also arise when we do not have fixed bind-
ings betweene-Service definitions and providers, but we require
that actuale-Services be dynamically discovered and negotiated
through some kind of repository. Used services are discovered only
during the execution and thus the comparison between published
interfaces and running implementations can be done only at run-
time. Services can change with respect to the context in which the
application is deployed, but also user requirements (i.e., user pro-
files) can vary and thus impose new or different requirements on
the system. For instance, users can change the devices they use to
interact with the system, they can move, or they can simply change
their preferences (and taste). Again, ephemerality emphasizes on-
line monitoring.

The idea is not completely new: Robinson [10] propose run-time
monitors to match requirements and system executions. His work
concentrates on high-level requirements. From them, he discovers
obstacles, and derives monitors. In contrast, we are closer to the
implementation, concentrate on simpler properties, and leave to the
designer more freedom to tailor the degree of accuracy he wants to
adopt to define pre and post conditions.

In the rest of the position paper we exemplify our ideas on one of
the examples proposed in the call for papers [5]. Section 2 describes
the example in terms ofe-Services and lists the issues it raises.
Section 3 sketches our proposal that is based on the idea of asserting
pre and post conditions to use them as run-time monitors. Finally,
Section 4 briefly discusses our proposal with respect to available
technologies and Section 5 concludes the paper.

2. THE PROBLEM
To exemplify the problems that we have pinpointed in the previ-

ous section, but also to pave the ground to a possible solution, we
recall and adapt one of the exercises suggested in the workshop call
for papers [5]. The example includes four stake-holders:

• UpToTheMinuteNews.com(U2M) provides the very last
news stories. News belong to various topics: for instance,
sport, finance, and politics.

• eStock(ES) offers to users the capability of trading stocks
on-line. It exploits U2M to provide the very last news on the
stock market.

• Users (U) exploiteStockto know the very last news on the
stock market and manage their stock portfolio. U can ac-
cess the system using different devices (PCs, PDAs, smart
phones).

• Acme Web Speedup Services(AWS) provides a caching
proxy Web service that is billed as “speeding up the average
Web access by N%”.

We can imagine ES, AWS, and U2M ase-Services that offer a pre-
defined set of operations. Each stake-holder controls thee-Service
it provides, but has no control on the others.

Figure 1.(a) shows a process description that defines the behav-
ior of ES. TheaskForNews activity causes the execution of a re-
quest to the U2M service. ThefilterNews activity is in charge
of extracting from all received news the ones concerning stocks,
formatData formats and display data for the user who, in turn,
can then decide to buy or sell stocks.

At a certain point in time, ES decides to improve its availability
to customers’ requests by binding theaskForNews activity to a
new service that, based on a few experimental data, appears to be
more stable than U2M and is compliant with the same interface as

askForNews

filterNews

formatData

buyStocks sellStocks

[sell][buy]

askAWSforNews

askU2MForNews

notifyAWS notifyES

(a) eStock (b) ask for news

[News is
empty]

Figure 1: Example processes

U2M. Being outside the control of ES, it does not know that such
service exploits the AWS caching service as shown in the process
description of Figure 1.(b). Therefore, as a result, it happens that ES
users start experiencing that stocks news are not updated anymore
and stop buying or selling stocks through the system.

The set of cooperating services raises the following problems:

• No stake-holder has enough knowledge to anticipate prob-
lems arising frome-Service composition nor to locate them.

• Problems arise dynamically. The process in ES has been de-
signed correctly and all components (i.e.,e-Services) seem
to work together properly. The availability of partial infor-
mation is not enough to assure the correct execution of the
system.

• The selection ofe-Services (operation) has been based on
published information, but they could be incorrect, incom-
plete, and ambiguous.

• Errors can arise from several different reasons. It could be
because of the addition of a new service, and thus a change
in the process, but also because one of the service providers
changes (the internals of) its operations, or one of the users
starts using a device that is not well-supported by the system.

• The match making process can be major source of problems.
The discovery and selection process in a given context can
be considered a typical example computation that must deal
with ephemeral requirements: The constraint that must be
matched and the services available in a given context are usu-
ally different from those in other contexts.

• Last, but not least, problems may be due to the unmatched
quality of non-functional (e.g., availability of service, time
efficiency, security issues) rather than functional parameters.

Even if important, the last bullet is left out of the scope of this po-
sition paper, but we feel that our proposal can be properly extended
to cope with it.

3. OUR PROPOSAL
To tackle the aforementioned problems we are currently explor-

ing the use of assertions. Our proposal is inspired by the many as-
sertion systems available for programming languages. For example,
we can mention ANNA (ANNotated ADA, [7]) as the first pro-
posal, Eiffel [8] and the latest version of Java as other examples
of programming languages that embed assertions, and ADL (As-
sertion Description Language, [11]) as a cross-language approach.
All these languages allow designers to associateassertions(con-
straints) with particular parts of the code and check them at run-
time. Assertions are added to the code as special-purpose anno-
tations; ad-hoc preprocessors transform them into code and thus
allow them to be checked at run-time.

To the best of our knowledge, none of the languages fore-
Service composition allow designers to add these assertions. For
example, neither BFEL4WS nor others such as WSCI [4] leave
room to them. Instead, we argue that the usage of assertions offers
an effective programming tool to define pre and post conditions
to predicate on the invocation of operations offered by externally
controllede-Services. Such a programming mechanism is nicely
separated from the language constructs that are used to define the
logic of e-Services composition.

In our approach,e-Service owners can associate pre and post
conditions with the operations they publish on theire-Service in-
terfaces. Such conditions define the contract they declare to be able
to fulfill when some user invokes the corresponding operations. The
semantics is the usual one: whenever the precondition is satisfied,
they promise that the results of the operation will fulfill the post-
condition. At the same time, users ofe-Services exploit assertions
to associate the process fragments with pre and post conditions that
predicate on their obligations and expectations with respect to such
e-Services. Assuming that the process definition is correct, precon-
ditions are guaranteed to be true before calling somee-Service op-
erations. Also, postconditions are expected to be true after comple-
tion of the same operations. A service provision matches a service
request if a) the precondition defined as a part of the invocation
is equivalent to or stronger than the precondition defined as a part
of the operation description, and b) the postcondition defined as a
part of the invocation is equivalent to or weaker than the postcon-
dition defined as a part of the operation description. Pre and post
conditions can then be used to:

1. Statically analyze the consistency of the designed process:
such analysis can be performed at development time and can
be used to prune bugs that are introduced within the code that
is under the control of the process designer.

2. Select the actual services to be exploited within a service-
oriented system by checking the compatibility of thee-
Service operation invocations with the corresponding oper-
ation definitions.

3. Act as run-time monitorsto raise possible problems and
scope them. In fact, by asserting pre and post conditions at
the side of the invoking system it is possible to check that
thee-Services being exploited behave in a way that is com-
patible to the expectations of the invoking system itself (as-
suming that this last one is behaving correctly, i.e., it allows
the preconditions of the invoked services to hold). Such a
monitoring allows the invoking system to gain control over
the execution of the externale-Services and to discover the
cases where, for some reasons, their actual behaviors do not
respect the expected contract.

A faulty behavior signaled by the run-time monitoring mechanism
can be caused by one of the following factors:

• The process describing the composition is internally incon-
sistent thus leading to a situation where a precondition ex-
pected to be true it is not. This case should not happen if the
process is properly validated.

• The asserted pre and post conditions are still compatible with
the pre and post conditions declared in the interface of the
e-Service being used, but the corresponding implementation
does not respect them: The stated interface of the invoked
service is inconsistent with the corresponding implementa-
tion. This is the case of services that lie about their behavior.

• The asserted pre and post conditions are not anymore com-
patible with the pre and post conditions declared in the inter-
face of thee-Service being used, for instance because it has
been changed independently.

In the second and third case, the identification of the problem at
run-time allows the composed system to take some corrective steps.
The most obvious one could be the activation of a matchmaking
mechanism that tries to find a newe-Service compatible with what
is expected, and the binding to and activation of such service so
that the composite system can continue execution. Corrective steps
can be expressed by exploiting the exception handling and/or com-
pensation mechanisms made available by the existing orchestration
languages.

Let us consider again the example of Figure 1.(a), and in par-
ticular theaskForNews activity. It could be associated with the
following pre and post conditions1:

news = askForNews.getNews():
pre: true
post: forall n in news:

cTime - someConstantValue < n.time < cTime

wherenews is the set containing all results produced by the in-
vocation of thee-Service in charge of producing thenews. Intu-
itively, the postcondition expression states that the time at which
all news have been produced has to be close enough but not greater
thancTime . Notice that we implicitly assume that all quantifiers –
forall andexists – predicate on finite domains.

If service U2M or any other news service defines in its public
interface the pre and post conditions below, it is compatible with the
askForNews activity defined in the composede-Service provided
thatanotherConstantValue ≤ someConstantValue :

Set getNews():
pre: true
post: forall s in Set and all n in s:

cTime-anotherConstantValue < n.time < cTime

Let us assume that the newe-Service that replaces U2M exposes
the above pre and post conditions, but its actual implementation
does not comply with them. In this case, if during the execution of
ES the assertion mechanism is activated, the problem related to the
freshness of the news is dynamically discovered and can be solved
by rebinding to the old U2M service.

By adding pre and post conditions to the process defining the
composede-Service we provide a mechanism to define how an in-
voked service is supposed to be used and to checke-Service behav-
ior at runtime.
1For the sake of readability, pre and post conditions are rendered
using a “generic” language. The same concepts could have been
rendered using a language like OCL.

Pre and post conditions in the process definition can also be com-
plemented byinvariants. An invariant represents a property that
must hold in any valid state of the process. At runtime it can be en-
forced after a failure in order to guarantee that the composed system
remains in a valid state.

4. APPLYING OUR APPROACH TO CUR-
RENT TECHNOLOGIES

After describing our proposal, we want to briefly discuss how
it applies to available technology. The idea is to work in the same
way as the assertion systems for programming languages do. We
can exploit comments – both in BPEL4WS or in DAML-S – to
state the pre- and post-conditions associated with each service in-
vocation. We could also imagine invariants that must hold true on
the complete process or on some fragments. These comments do
not change current standards and can simply be discarded by the
engines that execute the specifications: for instance the BPEL4WS
Java Run Time by IBM [6] or the DAML-S virtual machine by
Carnegie Mellon University [9].

Special-purpose pre-processors can read these comments and
transform them in avalidation service, which is held by the stake-
holder that executes the process and provides the operations to
check the consistency of defined assertions.

A more complex solution would consider the extension of both
specification languages and execution engines. This solution is sim-
ilar to the recent extension to Java, which now embeds assertions as
language feature. Since we are thinking ofrun-time monitors, and
not just oracles during the validation phase, this solution would be
much more robust, but also much more complex to implement.

