1 Introduction

The Problem

Approximately 53 million individuals have disabilities in the U.S., according to the Census Bureau. More than one million adults in the U.S. are diagnosed each year with cognitive impairments (CI) due to neurological disease or trauma (e.g., traumatic brain injury, stroke, tumor, epilepsy, infectious disease). Currently, there are between 13.3 to 16.1 million Americans living with chronic brain disorders and associated CI[1]. In the coming years, incidence rates are expected to rise due to the development of dementias associated with a rapidly aging population and increased survival rates associated with improved medical management of neurological impairments[2]. In addition, approximately 4 million Americans have developmental disabilities that impact cognitive functioning [3]. One result of this trend is social isolation for this large and growing segment of our society. CI individuals are often unable to travel without assistance. Except for a small number of assisted trips (e.g., to a grocery store), such individuals are unable to get out of their homes to participate in community or social activities.

Current Assistive-Technology is Not Part of the Solution

Assistive Technology (AT) should offer great promise for supporting people with CI in achieving independence and relieving social isolation. However, studies have found that AT systems are abandoned by CI users at shockingly high rates

[4; 5; 6] ADDIN EN.CITE . One of the major causes of abandonment is an eventual misalignment between: (1) personal user goals and abilities, and (2) the functionality delivered by the system. Where system designers can expect most unimpaired users to adapt their own behavior to exploit system capabilities, loss of cognitive abilities often make this infeasible for CI users. Rather, AT systems for CI users must be personalized to the distinct goals and capabilities of the user and must continue to adapt as those capabilities change over time. Research on effective technology design that facilitates long-term adoption by individuals with acquired and developmental CI is lacking. The vast majority of AT research and development activities have focused on people with physical or sensory deficits
 ADDIN EN.CITE
[7; 8; 9; 10]
. The literature that does exist lacks systematic examination of issues of long-term adoption. If individuals with CI are to participate fully in society, technology development must take into account the complex factors related to the design of assistive technology for long-term use.
A More Promising Approach

Our group has been studying the problems the CI population has with current assistive technology. We have found that the issue of device abandonment can be addressed by focusing on personalizing assistive technology to fit an individual user. Coupled with this is a commitment to monitor a device for its continued fit over months or years. We have developed a model for thinking about the problem, which we call Personal and Contextual Requirements Engineering (PC-RE) [RE05, REJ]. We have been able to use the model to (a) assess an individual in terms of their abilities, (b) acquire the personal goals of an individual, (c) build a personalized system that complements their abilities and aligns with their goals, and (d) monitor for future discrepancies that call for adaptation. We have evaluated this approach over a set of people with cognitive impairments [REJ].
But a New Problem Has Emerged

To date, we have carried out the assess-personalize-build-monitor-adapt process manually. We have had enough success with it to now begin to contemplate scale issues. In particular, the CI population falls in the lower tier of the Socio-Economic Scale (SES). In general, they do not have the means to purchase expensive systems, nor buy new systems on a frequent basis to meet their changing needs. Up until this point, members of our research team have been “free” labor in terms of implementing the process: the CI participants in our studies have not had to pay for the technology we have delivered. We propose to step back at this point and study the issues of taking our promising lab results and making them feasible with the economic realities of our target user group. We note that our work has had a strong clinical focus [11]. Keeping a clinical perspective, there are three aspects of the modern medical and clinical world that we see as relevant: (1) Generic drugs provide an open specification and free-market opportunity to “build” medications. (2) Pharmacies provide an easy-to-use interface between “requirements/specifications” and delivery. (3) Emerging work in personalized medicine is changing medicine fundamentally by moving from a one-size-fits-all down to an individual view. In particular, detailed information about a patient's genotype or level of gene expression and a patient's clinical data can be used to select a medication/therapy that is particularly suited to that patient. In this proposal, we would like to follow these three lines of reasoning: build a Software Pharmacy that uses the equivalent of generic drugs to deliver personalized treatment in the form of assistive devices. From a selfish perspective, we believe that a Software Pharmacy has a chance to deliver the positive results from our lab into the hands of those who can use it, i.e., it tackles scale issues and technology dissemination. From a broader perspective, it is a start to address the rather sad state of affairs in the assistive technology field today: researchers and companies that work with the CI population produce either non-integrative or proprietary systems that result in a plethora of small efforts that never come together. Personalization is handled by lumping everyone into a disease category, as if everyone with a Development Disability (DD) or Traumatic Brain Injury (TBI) has the same goals and needs. The Software Pharmacy focuses on showing a way to work personalized treatment into assistive devices.
The Science of Design