The right compromise is to aim at the second solution, but start
doing experiments following the first approach, which is lighter and
can provide interesting feedbacks on the soundness of the proposal.

5. CONCLUSIONS
This position paper has discussed the importance of inconsis-

tency and ephemerality in service-based systems. Besides identify-
ing the problems that we must address and try to solve, the paper
proposes the use of pre, post conditions, and invariants defined both
in the interface ofe-Services and in the process describing a com-
position ofe-Services. Such conditions can be exploited to perform
static analysis by using traditional approaches. In addition, they can
be asserted at runtime todetectinconsistent steps while executing
the composed system. This is only one side of the problem; the
other side is the capability of dynamically reconfiguring the pro-
cess – executed by system – to deal with both wrong services and
ephemeral requirements. This is part of our future work.

6. REFERENCES
[1] DAML-S Coalition: A. Ankolekar, M. Burstein, J. R. Hobbs, O.

Lassila, D. Martin, D. McDermott, S. A. McIlraith, S. Narayanan, M.
Paolucci, T. Payne, and K. Sycara. DAML-S: Web service
description for the Semantic Web. InProceedings of 1st Int’l
Semantic Web Conf. (ISWC 02), volume 2342 ofLecture Notes in
Computer Science, pages 348–363, 2002.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.2.
www.w3.org/TR/wsdl12/ , June 2003.

[3] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and
S. Weerawarana. Business Process Execution Language for Web
Services, version 1.1.www6.software.ibm.com/software/
developer/library/ws-bpel11.pdf , May 2003.

[4] A. Arkin et al. Web Service Choreography Interface 1.0. Technical
report, BEA Systems, Intalio, SAP, Sun Microsystem, 2002.

http://wwws.sun.com/software/xml/developers/
wsci/wsci-spec-10.pdf .

[5] S. Fickas and R. J. Hall. Call for papers of the Workshop on
Requirements Engineering and Open Systems (REOS), September
2003.http://www.cs.uoregon.edu/˜fickas/REOS/ .

[6] IBM. The ibm bpel4ws java run time.
www.alphaworks.ibm.com/tech/bpws4j .

[7] D.C. Luckham, F.W. von Henke, B. Krieg-Brückner, and O. Owe.
Anna - A Language for Annotating Ada Programs, volume 260 of
Lecture Notes in Computer Science. Springer-Verlag, 1987.

[8] B. Meyer.Eiffel: The Language. Object-Oriented Series. Prentice
Hall, New York, N.Y., 1992.

[9] M. Paolucci, K. Sycara, and T. Kawamura. Delivering Semantic Web
Services. InProccedings of WWW 2003, pages 111–118, 2003.

[10] W. Robinson. Monitoring web service requirements. InProccedings
of the International Conference on Requirements Engineering, 2003.
To appear.

[11] S. Sankar and R. Hayes. ADL: An Interface Definition Language for
Specifying and Testing Software.ACM SIGPLAN Notices,
29(8):13–21, August 1994.

[12] V. Tosic, K. Patel, and B. Pagurek. WSOL - Web Service Offerings
Language. InProceedings of the Workshop on Web Services,
e-Business, and the Semantic Web - WES (at CAiSE02), volume 2512
of Lecture Notes in Computer Science, pages 57–67.
Springer-Verlag, 2002.

Monitoring Web Service Interactions

William N. Robinson
Georgia State University

wrobinson@gsu.edu

Businesses increasingly rely on web services. Advan-

tages, such as supply chain efficiencies and agility, are
gained universally. Disadvantages, such as supply chain
failures, occur universally, but are understood less. While
electronic commerce has increased the speed of on-line
services, the technology of monitoring on-line services
has lagged behind. Consequently, businesses are becom-
ing increasingly vulnerable to the problems of their on-
line partners.

Monitoring provides an initial solution. Ideally, im-
pending failures in electronic supply chains can be de-
tected and repaired without user intervention and without
a perceptible decrease in performance. Researchers must
provide answers to reach the ideal of dynamically evolv-
ing supply chains. Now, practitioners use monitors to
provide service failure alerts. More advanced monitoring
systems include alerts of impending individual and ag-
gregate service failure, analysis of historical failure data,
and extensive reporting.

1 Monitoring Systems

A simple conceptual model underlies approaches to
monitoring, as illustrated in Figure 1. The design-time
model represents systems requirements. The run-time
model represents a view of the internal workings of the
system; it is a refinement of the design-time model, typi-
cally. Monitoring is the observation of system actions—
including internal actions—interpreted through the run-
time and design-time models. Monitoring systems vary in
the complexity of their models and the efficiency of their
run-time systems.

Design-time Model

Run-time ModelSystem Monitor

Refinement

System Monitor

Figure 1 Monitoring models.

The implementation of run-time monitors can be un-
derstood in terms of the network architecture illustrated in
Figure 2. The architectural components can reside on a
single computer, or they can be distributed over complex
networks. Event adaptors translate world events into
monitored events. For example, a web service adaptor
captures web service requests and replies as monitored
web service events. Broadcasters forward the monitored
events to other broadcasters and listeners. A requirements
monitor is a specific type of listener that interprets an
event stream in terms of requirements satisfaction.

Event Adaptor
Broadcaster

*

*

World Object

*

*

Requirements Monitor

Listener

*

*

Figure 2. Service monitoring network architecture.
Choices on the service monitoring models and network

architecture affect the expressibility, adaptability, effi-
ciency of the requirements monitoring system. Consider
each of the network architecture components:
• The event adaptor can be integrated into the network

protocol stack, which includes SOAP message for
web services. As requests and replies are deserialized
and serialized, the event adaptor can extract the
SOAP message and forward it to the broadcaster. Al-
though efficient, the protocol stack event adaptor
must be installed on each server. Some web service
implementations provide web service filters, which
greatly simplify event adaptor installations. Interme-
diaries, such as web service gateways or routers, also
simply web service monitoring. These web service
specification extensions allow an intermediate server
to monitor web service messages.

• The broadcaster receives the monitored messages
from the event adaptor—an efficient adaptor filters
messages, and sends only relevant messages to the
broadcaster. The broadcaster then sends the messages
to registered listeners. Broadcasters and listeners can

be arranged into network hierarchies—for example,
to aggregate information. However, most monitoring
systems do not have a broadcaster: messages are sent
directly to a single listener. In such an architecture,
however, the listener becomes a bottleneck.

• The listeners receive the messages as a series of
events, such as Request and Reply. Listeners may
also receive events from other listeners, via the
broadcaster. For example, a listener may broadcast a
Requirement Failure notification when it observes a
requirement failing. In most monitoring systems, lis-
teners simply show a trace of messages. Some types
of listeners can provide warning lights when web ser-
vice requirements fail.

1.1 Monitoring Requirements

Expressibility of the design-time language and effi-
ciency of the run-time monitoring system distinguish the
different approaches to service monitoring. For example,
many web service monitors only determine the satisfac-
tion of the following simple requirement.
After a request, Rq, service S shall provide a
corresponding response, Rs, within time t.

Notice that this requirement concerns a request-
response pair of single service. Many web service moni-
tors send a dummy request, a sort of “ping”, to see if the
service is responding. If the service responds, then it is
assumed that all similar requests are being satisfied. Such
monitoring systems use a listener only, as presented in
Figure 2.

Fewer monitors analyze expressive requirements, such
as the one below:
After each request, Rq, service S shall provide
a corresponding response, Rs, within time t.

Here, the monitor does not send dummy requests. In-
stead, it monitors each service request and response using
an event adaptor.

Service requirements can reference message corre-
spondences, temporal relationships, data integrity, and
historical information. For example, consider the follow-
ing requirement that limits the average response time.
The average response time of service S shall be
within time t.

Here, the monitor must record each response time and
raise an alert when the average response time drops below
the threshold.

There is overhead in tracking actual requests and their
responses, recording service information, and analyzing
complex relationships. Consequently, many service moni-
tors gain run-time efficiencies by relying on the simpler
method of “pinging” services to determine their availabil-
ity.

1.2 Monitoring with ReqMon

Ideally, monitoring systems support the expressive re-
quirements and high-level feedback demanded by end
users, while ensuring usage through practical efficiency.
ReqMon does so[2]. It is a distributed, scalable require-
ments monitoring application framework. Lightweight
extensions of web service technologies provide run-time
practicality and efficiency, while design-time activities
make use of object-oriented requirements analysis.

The ReqMon approach is most similar to that of
FLEA[1]. Both approaches use an object-oriented re-
quirements language (KAOS) that includes real-time
temporal logic operators. ReqMon builds on FLEA by:
(1) providing tactics for deriving monitors from require-
ments, (2) addressing distributed concurrent transactions,
(3) distributing monitoring and analysis, (4) providing
temporal logic primitives, and their aggregates, for moni-
toring, (5) relying on standard tools (e.g., SQL, web ser-
vices), and (6) providing automated analysis of web ser-
vices.

In short, ReqMon compiles high-level monitor defini-
tions into a network of web service monitors. Local site
databases record local web service actions. When its da-
tabase queries determine that high-level system require-
ments have failed, ReqMon notifies users.

2 Discussion

The presentation of red “danger lights” on service fail-
ures is the goal of many monitoring systems. However,
much more is possible. For example, users can be warned
when a service is about to fail. A monitoring system can
model the requirements hierarchy, monitor low-level re-
quirements failure, and present a high-level warning
when a lower-level failure occurs. The combination of
high-level requirements and an events database provides
for a wide range of run-time analysis. Requirements that
reference aggregate historical information can be moni-
tored, such as, “A retailer shall average no more than 10
simultaneous credit confirmation requests.” Data viola-
tions, workflow anomalies, performance degradation, and
other non-functional requirements can also be monitored.

Using ReqMon, we have demonstrated requirements

monitoring of web services and their relationships. The
expressive requirements language and networked imple-
mentation architecture provide a wide range of analyses.
However, the approach leaves many opportunities for
future improvements. These include: (1) assisting obsta-
cle identification, (2) design-time reasoning about moni-
tors, including performance analysis of the distributed
system, (3) assisting design-run-time mapping, (4) im-
proving visualization of monitored results, and (5) assist-
ing the run-time responses to warnings and failures. For

web services, failure response planning and execution is
particularly interesting, as web services can be dynami-
cally reconfigured. Thus, systems may be able to recon-
figure themselves in response to partial failures. Many
benefits may derive from requirements monitoring of web
services and their relationships.

References
[1] M. S. Feather, S. Fickas, A. van Lamsweerde, and C.

Ponsard, "Reconciling System Requirements and
Runtime Behavior," presented at Proceedings of the
International Workshop on Software Specification
and Design (IWSSD'98), Isobe, 1998.

[2] W. N. Robinson, "Monitoring Web Service Require-
ments," presented at 12 IEEE International Confer-
ence on Requirements Engineering, Monterey Bay,
CA, 2003.

A Top-Down Approach to
Modeling Global Behaviors of Web Services

Xiang Fu Tevfik Bultan Jianwen Su

Department of Computer Science
University of California at Santa Barbara�

fuxiang, bultan, su � @cs.ucsb.edu

Abstract

Due to the distributed nature of modern composite web
services, designers are facing new challenges in both re-
quirement specification as well as logic validation. This pa-
per proposes a top-down design/verification strategy that
helps construct composite web services to meet preset sys-
tem goals. The key to this approach is to specify desired
global behaviors with a “conversation protocol” and ver-
ify preset system goals on the global protocol. Then peer
implementations are synthesized from the conversation pro-
tocol. Three realizability conditions are provided to guar-
antee that the composition of synthesized peers will satisfy
the previously verified system goals.

1 Introduction

Web services are revolutionizing the way that many e-
commerce, consumer software, and telecommunication ap-
plications are provided, as indicated by the rapid growing
development in the industry standards (e.g., SOAP, UDDI,
WSDL, BPEL4WS) and technology (e.g., IBM’s Web ser-
vices Toolkit, Sun’s Open Net Environment and JiniTM
Network technology, Microsoft’s .Net and Novell’s One Net
initiatives, HP’s e-speak). Research communities are pro-
viding complimentary technologies from different perspec-
tives. Modeling at a more fundamental level both e-services
themselves, and frameworks for combining them have been
studied in [5, 8, 14, 15, 29, 16, 2, 1, 17]. New languages for
defining services were proposed in [3, 19]. Specialized type
systems were considered in [22]. Finally, tools were devel-
oped for annotating e-services and for planning, aiming at
combining web services automatically to achieve a speci-
fied functionality [25, 4, 27, 13]. In this paper, we discuss
the issues and techniques in the design, specification, and
verification of composite web services.

Since each component of a composite web service is au-

tonomous, no single peer has the control over the global
interaction process. Such a distributed nature makes it ex-
tremely hard to ensure the correctness of the composite web
service merely through the design of each peer individu-
ally. In this paper, we argue for a top-down approach from
a global perspective in specification and design of web ser-
vices. On one hand, we show that the bottom-up approach
of designing composite web services may result in more
complex global behaviors. On the other hand, we illus-
trate that the top-down approach may further enable existing
tools for verification of web services.

In this paper we extend a web service model introduced
in [10] and further studied in [20]. A composite web service
in this model consists of a set of peers that communicate via
asynchronous message passing. In particular, each peer is
modeled using a guarded finite state automaton, which ab-
stracts emerging web service choreography standards (e.g.
BPEL4WS [6], WSCI [30], BPML [7], ebXml [18]) to
characterize behaviors of complex long running services.
The asynchronous message passing is achieved by associ-
ating each peer with a queue for storing its input messages.
This FIFO queue based model resembles many industry ef-
forts like Java Message Service (JMS) [24] and Microsoft
Message Queuing Service (MSMQ) [26]. Unlike JMS and
MSMQ, there is a virtual “global watcher” in our model
that “records” the sequence of messages as they are sent by
the peers. A central focus on the global behavior of a web
service is to study the set of message sequences generated
by the web service, where temporal logics such as LTL [28]
can be extended to this framework to specify “good” behav-
iors. Our previous work in [10] and [20] concentrates on a
contentless message model and on how to design a “realiz-
able” global specification, from which (FSA) peers can be
synthesized to ensure specified global behaviors without a
global coordinator.

Specifically, we define a conversation protocol as a set of
permissible sequences of messages observed by the global
watcher. In [10, 20], we show that it is possible to realize a

1

Browser IT

U2M

AWSReq1,
Data1

U2M � IT: Data3

[Req3.url = “U2M”�
Data3’.url = Data3’.src = “U2M”

∧ Data3’.NoCache = true]

G (Data1 � Data1.url = Data1.src= “U2M”)

Req2,

Data2

Req3,Data3

Preset System Goal

B � IT: Req1

[true � Req1’.url = “U2M”]

IT � AWS: Req2

[true � Req2’ = Req1]

AWS � IT: Data2

[true � Data2’.url = Req2.url

∧ Data2’.src = “AWS”]

IT � U2M: Req3

[Data2.NoCache = true

� Req3’ = Req1]

IT � B: Data1

[true � Data1’ = Data3]

IT � B: Data1

[Data2.NoCache = false

� Data1’ = Data2]

Figure 1. Global conversation specification

conversation protocol using a set of finite state peers, if the
protocol satisfies three conditions. Our framework enables
a top-down verification strategy where

1. A conversation protocol is specified by a realizable
Büchi automaton [9],

2. The properties of the protocol are verified on the Büchi
automata specification, and

3. The peer implementations for the conversation proto-
col are synthesized from the Büchi automaton via pro-
jection.

In contrast, we also present a negative fact about the al-
ternative bottom-up approach of specifying the peers of a
composite web service in isolation. We show that the com-
position of finite state peers may result in a non- � -regular
behavior set globally, which makes it difficult to use model
checking techniques. In this paper, we generalize the frame-
work of [10, 20], which considers only message classes
(names), by allowing messages to have contents. We show
that this technique can be used to tackle the U2M problem
described in the workshop announcement.

This paper is organized as follows. Section 2 illustrates
the conversation protocols with the U2M example in the
workshop announcement. Section 3 defines a variation of
LTL logic to express system goals such as the “freshness”
requirement in U2M scenario. We apply formal model

checking techniques in Section 4. In Section 5, we syn-
thesize each peer based on the global conversation protocol
in Section 4. As a comparison, Section 6 shows a negative
result concerning the bottom up approach. Section 7 con-
cludes the paper.

2 Conversation Protocols

Consider the UpToTheMinuteNews.com (U2M) exam-
ple: A user accessing the pages of U2M using a web
Browser has to go through a Corporate IT (IT) web proxy
on the corporate firewall. A company called Acme Web
Speedup Services (AWS) provides a caching proxy web
service which is used by IT for accelerating web access.
This has the undesirable effect of displaying stale web pages
from U2M at the user’s Browser.

We argue that the system goal that Browser always re-
ceives fresh web pages from U2M is fundamentally a global
constraint. Although one could derive ad hoc solutions
that are local, it is more desirable to obtain a more general
global solution, depending on the properties of IT, AWS,
and U2M. In Figure 1, we present a conversation protocol
specifying the global web service, which consists of four
peers: Browser, IT, AWS, and U2M.

A conversation protocol is a guarded Büchi automaton
enhanced with message contents, and each transition of the
automaton consists of two parts:

2

1. a message transmitted from one peer to another, and

2. a transition guard that specifies the condition to take
the transition as well as assigns the contents of the
message being sent.

We use a conversation protocol to characterize the set
of conversations, i.e., all possible sequences of messages
communicated between peers. Then we check whether the
conversations meet some preset goals.

As shown in Figure 1, there are two types of messages in
the U2M scenario: Req and Data. Note that we use sub-
scripts to distinguish the same message class transmitted on
different channels, e.g. Req � and Req � . The two message
classes are declared in the following.

class Req{ class Data{
string url; string url;
... string src;

} bool NoCache;
string htmlPage;
...

}

Message class Req represents an http request, and its
attribute url contains the address (original source) of the
requested web page. Message class Data is the response,
where htmlPage is the web page content, src is the
actual address it is retrieved from (e.g., a cache server),
and attribute NoCache is set to true if the header of
htmlPage contains a “no-cache” tag.

In Figure 1, each transition guard is written in the form
of “condition � assignment”. Take as an example the tran-
sition labeled with “IT � U2M: Req � ”. The condition
“Data � .NoCache � true” means that only if the web
page returned from AWS contains a “no-cache” tag can the
transition take place. The assignment “Req � ’ � Req � ”
means that IT simply relays the request Req � . Note that
here primed variables refer to the contents of the current
message being sent, and non-primed variables denote the
corresponding fields of the latest transmitted message of
that message class.

Intuitively, the desired conversations specified by the
protocol in Figure 1 are as follows. In each round of a
conversation, the first message is a request (Req �) from
Browser to IT. IT relays this request to cache service AWS,
and waits for its response Data � . AWS guarantees that
Data � is a matching response for Req � , by ensuring that
their url are equal; and AWS also sets the actual source
src of the response to the value “AWS”. IT then exam-
ines the contents of Data � from AWS, if the page does
not contain a “no-cache” tag, IT just sends this cached page
to Browser; otherwise, it will fetch the page directly from
U2M. Note that U2M guarantees that each page it sends
contains the “no-cache” tag, and their url and src are
properly set.

3 Using LTL to State the System Goal

Now the immediate question is how to express the pre-
set system goal that Browser should always get non-cached
U2M news pages from IT. We extend the linear temporal
logic (LTL) [28] to fit into our message passing framework.
To facilitate the discussion, we clarify some of the technical
notions first. Given a conversation �	�
����
�� �
�����
������ , a
sequence of messages with contents, let ��� denote the � -th
message in � , and � � ������
������ �
���������
������ denote the � -
th suffix of � . An atomic proposition is either in the form
of � where � is a message class, or � � !#"%$%& where !'"($%& is a
predicate over the attributes of � .

Let)�* be the set of atomic propositions. A message +
is said to satisfy an atomic proposition ,.-/)0* , written as
+21 �3, , if

1. when , is a message class, the type of + is , , and

2. when , is in the form of � � !#"%$%& , then the type of + is
� and !#"%$%&546+879�;:<">=?$.

LTL properties are constructed from such atomic proposi-
tions, logical operators @A
CBA
ED , and LTL operators X, G, U,
F. Given LTL formulas F , and G , and an atomic proposition
,3-H)0* ,

�I1 �;, iff � � 1 �3, if ,3-8)�*
�I1 �JDKF iff �
L1 �MF
�I1 �JFN@OG iff �P1 �MF and �I1 �;G
�I1 �JFNBOG iff �P1 �MF or �P1 �3G
�I1 � X F iff � � 1 �JF
�I1 � G F iff for all �9QSRT
�� � 1 �MF
�I1 � F F iff there exists �UQVR'
�� � 1 �;F
�I1 �JF U G iff there exists WXQVR'
 s.t. ��YZ1 �;G

and, for all RN[\�U]^W�
�� � 1 �JF
Intuitively temporal operator X means “next”, G means

“globally”, F means “eventually”, and U means “until”. We
give some examples of LTL properties and their semantics
in the following.

1. GData _ every message appeared in the conversation
is of type Data.

2. G 4 Req.url � "U2M" ` FData.url � "U2M" 7a_
for each message Req with url equal to “U2M” even-
tually there is a matching response Data with url
equal to “U2M”.

Similarly, the “freshness” system goal of U2M scenario
can be expressed as

G 4 Data � ` Data � � url � Data � � src � "U2M" 7 (1)

That is, every U2M news page retrieved by IT should be a
non-cached fresh page.