We propose research to develop the design theory, methods, and tools needed to support a Software Pharmacy – i.e., a development environment that can provide cost-effective, personalized, self-monitoring, and adaptive AT systems. Our theory of development focuses on the science of supporting continuous personalized software design. We assert the need for design approaches that integrate concerns from the personal and social context with technical design decisions (a socio-technical approach). We hypothesize that we can address these issues using a development model that integrates personal requirements engineering and dynamic requirements monitoring with aspects of a software-product-line development process. Resulting theories, methods, and tools will generalize to support design science researchers in addressing the design of personalized, contextually aware, and adaptable software-intensive systems.
2 Personalization for the Cognitively Impaired Population

The Population

The cognitive deficits suffered by the brain-injury population include difficulties with memory, new learning and executive functions. Executive function impairments result in reduced self-regulation with attendant difficulty in initiating intended action, planning behaviors, sequencing steps in multi-component tasks, and controlling impulses. The field of neuropsychological assessment has shown the importance of executive functions to successful adaptive living (Manchester, Priestley & Jackson, 2004). In particular, one study showed that a measure of route finding (the Executive Function Route Finding Task), because of its reliance on executive functions, was the cognitive task that differentiated people with cognitive impairments from non-injured controls (Spikeman, Keelman, van Zomeren, 2000). The combination of executive function impairment with poor new learning skills creates an engineering dilemma: on one hand, this population has a great need for technology solutions that help compensate for their cognitive impairments. However, assistive devices that are sufficiently simple to learn are typically low in executive ability and require the user to perform the steps of initiating, planning, sequencing and problem solving when the inevitable unexpected situation arises.

A Focus on Social Isolation and Email

We have recently completed a five-year Department of Education project called Think and Link (www.think-and-link.org). The goals of Think and Link (TAL) were to develop and evaluate the effects of email interfaces that are accessible by people with impairments in memory, learning and executive functions due to brain injuries. We initially conducted qualitative studies analyzing the needs and barriers to email use by this population. This led us to a domain theory of emailing that we were able to use to assess our participants needs. We tied the assessment results to personalized settings on the email client. We did periodic monitoring to identify the need to adapt the interface to changing requirements (Sohlberg, Fickas, Ehlhardt, Todis & Sutcliffe, 2003;[12]).

We conducted a longitudinal study to evaluate the effects of accessible email on social integration. We analyzed data ranging from keystroke information at a micro-level to email content at a macro-level. The results of our study are encouraging. All participants were deemed poor candidates for assistive technology by care providers or therapists. By the end of the 3-year study, all but one of ten participants were still emailing and reporting reduced feelings of social isolation.

A Focus on Social Isolation and Travel

Members of our team have studied methods for rehabilitating and helping this population compensate for executive function impairments in functional activities for 15 years [13]. Most recently, supported by an NSF ITR grant, we completed a study profiling travel patterns of six people with brain injuries over a 4-month period. All subjects had memory and executive function deficits. The most frequently documented problems were pre-trip planning issues (e.g., forgetting to gather necessary resources), trip-initiation issues (e.g., meet the bus or taxi or facility van at the scheduled time), and on-route issues (e.g., forgetting the trip purpose or destination along the way). Anxiety and fear of getting lost were also barriers to venturing out in the community for three of the six participants [14]. Assistive travel tools will need to address the individual’s cognitive and psychological issues that inhibit them from taking trips in the community. Further, our studies in both the travel and email domains have shown that assistive technology must be personalized to avoid abandonment. We began our research with a standard, mass-market type of software engineering process, We have evolved this process, through experience, to a highly-personal one. In particular, we have developed a personal requirements engineering process that is much closer to clinical or medical practice than to large-scale system-building practice.