3

AWSAWS
[true � Data2’.src = “AWS” ∧

Data2’.url = Req2.url ∧ Signed(Data2’.url,Data2’)]

? Req2� IT

! Data2� IT

U2MU2M

[true � Data3’.url = Data3’.src = “U2M”

∧ Data3’. NoCache = true]

? Req3� IT

! Data3 �IT

BrowserBrowser
? Data1 � IT

[true � Req1’.url = “U2M”]

? Req1� B

[true � Req2’ = Req1]

? Data2� AWS

[Data2.NoCache = true

� Req3’ = Req1]

! Data1 �B

[Data2.NoCache = false

� Data1’ = Data2]

? Data3� U2M

ITIT

! Req1� IT

Signed(“U2M”,Data) � Data.NoCache = true

[true �
Data1’ = Data3]

! Req3� U2M! Data1 � B

! Req2� AWS

Figure 2. Synthesized implementation of each peer

4 Model Checking the U2M Design

Given a Büchi specification of conversation protocol, it
is possible to transform it into the language of a model
checker, such as Spin [23], SMV [12], and Action Lan-
guage Verifier [11]. Note that, depending on the restric-
tions on data types and domains imposed by model check-
ers, the translation may require abstractions. After the trans-
lation, we can verify whether the proposed system goal is
satisfied by the conversation protocol using model check-
ing. For the example presented in Figure 1, model check-
ing can reveal that the LTL property (1) is not guaran-
teed by the initial design, and an error trace is marked
using dashed arrows in Figure 1. The problem with the
initial design is that AWS may forge a page whose at-
tribute NoCache is false, which is later relayed by IT to
the Browser. Thus we need to require that AWS is always
“honest”. To express this concept, we introduce a predi-
cate Signed(url: site, Data: page), which
means intuitively that page is digitally signed by the web
service at url site. Then the following formula can be in-
serted into the guard of the transition AWS � IT _ Data �
in Figure 1.

Signed(Data � � url’,Data � ’) � true (2)

Interestingly, even if AWS makes the “no-deception”
promise, it still cannot guarantee the freshness requirement.
For example, if at some point, U2M forgets to insert “no-
cache” tag into its web page, and somehow this page hap-

pens to be stored in AWS. When IT requests the page, AWS
can send this digitally signed “bad” page to IT which causes
the failure of freshness. Therefore if we strengthen the de-
sign of U2M with the following system assumption:

Signed("U2M", data)
` data.NoCache � true

(3)

we can safely reach the conclusion that the LTL property
(1) is satisfied. Model checking of the new composed sys-
tem with guard (2) and system assumption (3) requires the
ability to handle first order formulas.

5 Synthesis of Peers

Synthesis of peers is obtained by projecting the con-
versation protocol to each peer by removing non-relevant
transitions for each peer. Then we detach guards for those
transitions that are labeled with incoming messages, since a
peer cannot control the contents of its incoming messages.
The projection results in a guarded Büchi automaton for
each peer. As an example, in Figure 2, we present the syn-
thesized peers for the refined version (enhanced with Equa-
tions 2 and 3) of the U2M example in Figure 1.

It can be verified that, in an asynchronous message pass-
ing environment (where a FIFO queue is used to store in-
coming messages), the composition of finite state peers in
Figure 2 produces exactly the same conversation set as de-
scribed by the refined protocol of Figure 1. However, not
every conversation protocol has this “realizable” property.

4

Online Stock
Broker

Research
Department

Investor

RawData,

EndOfRdata

Data,

CompleteAck

Start

RawData

Online Stock Broker

RawData

EndOfRdata

Start

Ack
Data

RawData

RawData

Data
EndOfRdata

Complete

Start

Data

Data

Complete

Ack

Research Department Investor

Figure 3. Fresh Market Update Service

In [20], we presented three conditions that can ensure the
realizability of a conversation protocol. We briefly intro-
duce them below:

Lossless join property requires that a conversation proto-
col should be equivalent to the Cartesian product of its
projections to each peer.

Autonomous property requires that at any moment accord-
ing to the protocol, each peer can make a deterministic
decision on whether to wait, or to send, or to terminate.

Synchronous compatible property requires that there is no
“illegal” state in a conversation protocol where some
peer is ready to send a message that is not expected by
its receiver.

We argue in [20] that conversation protocols satisfying
these three realizability conditions can still capture a large
category of web service patterns. However results in [20]
cannot be directly applied to conversation protocols with
message contents. In [21] we show that by employing the
state space exploration technique, for a conversation proto-
col with finite domains, we can always construct a standard
guardless protocol which bisimulates the original protocol.
Running realizability check on its guardless bisimulation
usually suffices to justify a realizable guarded conversation
protocol with message contents.

6 Problems of Bottom-up Approach

One natural question concerning the bottom-up specifi-
cation of composite web services, i.e., to specify each single
peer first and then compose them, is whether we can always
construct such a global conversation specification recog-
nized by a finite state automaton? A positive answer would
imply that many verification techniques become immedi-
ately available. Unfortunately, we show that the answer is
negative, even when message contents and guards are not
considered. There are composite web services whose con-
versation set cannot be recognized by finite state automata.

Consider the scenario shown in Figure 3. There are three
participants, namely OSB (Online Stock Broker), RD (Re-
search Department), and Investor, involved in a “Fresh Mar-
ket Update” (FMU) service. We describe each service using
a Büchi automaton, and note that each service is equipped
with a FIFO queue to store incoming messages under the
asynchronous message passing environment like the Inter-
net.

The interaction pattern between the three peers is de-
scribed as follows. In each round of message exchange,
OSB first collects “Rawdata” (e.g. the market price and vol-
ume of each stock) from the market, and then sends them to
RD for further analysis. After all “Rawdata” are collected
and sent, OSB sends the message “EndofRdata” to mark
the end of “RawData”, and it sends the message “Start” to
inform Investor about the planned arrival of a sequence of
“Data”. RD processes each “Rawdata” and generates a cor-
responding polished report named “Data”. After all “Raw-
Data” have been processed, RD sends the message “Com-
plete” to Investor. Once informed by the “Complete” mes-
sage, Investor sends the message “Ack” to OSB so that OSB
can start another round of market information collection and
analysis.

The seemingly simple FMU scenario produces a non � -
regular language. To see why this is the case, consider its
intersection with an � -regular language1 (R b ESD b CA) c .
One can infer that the result is (R � ESD � CA) c . By an ar-
gument similar to pumping lemma, we can show that this
intersection cannot be recognized by any Büchi automaton,
and hence the set of conversations is not � -regular. In fact,
given a set of finite state peers, the problem of checking if
all conversations generated by them satisfy an LTL prop-
erty is undecidable due to the unbounded input queues as-
sociated with peers. This negative result is one of the mo-
tivations for our top-down approach to specification of web
services.

1We denote each message by its first letter. For example, R is the “Raw-
data”.

5

7 Discussions

While using the top-down approach enables us to take
advantage of model checking techniques, there are other
challenges. One possible drawback of the top-down ap-
proach may be that for the same design, the global speci-
fication can be much larger than its bottom-up counterpart.
Another drawback can be that the top-down approach does
not work well when we try to compose a service from exist-
ing services which do not allow alteration of their internal
implementations. In addition, the current version of conver-
sation protocol requires that the participants are fixed, i.e.,
we cannot dynamically determine the destination of a mes-
sage, e.g., “check the url of the Req from Browser, and
then send a second request to Req.url”. We are inves-
tigating the trade-off between the top-down and bottom-up
approaches to address these challenges.

Automatic verification and validation of composite web
services is a new area with interesting challenges — the
difficulties arise from both the open system aspect and the
hardness of verification problem itself. As we mentioned
earlier, to verify the design of U2M example in Figure 1, a
model checker with abilities to handle first order constraints
is required. We are also looking into the issue of enhanc-
ing model checkers with theorem provers to validate a non-
trivial composite web service design.

Acknowledgments

Bultan was supported in part by NSF grant CCR-
9970976 and NSF Career award CCR-9984822; Fu was par-
tially supported by NSF grant IIS-0101134 and NSF Career
award CCR-9984822; Su was also supported in part by NSF
grants IIS-0101134 and IIS-9817432.

References

[1] S. Abiteboul, V. Aguilera, S. Ailleret, B. Amann,
F. Arambarri, S. Cluet, G. Cobena, G. Corona,
G. Ferran, A. Galland, M. Hascoet, C-C. Kanne,
B. Koechlin, D. LeNiniven, A. Marian, L. Mignet,
G. Moerkotte, B. Nguyen, M. Preda, M-C. Rousset,
M. Sebag, J-P. Sirot, P. Veltri, D. Vodislav,
F. Watezand, and T. Westmann. A dynamic
warehouse for XML data of the Web. IEEE Data
Engineering Bulletin, 2001.

[2] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. In
Proc. ACM Symp. on Principles of Database Systems,
1998.

[3] Philippe Althern. The scala home page.
http://lamp.epfl.ch/scala/.

[4] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila,
D. Martin, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web service description for the semantic
web. In Proc. Intl. Semantic Web Conf. (ISWC), July
2002.

[5] B. Benatallah, B. Medjahed, A. Bouguettaya,
A. Elmagarmid, and J. Beard. Self-coordinated and
self-traced composite services with dynamic provider
selection. Technical report, University of New South
Wales, March 2001. (Available at
http://sky.fit.qut.edu.au/˜dumas/
selfserv.ps.gz).

[6] Business Process Execution Language for Web
Services (Version 1.0). http://www.ibm.com/
developerworks/library/ws-bpel, 2002.

[7] Business Process Modeling Language (BPML).
http://www.bpmi.org.

[8] R. Breite, P. Walden, and H. Vanharanta.
C-commerce virtuality - will it work in the Internet?
In Proc. of International Conf on Advances in
Infrastructure for Electronic Business, Science, and
Education on the Internet (SSGRR 2000), 2000.
(http://www.ssgrr.it/en/ssgrr2000/
proceedings.htm).

[9] J. R. Büchi. On a decision method in restricted
second order arithmetic. In Proceedings of the
International Congress on Logic, Methodology, and
Philosophy of Science, pages 1–11. Stanford
University Press, 1960.

[10] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to design and analysis
of e-service composition. In Proc. Int. World Wide
Web Conf. (WWW), May 2003.

[11] T. Bultan and T. Yavuz-Kahveci. Action language
verifier. In Proceedings of the 16th IEEE
International Conference on Automated Software
Engineering, pages 382–386, 2001.

[12] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. H. Hwang. Symbolic model checking: d>R ���
states and beyond. In Proceedings of the 5th Annual
IEEE Symposium on Logic in Computer Science,
pages 428–439, January 1990.

[13] C. Bussler, R. Hull, S. McIlraith, M.E. Orlowska,
B. Pernici, and J. Yang, editors. Proceedings of
Workshop on Web Services, E-Business, and the
Semantic Web (WES). Springer-Verlag Lecture Notes
in Computer Science, number 2512, Toronto, 2002.

6

[14] F. Casati, S. Sayal, and M. Shan. Developing
e-services for composing e-services. In Proceedings
of CAISE 2001, Interlaken, Switzerland, June 2001.

[15] F. Casati and M.-C. Shan. Dynamic and adaptive
composition of e-services. Information Systems,
26(3):143–163, 2001.

[16] V. Christophides, R. Hull, G. Karvounarakis,
A. Kumar, G. Tong, and M. Xiong. Beyond discrete
e-services: Composing session-oriented services in
telecommunications. In Proc. of Workshop on
Technologies for E-Services (TES), Rome, Italy,
September 2001.

[17] G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in xml documents. In Proc. Int. Conf. on
Data Engineering, 2002.

[18] Electronic Business using eXtensible Markup
Language. http://www.ebxml.org.

[19] D. Florescu, A. Grünhagen, and D. Kossmann. XL:
An XML programming language for web service
specification and composition. In Proc. Int. World
Wide Web Conf. (WWW), 2002.

[20] X. Fu, T. Bultan, and J. Su. Conversation protocols:
A formalism for specification and verification of
reactive electronic services. In Proc. Int. Conf. on
Implementation and Application of Automata (CIAA),
2003.

[21] X. Fu, T. Bultan, and J. Su. Model checking
conversation protocols: A top-down approach to
specification and verification of web services.
manuscript, 2003.

[22] S. Gay and M. Hole. Types for correct
communication in client-server systems. Technical
Report CSD-TR-00-07, Department of Computer
Science, Royal Holloway, University of London,
December 18 2000.

[23] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering,
23(5):279–295, May 1997.

[24] Java Message Service.
http://java.sun.com/products/jms/.

[25] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic
web services. In IEEE Intelligent Systems,
March/April 2001.

[26] MicroSoft Message Queuing Service.
http://www.microsoft.com/msmq/.

[27] S. Narayanan and S. McIlraith. Simulation,
verification and automated composition of web
services. In Proc. Int. World Wide Web Conf. (WWW),
2002.

[28] A. Pnueli. A temporal logic of concurrent programs.
Theoretical Computer Science, 13(1):45–60, 1981.

[29] Simple Object Access Protocol (SOAP) 1.1. W3C
Note 08, May 2000.
(http://www.w3.org/TR/SOAP/).

[30] Web Service Choreography Interface (WSCI) Version
1.0. http:
//www.w3.org/2003/01/wscwg-charter.

7

A Negotiation-based Framework for Requirements Engineering
in Multi-stakeholder Distributed Systems

Paul Grünbacher Fritz Stallinger Neil Maiden Xavier Franch

Johannes Kepler University
Systems Engineering & Automation

Linz
Austria

City University London
Center for HCI Design

London
UK

Universitat Politècnica
de Catalunya

Barcelona, Catalonia
Spain

{pg,fs}@sea.uni-linz.ac.at n.a.m.maiden@city.ac.uk franch@lsi.upc.es

1 Introduction

Negotiation methods, techniques, and tools for identi-
fying and reconciling expectations of success-critical
stakeholders in requirements elicitation are available for a
while now [2][3][16]. The win-win negotiation model for
example provides a simple yet effective approach to iden-
tify and capture stakeholder interests and reconcile con-
flicts. In win-win the personal goals of stakeholders are
expressed as win conditions; constraints, risks, and uncer-
tainties are modeled as issues; alternatives overcoming
these issues are captured as options. Win conditions not
raising any issues or options are turned into agreements
describing mutually satisfactory conditions [1].

While at the first glance one might expect that these
negotiation artifacts are centered solely on goals and con-
straints about the problem to be solved, our experience in
numerous real-world negotiations shows that for a nego-
tiation to be successful the solution space has to be con-
sidered equally. Consequently the win conditions, issues,
options, and agreements also deal with architectural con-
cerns. For example, stakeholders often state win condi-
tions about adopting a certain component or service. Is-
sues are often related to constraints arising from existing
components or IT infrastructure. Addressing both the
problem space and the solution space in requirements
negotiation is further required as partial solutions are of-
ten available (e.g., legacy assets, COTS).

Similar challenges resulting from the need to address
both the problem and the solution space are faced in the
context of engineering multi-stakeholder distributed sys-
tems (MSDS), in particular when these are deployed as
dynamic configurations of instantiated components and
connectors. According to [9] a multi-stakeholder distrib-
uted system (MSDS) “is a distributed system in which
subsets of the nodes are designed, owned, or operated by
distinct stakeholders.” These nodes are often designed or
operated in ignorance of one another or with different,
possibly conflicting goals. Popular examples for MSDS
are electronic mail, or networks of web services. In an
MSDS the requirements placed by diverse stakeholders

are often ephemeral and conflicting since details about the
elements of such a dynamic system are largely unknown
to single stakeholders and outside their sphere of control.

In this paper we explore the idea of how a negotiation-
based approach can help in tackling the challenges posed
to requirements engineering by open MSDS. We present a
framework to explain how different aspects of MSDS are
interrelated. In this context we will briefly discuss our
existing research on reconciling requirements and archi-
tectures [8] and on applying the i* actor-based modeling
approach for modeling architectures [6]. We will also
explore the framework in the context of the problems ex-
emplified in the workshop call.

2 Framework Overview

Figure 1 depicts the overview of a layered framework
for requirements engineering for MSDS. The purpose of
the framework is to bridge the stakeholder view and the
Open System view in requirements engineering for
MSDS. The framework supports the separation of con-
cerns in MSDS by proposing clearly defined layers re-
flecting the ‘translation’ of personal, time-dependent, of-
ten tacit stakeholder interests and needs into the runtime
elements of an Open System. It facilitates the clarification
of the roles and responsibilities involved at different lay-
ers of the translation process and the classification of
problems and mismatches in MSDS. It further helps to
examine the role of negotiation within the different layers
and emphasizes the need to integrate requirements and
architectures [15].

The framework distinguishes the following layers:

Stakeholder Needs: The personal, possibly ephemeral

needs of a dynamic set of stakeholders are assumed to be
the starting point for requirements engineering in MSDS.
Some of the stakeholders might be representing other
stakeholders. They might pursue a mutual goal but can
also act as individuals. Their needs and interests are
driven and influenced by their values and beliefs [11].

2

Requirements shall usually be reconciled with existing
software assets. On the one hand, when the ongoing
MSDS is replacing an existing system, some legacy assets
may be kept, either permanently or just in the early stages
of development, to assure that a particular service will be
offered without interruption. On the other hand, early ex-
ploration of the COTS marketplace reveals the strengths
and limitations of the available components that can be
used in the MSDS, making new requirements to appear
and also identifying which ones will be more important to
discriminate among components [12]. Flexibility of re-
quirements becomes crucial to avoid COTS selection fail-
ure or to require component modifications.

(d)
locate, compose, enact

Open System
(instantiated components, services, connectors)

(a)
articulate

(b)
elaborate

(c)
select, provide

Stakeholder Needs
(Interests, Values, Beliefs; personal, ephemeral, tacit, ...)

Negotiation Model
(Goals, Constraints, Conflicts, Uncertainties, Options)

Architecture Prescription
(requirements elaborated into architectural concepts)

Solution Architecture
(components, connectors, configuration)

S y n t h e s i s

A n a l y s i s M o n i t o r i n g ,
O b s e r v a t i o n

Figure 1: Framework for MSDS RE

Negotiation Model: Stakeholders articulate their indi-

vidual goals in some negotiation language, for instance
the win-win model [1]. A goal such as “ride to doctor by
B” mentioned in the example of the workshop call could
be expressed as a win condition. Win conditions represent
personal desires and possibly conflict with win conditions

of other stakeholders. In the case of a conflict an issue is
created. Issues make the risks, conflicts, and uncertainties
explicit thus providing an incentive for stakeholders to
negotiate to achieve a solution. Issues they are resolved
by proposing options that overcome the identified prob-
lems. Stakeholders can turn win conditions raising no
issues or options into agreements. The goal is to achieve
the win-win equilibrium requiring that all win conditions
are covered by agreements and there are no unresolved
issues.

Negotiation is particularly important when selecting
COTS components to be integrated in the MSDS [1]. In
addition to dilution of control, changes in the COTS mar-
ketplace makes requirements vulnerable; new releases
may include features that conflict with current require-
ments. Negotiation becomes then a continuous process.

Architecture Prescription: The elements of the nego-
tiation model (e.g., win conditions, issues, options) are
generally stated informally and can hardly be directly
mapped onto the architectural elements of the open sys-
tem. The Architecture Prescription [4] layer is therefore
introduced as an intermediate layer to represent the nego-
tiated requirements in terms of architectural con-
cepts [17]. In the context of component-based software
engineering this layer is expected to hold the specification
of the components and their relationships.

Deriving the elements of this intermediate layer can be
done intuitively but could also benefit from existing
methods for identifying architecturally relevant informa-
tion from stakeholder goals, like the CBSP (Component,
Bus, System, Property) approach that helps to extract ar-
chitecturally relevant information from requirements [8].
A win condition “ride to doctor by B” could for example
be refined into several desired components (‘mail client
a’, ‘mail client b’, ‘mail server a’, ‘mail server b’) and
properties (‘reply within two days’).

Another innovative approach is our application of the
i* [5] actor-based modeling approach for modeling soft-
ware architectures, not in terms of connectors and pipes,
but in terms of actor dependencies to achieve goals, sat-
isfy soft goals, use and consume resources, and undertake
tasks [6]. i* dependency types were used to model de-
pendencies between actors that fulfill roles in the architec-
ture and can be instantiated by different software compo-
nents with different characteristics. We identified some
architectural properties aimed at suggesting how well an
instantiation complies with different non-functional re-
quirements such as dependability and usability. These
properties were defined in terms of the dependencies that
appear in the model, both before and after the instantia-
tion, taking into account that a component may play more
than one role in the architecture and thus may hide some
dependencies among them. As a result, we have defined a
framework for comparing different types of architectures
for a system in terms of how they fulfill the dependencies

3

among them. Such modeling, which integrates require-
ments- and architecture-modeling based on the notion of
actor, has real potential for negotiation-based require-
ments processes. The key concept, that different compo-
nents can instantiate different actors to provide the conse-
quences of different architectural permutations in the re-
quirements domain, offers us a novel insight into architec-
ture prescription.

Solution Architecture: The elements defined in the

Architecture Prescription are generally just candidate
elements (or rather specifications of those) that have to be
mapped to the real world elements of the open sys-
tem [17][13]. For example, a mapping of candidate ele-
ment ‘mail client a’ to the real world component ‘Eudora’
is required. In the context of open MSDS it must be noted
that the implementation and evolution of these real world
components are often not under control of the stake-
holders associated with the top layer of the framework.

Open System: The Open System layer finally represents
the dynamic configuration of components, services, and
connectors with their properties at runtime which is sup-
posed to actually satisfy the needs of the stakeholders
represented in the top layer of the framework. In the con-
text of open MSDS in general and of component-based
software engineering or web Services in particular it must
again be highlighted that the deployment and operation of
these real world elements are typically not under control
of these stakeholders.

The presented framework is intended to support both
the synthesis (i.e., selection, composition) of a system
based on stakeholder needs as well as its analysis where
these activities are assumed to take place iteratively at
each framework level. These two generic activities tradi-
tionally take place during system design and implementa-
tion. Remarkably, analysis may be used to support return
of investment for future MSDS developments; for in-
stance, the development process itself may be tailored to
specific scenarios and improved through experiences, and
best practices may be identified, e.g. construction of qual-
ity models for representing the information about soft-
ware quality [7].

In the context of open MSDS we argue that a monitor-
ing and observation activity (i.e., feedback from the sys-
tem during operation back to the stakeholder) focusing on
the runtime behavior of the system and potential mis-
matches with stakeholder needs is necessary to cope with
the problems emerging from open MSDS. Effective moni-
toring mechanisms to address actual performance of ser-
vices and observing the open system to ensure satisfaction
of stakeholder goals and alert the stakeholder about the
violation of goals (e.g., by registering issues in the nego-
tiation model) is crucial to requirements engineering in an
open MSDS context and expected to change the role of

the before mentioned synthesis and analysis activities to
ongoing activities during the lifetime of the system.

It must further be noted that Figure 1 only captures the
view of one stakeholder or one group of stakeholders onto
the open system, while generally there are often multiple
such stakeholder groups simultaneously placing require-
ments on parts of the system. The number of these groups
and their requirements are generally unknown to the
group of stakeholders under consideration but represent
an inherent property of the open system particularly caus-
ing evolution and change in the two bottom layers of the
framework. It is this evolution and change together with
the time-dependency of user needs that pose the need for
above mentioned monitoring and observation mecha-
nisms.

3 Conclusions

In this paper we have discussed that ephemeral and
user-relative requirements can be captured in a negotia-
tion model and have shown that such a model can be fur-
ther translated into an open system based on best practice
in component-based software engineering [18][10] and
the integration of existing methods [6][8]. We have fur-
ther argued that the inherent properties of open MSDS
and the way stakeholders use them to fulfill their needs
require the integration of monitoring and observation ac-
tivities into the requirements engineering process for
MSDS taking over the role of traditional validation activi-
ties and leading to a changed, more dynamic role of ‘tra-
ditional’ synthesis and analysis activities. A dynamic
view on requirements and their translation into a system is
thus essential in MSDS. Traditional negotiation models
need extension and integration with monitoring and ob-
servation mechanisms to deal with the challenges of open
MSDS. The presented framework is intended to provide
the skeleton for further discussion and organization of this
challenging task.

4 References

[1] Alves C., Finkelstein A. Negotiating Requirements
for COTS-based Systems. REFSQ' 2002, Essen, Ger-
many, September 9-10 2002.
[2] Boehm, B., Bose, P., Horowitz, E., Lee, M.J. Soft-
ware Requirements Negotiation and Renegotiation Aids:
A Theory-W Based Spiral Approach, Proc. ICSE’95,
IEEE CS Press, Los Alamitos, Calif., 1995.
[3] Boehm, B., Grünbacher, P., Briggs, B. Developing
Groupware for Requirements Negotiation: Lessons
Learned, IEEE Software, pp. 46-55, May/June 2001.
[4] Brandozzi, M., Perry, D. E.. Transforming Goal-
Oriented Requirement Specifications into Architecture
Prescriptions. ICSE 2001 Workshop From Software
Requirements to Architectures, Toronto, May 2001.

4

[5] Chung L., Nixon B.A., Yu E. & Mylopoulos J.,
2000, Non-Functional Requirements in Software Engi-
neering, Kluwer.
[6] Franch X., Maiden N.A.M., 2003, Modeling Com-
ponent Dependencies to Inform their Selection, to appear
in Proceedings 2nd International Conference on COTS-
Based Software Systems, Lecture Notes on Computer
Science 2580, Springer.
[7] Franch X., Carvallo J.P., Using Quality Models in
Software Package Selection. IEEE Software, 20(1), 2003.
[8] Grünbacher P., Egyed A.F., Medvidovic N., Rec-
onciling Software Requirements and Architectures: The
CBSP Approach, Proceedings 5th IEEE International
Symposium on Requirements Engineering (RE '01), Au-
gust 27-31, 2001, Toronto, Canada.
[9] Hall, R.J. "Open modeling in multi-stakeholder
distributed systems: requirements engineering for the 21st
Century," in Proc. First Workshop on the State of the Art
in Automated Software Engineering, U.C. Irvine Institute
for Software Research, June 2002. URL
ftp://ftp.research.att.com/dist/hall/papers/openmodel/open
model-asewshp02.pdf
[10] Henderson-Sellers, B., Stallinger, F., Lefever, B.,
The OOSPICE Methodology Component: Creating a
CBD Process Standard. F. Barbier (ed.): Business Com-
ponent-Based Software Engineering, Kluwer Academic
Publishers, 2002, pp. 135-149.
[11] Krumbholz M. & Maiden N.A.M., 2001, ‘The Im-
plementation of ERP Packages in Different Organisa-

tional and National Cultures’, Information Systems Jour-
nal, 26(3), 185-204.
[12] Maiden N., Ncube C. Acquiring Requirements for
COTS Selection. IEEE Software 15(2), 1998.
[13] Medvidovic, N. Taylor, R. N. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp. 70-93 (January 2000).
[14] Nuseibeh, B., Weaving Together Requirements and
Architectures. IEEE Computer, 34(3):115-117, March
2001.
[15] Paech, B., Detroit, A.H., Kerkow, D., von Knethen,
A., Functional requirements, non-functional requirements,
and architecture should not be separated, REFSQ' 2002,
Essen, Germany, September 9-10 2002,
http://panoramix.univ-paris1.fr/CRINFO/REFSQ/02/.
[16] Robinson, W.N., Volkov, V. Supporting the Nego-
tiation Life Cycle. 95-102, Communications of the ACM,
Vol. 41, 1998.
[17] Shaw, M., Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.
[18] Stallinger, F., Henderson-Sellers, B., Torgers-
son, J., The OOSPICE Assessment Component: Custom-
izing Software Process Assessment to CBD. F. Barbier
(ed.): Business Component-Based Software Engineering,
Kluwer Academic Publishers, 2002, pp. 119-134.

Semantic Interoperability by Aligning Ontologies*

Karin Koogan Breitman
Pontifícia Universidade Católica do Rio de Janeiro

 karin@inf.puc-rio.br

Researchers from industry and academia are now exploring the possibility of creating a
"Semantic Web," in which meaning is made explicit, allowing machines to process and integrate
Web resources intelligently. This technology will allow interoperability among development of
intelligent internet agents in large scale, facilitating communication between a multitude of
heterogeneous web-accessible devices. Unfortunately the majority of the information available is
in a format understandable to humans alone, thus creating the need to provide an adequate
amount of semantics to allow for some of the information filtering to be done by machines. The
emergent technology to address this problem is the codification of the information using
ontologies, i.e., conceptual models that embody shared conceptualizations of a given domain
[Gruber93].

We believe the task of ontology building belongs to requirements engineers - after all we are
trained in conceptual modeling techniques, and that is what building ontologies is all about. We
have developed a process in which we use a special lexicon as a starting point to building
ontologies [Leite93, Breitman03]. The idea of using a glossary of terms in the early development
of ontologies is not new, and it is supported by some ontology development methodologies
[Ushold96, Fernandez-Lopez97, Gruninger95]. The basic idea is to start with an informal
definition and use a stepwise refinement process until the desirable level of formality is achieved.
In our case the output of the process is a machine processable ontology written in DAML + OIL.

We are currently developing automated support to our process using the open source C&L tool,
available at http://sl.les.inf.puc-rio.br/cel/aplicacao/. The tool was initially proposed as a lexicon
and scenario edition and management environment. The ontology generation plug-in is currently
under way and is scheduled to be made public in August, 2003.

Central to our research is Tim Berner's Lee [Berners-Lee01] belief that in the near future every
site and web application will have to make available its ontology and Jim Hendler's
notion that instead of having a few carefully crafted (by AI experts, such as the WordNet
[Fellbaum98] and CYC efforts [Guha90]) ontologies, there will be a "great number of small
ontological components consisting largely of pointers to each other" [Hendler01]. The result will
be a great variety of lightweight ontologies both built and maintained by independent parties (not
necessarily with expertise in ontology development).

Our recent experiences with ontologies have demonstrated that ontology development is not
particularly challenging compared to building any other conceptual model used in our RE
practice such as KAOS [Bertrand98] and i* [Yu97]. The constructs are not extremely complex,
neither is the level of formality required. Any person familiar with basic concepts of first order
logic and the notions of subsumption and aggregation, should not experience major difficulties in
the process. In terms of implementation languages, although today's scenario may seem confused,

* This research was supported in part by CNPq under contract ESSMA- 552068/2002-0, and by CAPES.

mailto:karin@inf.puc-rio.br

there seems be a convergence to DAML+Oil (or its equivalent OWL DL sublanguage) and a
consensus that the language while being expressive enough, still allows for adequate automatic
support, as put by the W3 consortium " maximum expressiveness while retaining computational
completeness (all conclusions are guaranteed to be computed) and decidability (all computations
will finish in finite time). " In addition there are editors, such as OilEd, that provide automated
support to the edition and maintainance of ontologies. Structural consisitency can be
automatically verified with the FaCT tool. Both tools are available at http://oiled.man.ac.uk/.

The real bottleneck is, in our opinion, to secure what is commonly referred to as "semantic
interoperability". That means that open system applications with different ontologies will have to
undergo a negotiation process. This operation is named ontology alignment and it aims at an
intermediate representation that can be shared by both applications. While aligning ontologies
one can merge the two ontologies into one, integrate (negotiate and decide on a representation
that uses concepts from both ontologies) or simply translate. For this purpose no tools, to the best
of our knowledge, are available other than translation mechanisms between specific ontologies,
e.g., the iCal to DAML agenda ontologies [translator].

The initial requirement to align different ontologies is being able to list differences and
inconsistencies between both ontologies. We are currently specifying a mechanism to detect such
differences between ontologies. In particular we are aiming at identifying :

Concepts using different names (labels) for the same meaning

• Differences in the number of restrictions (differentiate among cases where there is
intersection of restrictions)

• Differences in the properties used in the restriction - related concepts are similar
• Differences in the related concepts used in the restriction - properties are similar

Concepts with the same name (label) with different meaning

• Identify differences in restrictions
• Identify differences in the properties used

Properties with different name (label) and same meaning

• Verify if all concepts the properties relate are equivalent in both ontologies

Properties with the same name (label) and different meaning

• Verify if the concepts that use the property are consistent in both ontologies

Early attempts were made comparing the ontologies in their native representation language,
DAML+OIL. Some problems arose from the expressiveness (or lack) of DAML+Oil itself.
Neither concepts nor properties accept synonyms, therefore the concept dog from Ontology1 and
dogs from Ontology2 would be considered different. The use of synonyms could alone avoid
mismatches caused by plural/singular (dog/dogs), male/female (salesman, saleswoman) and
verbal time (pays, pay).

We are currently experimenting with the intermediate version we produce while applying our
process to the lexicon. In this representation we have a database that contains information present
in the lexicon and the ontological structure that is built as a result of the application of the
process. This repository contains more information that is currently provided by DAML+OIL,
synonyms and structured descriptions of the terms of the lexicon (denotation and connotation). At

this point, we have not experimented enough to make any suggestions to a possible need of
additional information to the DAML+OIL notation. We have noticed, however, that the use of
synonyms decreased the number of items in the list of discrepancies. Of course this attempt can
only be applied to ontologies to which we have a lexicon available, more so, a lexicon modeled
using the LEL notation [Leite93]. In parallel, we are investigating the possibility of a mechanism
that translates the ontologies to a lexical representation. One of the reasons is to facilitate
validation with users. We have noticed that the visualization of ontologies is somewhat difficult
to users1. No tool, to the best of our knowledge, is able to display a broad overview of an
ontology but, instead, most tools provide a fish eye view, concept per concept (as it is the case
with OilEd or Protégé). Of course that in the conversion process, some information will be lost,
for lexicons are flat, as opposed to the hierarchical structure of ontologies. There is also no clear
way to represent an axiom in the lexicon.

Despite our efforts our perception is, even at this early moment, that the future is not in trying to
obtain total alignment in ontologies. The effort involved is too great and may not be justifiable in
the context in which the ontologies will operate. Among the problems are the duration of
interaction between two applications - do we have enough time to align the ontologies? Are the
requirements so ephemeral in nature that it is cost effective to allow the interaction even in the
presence of inconsistency? How much mismatch/inconsistency is allowable? Are levels of
similarity an acceptable measure? Is it possible to analyze the impact and the risks involved in
tolerating inconsistency between ontological representations? Can we apply classical
inconsistency handling approaches to ontologies, such as the one proposed in [Nuseibeh00]?

We are convinced that the solutions to the ontology integration problem are intertwined with our
abilities to tolerate and live with inconsistencies, that as put by Easterbrook and Chechnik are "a
fact of live" [Easterbrook01]. |It is not an easy shift however, for we have been trained to strive
for completeness, consistency and to avoid conflict.

References

[Berners-Lee01] – Berners-Lee, T.; Lassila, O. Hendler, J. – The Semantic Web – Scientific American –
May 2001 - http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html
[Bertrand98] - P. Bertrand, R. Darimont, E. Delor, P. Massonet, A. van Lamsweerde
GRAIL/KAOS: an environment for goal drivent requirements engineering - Proceedings ICSE'98 - 20th
International Conference on Software Engineering, IEEE-ACM, Kyoto, April 1998.
[Easterbrook00] - Easterbrook, S.; Chechik, M. - 2nd International Workshop on Living with
Inconsistency - Summary, - IEEE - 2001.
[Fellbaum98] - Fellbaum, C.; ed - WordNet: An electronic Lexical Database - Cambridge, MA - MIT
Press - 1998.
[Fernandez-Lopez97]- M. Fernandez, A. Gomez-Perez, and N. Juristo. METHONTOLOGY: From
Ontological Arts Towards Ontological Engineering. In Proceedings of the AAAI97 Spring Symposium
Series on Ontological Engineering, Stanford, USA, pages 33--40, March 1997.
[Gruber93] – Gruber, T.R. – A translation approach to portable ontology specifications – Knowledge
Acquisition – 5: 199-220

1 Which, perhaps, is intentional, as ontologies for the semantic web and, in particular DAML+OIL, were
created to provide MACHINE interoperability as opposed to facilitate human understanding.

http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html

[Gruninger95] – Gruninger, M.; Fox, M. – Methodology for the Design and Evaluation of Ontologies:
Proceedings of the Workshop on basic Ontological Issues in Knowledge Sharing – IJCAI-95, Montreal,
Canada, 1995.
[Guha90] - Guha, R. V., D. B. Lenat, K. Pittman, D. Pratt, and M. Shepherd. "Cyc: A Midterm Report."
Communications of the ACM Vol.33 , No. 8 - August, 1990.
[Hendler01] - Hendler, J. – Agents and the Semantic Web – IEEE Intelligent Systems – March/April -
2001. pp.30-37
[Lamsweerde]
[Nuseibeh01] - Nuseibeh, B.; Easterbrook, S.; Russo, A. - Leverage Inconsistency in Software
Development - Computer - Vol 33 No. 4 - April 2000 - pp. 24-29
[translator] - http://www.daml.ri.cmu.edu/site/projects/DMA2ICal/index.html
[Ushold96] - Ushold, M.; Gruninger, M. – Ontologies: Principles, Methods and Applications. Knowledge
Engineering Review, Vol. 11 No. 2 – 1996. pp. 93-136
[Yu97] - Yu, E. - Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering -
Proceedings of the Third International Symposium on Requirements Engineering - RE97 - IEEE Computer
Society Press - p1997 - pp.226-235

Classifying Requirement Conflicts
for Multi-Stakeholder Distributed Systems

Frank Marschall, Maurice Schoenmakers

Technische Universität München
Lehrstuhl Prof. Dr. Manfred Broy
Software & Systems Engineering
(marschal|schoenma)@in.tum.de

Abstract

Multi stakeholder distributed systems become more
and more widespread and raise a lot of integration
problems. One problem is that conflicts arise often only
at runtime if a single system component is changed. The
whole composition of systems then doesn’t behave like at
least one of the stakeholders expects. The following
paper provides a classification of the potential conflicts
and gives some guidelines how to handle and overcome
these conflicts using this classification. The classification
is based on the fact that some parts of a system
implementation can be linked to explicit stated
stakeholder requirements, while others are just
implementation specific parts that are not related to any
explicitly stated requirement. Therefore a prerequisite
for a successful conflict resolution is the traceability
between requirements of a requirements model and the
affected parts of an implementation model.

1. Introduction

Resolving requirement conflicts and combining
reusable software components are often tasks performed
once during the system development. The system is
deployed in a controlled environment, and after
deployment, each requirement change enforces new
requirement engineering and system integration cycles.

Today systems are more and more composed of
distributed services which are under control of loosely
coupled stakeholders with possibly conflicting interests.
The services are deployed independently and combined at
runtime. Examples for such scenarios are web service
architectures for B2B e-commerce systems with a large
set of business partners or enterprise application
integration systems which compromise a large set of
single applications of different departments.

The result is that the requirements are likely not to be
propagated throughout all participating parties, thus

conflicts may not appear although they exist. There is no
central explicitly coordinated consistent conceptual
model of the system at all times. Instead each participant
has its own conceptual model. System changes are
performed without notice of other stakeholders, which
results in unexpected misbehavior.

In this paper we propose a model for the classification
of requirement conflicts and show how to reason about
conflicts in terms of a conceptual model by using a little
example.

2. Example

The following example stems from [7] and describes
a web service scenario. There are four stakeholders: the
user who uses the UpToTheMinuteNews news service,
Corporate IT that provides internet access for the user
through a proxy, and the AWS company that provides a
caching proxy that is used by Corporate IT.

From the moment when Corporate IT starts using the
AWS proxy, the user experiences that the news form
UpToTheMinuteNews isn’t up to date any more.
Obviously this does not meet the user’s requirements
while Corporate IT and AWS might not even have
reasoned about this topic.

3. Requirements

In our model we suppose that stakeholders have
requirements which are basically statements about the
systems in their scope. These requirements form a
requirements model of the desired system. This model is
refined into an implementation model that is enriched by
design decisions which are not considered in the
conceptual system model. When the models are formal an
approach like considered by the Model Driven
Architecture (MDA) approach [5] may be chosen to
derive platform specific models from more abstract
platform independent models and computational
independent models. Ideally the requirements can be

traced so that one knows from which parts of the
requirements model a certain part of the implementation
model stems. Since the implementation model is a
refinement of the requirements model it has in general
properties that were never explicitly required and thus
fulfil never stated “requirements”.

Thus the implementation model can be partitioned into
two parts: one contains the model elements that can be
seen as a direct refinement of the conceptual model. The
other part contains the elements that were not explicitly
specified in the conceptual model. This is typical since
requirement models are usually underspecified, i.e. they
often leave (intentionally or not) room for design
decisions.

Figure 1 depicts these facts. The implementation

model comprises a part R that was derived from the
requirements model and a part I that cannot be mapped to
any elements of the requirements model but is necessary
for the system to work.

When combining two systems, there exist overlapping
parts that both systems have to deal with in the
requirements and in the implementation model. For
example the requirements models of both systems have to
consider the common goals of their collaboration,
exchanged data types, messaging mechanisms etc. Often
the latter arise only in the implementation model because
they didn’t seem to be relevant to the stakeholders and
thus the decision was left to the developers.

Figure 2 depicts the conflicts that may arise if two
participants integrate their systems: the following
conflicts can occur simultaneously. There may occur a
conflict between parts of the systems that

• reflect the requirements of both participants:
RR conflicts

• where not considered by the requirements of any
participant: II conflicts

• where only considered by the requirements of just one
of the participants: IR/RI conflicts

Requirement conflicts (RR) are fundamental conflicts
which must be resolved before the two parties can form a
system satisfying to both parties. Normally one tries to
prevent these conflicts by exchanging some kind of
requirements model description concerning the
overlapping parts. For example IT and AWS sign a
contract in advance, which contains the rules of operation
between these parties. Identifying such a conflict at
runtime must result in an adaptation of the requirements
at one or both sides or more likely results in dissolving
the contract between the two parties.

Conflicts concerning parts of the implementations that
are not considered in the requirements model of at least
one stake holder, the II and RI/IR conflicts, can be
overcome by adapting the implementation without
changing the original requirements. However such a
conflict indicates that the requirements specification is
incomplete and should be completed. Therefore
mechanisms are needed that identify the context of the
conflicting parts of the implementation model and
identify the appropriate area of the requirements part
where information is missing. For example if the
requirements model doesn’t state anything about the
message exchange between two components and during
operation it turns out that this message exchange fails
such a mechanism could lead a stakeholder to the
involved components that failed to communicate. Thus
the stakeholder would be confronted with the problem in
terms of the requirements model, not with a technical
error. He can make a decision at the high level
requirements model and refer it to the developers. These
refine the new requirement into a consistent solution,
presumed that the requirements model is not still
underspecified for the collaboration of the components.

In case of a legal contract one party may enforce the
other party to adapt to an implementation. However, this
is not always possible or feasible because each partner
controls which implementation is deployed, and the
implementation can be chosen at the other party because
of other internal requirements. Conflicts in these classes
occur often by not having explicitly modelled the
requirements on one or both sides.

Figure 2: Conflicts between two systems can
occur in implementation areas RR, II, IR/RI.

R1

I1

R2

I2
RR

II
I R

Refinement

R Implementation
Model

Tracing

Requirements
Model

I

Figure 1. A single system. Assumption: the
implementation satisfies the requirements

Some RI/IR conflicts between requirements of one
party and implementations of the other party can be very
problematic and should generally be avoided. One party
has a requirement accidentally fulfilled by the
implementation of the other party while it was not
explicitly guaranteed by the conceptual model or
contract. The other party can change the implementation
at any time which may cause the requirement to become
unfulfilled. Therefore such requirements should be
explicitly stated and exchanged in advance to lift the
fulfilled feature up to the RR class.

In the previously described example, where the user
experiences that the news form UpToTheMinuteNews is
not up to date any more, because Corporate IT started to
use the AWS proxy, there are seven possible reasons
given in [7] for the conflict. We now look at these
reasons from the classification perspective:

1. AWS's contract has fine print explaining that it does
not guarantee freshness of its pages. In this case the
requirements model of the user / Corporate IT is
underspecified, thus this is an IR conflict. AWS has
specified a requirement the user / Corporate IT didn’ t
consider. However adding the new requirement that
the information provided by the AWS proxy must be
fresh enough would yield to a RR conflict in the
requirements specifications that must be eliminated
by the involved stakeholders.

2. AWS's contract is purposely inaccurate or unclear at
this point. Here two cases can occur: The AWS
implementation is caching and delaying requests by
purpose then there is an AWS internal requirement
hidden for the IT department, which is not stated in
the external contract. In this case there is an IR
conflict as the IT department did not specify its
requirements sufficiently. If the AWS implementation
causes the conflict just because the developers choose
the implementation accidental, then both parties did
not specify the requirements thus an II conflict
occurred.

3. AWS's implementation is buggy, old, or incorrectly
configured so that it does not honour "no-cache"
header information. In this case the refinement of the
AWS requirements model to its implementation
model failed. Such conflicts must be avoided by
efficient testing of the implementation model against
its requirements model. The other party can in this
case insist on the adaptation of the implementation if
possible.

4. U2M's implementation is buggy or incorrectly
configured, so that it does not produce "no-cache"
headers with its pages. This is the same case as (3).

5. IT failed to read or correctly interpret the AWS
contract. In this case the conflict detection between
requirements models failed. The RR conflict was not
detected. With more formal requirements
specifications (e.g. B2B Specifications like ebXML
[3]) some of these conflicts can be avoided. However
there may still be cases when these specification
languages are not expressive enough to formalize all
desired requirements.

6. IT failed to realize that some of its users required
freshness. In this case the requirements model of IT
or that of the users is underspecified (if it doesn’ t
state anything about the freshness of information) or
it is simply wrong and needs to be reworked.

7. The user failed to communicate to IT that it needed
access to a time critical web site, even though IT
surveyed its users on this point at some time
previously. Again the requirements model of IT is
wrong and needs to be reworked. Both IT and the user
didn’ t specify parts of their overlapping requirement
model in an explicit contract.

4. Position

In our opinion the following criteria must be fulfilled to
correctly handle occurring conflicts:

• A) Differentiate between required (R) and not
required (I) implementation parts at both parties.
One must be able to differentiate between the system
properties which originate from real requirements and
those properties stemming from implementation
refinement steps chosen by developers for technical
reasons unrelated to any stated requirements.

• B) Tracing back from implementation components to
the requirement model. Because conflicts arise at the
implementation level tracing a requirement from the
implementation level up to the original requirement
level becomes an essential feature. The affected
implementation parts of the conflict at
implementation level must be related to the
requirements in the original requirement model. This
allows an expression of the conflict at the language
level used by the stakeholders. This in turn allows an
effective requirement conflict resolving discussion.

We propose that each partner formulates requirements
explicitly and forms a conceptual model to relate
elements of the conceptual model to system components
as well as to ensure traceability.

Traceability is very important for open distributed
multi stakeholder systems. Exchanging model
information may be used to prevent RR conflicts but
cannot prevent II, RI/RI conflicts. Furthermore as
requirements are often not made explicit and
requirements and implementations change over time
requirement conflicts may arise only at runtime in form
of implementation conflicts. Only traceability between
conceptual model elements and system components of
the implementation can then be used to identify to which
classes RR, RI, IR, or II the conflict really belongs. To
which class a conflict belongs in turn shows how to
resolve it and this may reveal the legal and financial
consequences.

A conflict is classified as follows: If the conflicting
system component is related to a requirement at each
party, then the conflict may belong in the RR class, if
these requirements are conflicting. In this case there is a
fundamental problem. If the conflicting system
component is related to a requirement at just one party,
the conflict belongs to the RI or IR class and without any
related requirements at either side it belongs to the II
class. In any case a conflict belonging to the RI/IR or II
may also point to an incomplete conceptual model. The
parties then can at least pinpoint the problematic areas
and discuss resolution possibilities.

In the research project KOGITO [6] the authors
address some of the topics mentioned here. The scope of
KOGITO is requirement engineering for multi
stakeholder B2B internet systems. Typical problems are
the integration of different existing open distributed
systems. To ensure the above mentioned tracing
capabilities KOGITO has defined a multilevel conceptual
model. Requirements in documents individually reference
subsets of the conceptual model elements. The levels of
the conceptual model range from coarse grain business
process areas to fine grained message exchange. During
system development the refinement steps result in linking
the different levels of the conceptual model. The steps
become traceable and fine grained system components
become related to single requirements at the conceptual
level. This ensures the traceability and the capability to
differentiate between those implementation parts directly
linked to requirements and those not linked to
requirements. Furthermore the integration of formalized
ebXML [3] business process descriptions at a middle
level allow to check and ensure consistent overlapping
requirements and helps avoiding RR conflicts by reusing
predefined business processes as some kind of contracts.

Until now we discussed cases where both parties were
able to get in contact to each other directly, can sign
contracts and resolve conflicts in a direct discussion with
stakeholders.

This is only possible for open distributed systems with
a limited number of participants and a rather stable
requirement model, where stakeholders may have a
contractual relationship. For fine grained fast changing
systems with a high number of participants tracing
conflicts back to requirements and resolving conflicts in
discussions is not feasible. Especially as the stakeholders
may not have any direct contractual relationship.
Examples for such systems are large distributed web
service [2] or Jini [9] based systems. To trace back
conflicts or to generate conflict resolutions automatically
would require a high degree of formalization [8], [4]. For
such systems it is probably more feasible to avoid
conflicts and to check for RR conflicts automatically up
to a certain level instead of resolving them. Thus
stakeholders will have to agree on standards or models
for which they claim to provide a correct implementation.

While the proposed principles and conflict classes do
not change, the way conflicts and requirements and are
identified and are resolved would change: As RR conflict
checks must be performed frequently and automatically.
We propose that implementations are accompanied by an
explicit formulated abstract conceptual model which
expresses the requirements and defines the collaboration
between the participating systems (for example as an
ebXML business process description [1] with an
appropriate role profile). Each implementation would
thus be accompanied by a simple formalized version of a
requirements model of Figure 1. Before components
would be combined the models then could be checked
automatically for RR conflicts, this roughly would reflect
the case of signing a contract. If no conflicts arise the
implementations could be combined. Conflicts of any of
the classes II, RI, RI and RR could still occur. However
the change of conflicts in the RI and IR classes would be
lowered as the requirements would be quite explicitly
defined and modeled and RR conflicts could only stem
from requirements which cannot be formulated in the
formalized requirement description model.

The problem of inconsistencies in the conceptual
model respectively between the contract and the
implementation is not addressed by this proposal. Such
problems occur because the implementation doesn’ t
fulfill the requirements either by purpose (deception by a
stakeholder) or by failure would still arise. While it could
be guaranteed that such problems would not occur by
proving each refinement step in a formal way, it would
probably more feasible to combine the requirement
models and their implementations with certificates or
ratings. A trust relation could be established in the
following way: A third party checks if the requirements
model of a stakeholder is fulfilled by the stakeholders
implementation. If both, the stakeholder using the system
and the stakeholder providing the system, trust this third

party, then they can be confident to a certain degree that
conflicts will not arise because of deception or failure.

5. Conclusion

The proposed conflict classification allows to reason
about occurring conflicts, for example if a conflict is a
simple technical implementation issue or a fundamental
requirement conflict. It therefore provides valuable hints
how to solve these conflicts and to consider the conflict
implications.

To classify conflicts the basic capability identified was
traceability of refinement during development, how
requirements are related to system components of the
implementation. This ensures the capability to trace a
conflict back from the implementation to the requirement
level. This in turn is crucial to identify if a fundamental
requirement conflict occurred or merely a technical
failure.

The best way to handle conflicts is to avoid them
upfront by formulating contracts on a conceptual
requirement level. We gave an outlook how more or less
formalized conceptual models like ebXML process
descriptions could help avoiding requirement conflicts

References

[1] ebXML Business Process Specification Schema Version 1.01
6, http://www.ebxml.org/specs/ebBPSS.pdf, 11 May 2001

[2] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2):86{93, March 2002

[3] Electronic Business using eXtensible Markup Language,
UN/CEFACT and OASIS, http://www.ebxml.org

[4] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B.
Nuseibeh, "Inconsistency Handling in Multi-perspective
Specifications", IEEE TSE, 20(8): 569-578, 1994

[5] MDA Guide Version 1.0, Joaquin Miller and Jishnu Mukerji,
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-
0.pdf, Mai 2003 OMG

[6] Towards Model-Based Requirements Engineering for Web-
Enabled B2B Applications, Frank Marschall, Maurice
Schoenmakers, Proceedings 10th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems
(ECBS'03), p. 312, April 07 - 10, 2003

[7] Workshop on Requirements Engineering and Open Systems
(REOS), Home Page, http://www.cs.uoregon.edu/~fickas/
REOS/, 2003

[8] Robinson, W.N., Volkov, S., Conflict-Oriented Requirements
Restructuring, GSU CIS Working Paper 99-5, Georgia State
University, Atlanta, GA, April 9, 1999

[9] Jim Waldo. The Jini Architecture for Network-centric
Computing. Communications of the ACM, pages 76--82, July
1999

	uoregon.edu
	http://www.cs.uoregon.edu/~fickas/REOS/