A Domain Theory to Support Assessment

[image: image7.wmf]�

Application

�

C

1

�

User Profile

�

C

2

�

Cn

�

R

1

�

R

2

�

R

3

�

G

1

�

Gn

�

G

2

�

Usage Data

�

Monitor

Existing research and our own work developing travel profiles for this population have led to the development of a taxonomy defining the skills necessary for community travel. Given their symmetry with what are called Activities of Daily Living or ADLs (Katz et al, 1963), we call them Activities of Community Travel or ACTs [cite]. As part of our ongoing research, we are in the process of validating our ACTs model with travel trainers and those who work on travel issues with the cognitively impaired through the United We Ride program at the Federal Department of Transportation. To date, we have had positive feedback and feel optimistic that we have a viable domain theory to work from.

A Smart Travel System

We are in the process of building a travel system that can be personalized, monitored and adapted as part of the GO Project [cite]. We have completed a set of navigation studies [cite]. Figure 1 shows some of the artifacts used. We have established an in vivo laboratory with structured travel routes in Springfield, OR.[image: image8.wmf]�

ot

3

�

o

1

�

o

2

:

Actor

1

�

1

:

\operation\

�

2

:

\operation\

�

3

:

\operation\

; the map on the left shows one. Each route has the same number of navigation decision points (numbered on the map shown). We continue to experiment with different assistive devices and user interface modes. Shown are an arm-worn iPaq with point-of-view directions and an audio-only backpack with a two-button interface.

Building a navigation assistant introduces issues in personalization and adaptation. Even without impairments, individuals differ in their navigation strategies and capabilities
 ADDIN EN.CITE
[15; 16; 17]
 (e.g., the ability to interpret maps or even tell left from right). Designing an effective travel assistant requires personalization to the user’s individual goals, capabilities, and navigation style. In addition, device mobility introduces the need to monitor and adapt to the user’s environmental context. For example, the recommended route or even the navigation strategy (e.g., use of landmarks) might vary depending on the time of day and type of neighborhood.

A New View of Requirements Engineering

 Information from both the email and travel studies has lead to development of a framework called Personal, Contextual Requirements Engineering (PC-RE). The PC-RE framework is introduced to address individual goals, preferences, and capabilities in system requirements, as well as changes in those requirements with time and context. The framework aims to describe not only functions that meet people’s goals but also characteristics of the users, and how they would like computer systems to achieve their personal goals.

[image: image9.emf]As is shown in Figure 2, the PC-RE framework consists of three layers for personal and contextual requirements with two dimensions of change at each layer – location in space and time.

The top level of the framework focuses on the general stakeholder requirements as a group. The temporal dimension addresses evolution in application domain or business context. The spatial dimension addresses cultural, language, and gross geographical changes. Together, requirements at this level can characterize a family of products or software product line.

The second level focuses on user characteristics that differentiate one user from another. User characteristics refine the broader specifications (expectation of user abilities and skills), obtained from the general stakeholder group. Here, the temporal dimension addresses how user goals, requirements, or capabilities can evolve over time. The spatial dimension addresses the possible socio-technical context (e.g., living situation). Requirements specified at this level for an individual user dictate how the application should be personalized; equivalently, which member of the product family will meet an individual user’s needs.

The bottom level focuses personal goals. The temporal dimension addresses whether goals are attainable with current capabilities or must be deferred. The spatial dimension addresses real time changes in requirements as the individual user moves through time and space.

Our proposal is to study a means of scaling the PC-RE framework by analyzing the domain requirements for a product line and guiding development of a common product-line architecture. Work under this proposal will formalize the PC-RE process for supporting the Domain Analysis phase of product line development for personalized AT systems.
Monitoring and Adaptation

[image: image1]
Figure 3 Monitoring personalized software

“Requirements monitoring” refers to the insertion of code into a running system to gather information from which it can be determined whether, and to what degree, that running system is meeting its requirements [18]. Experience shows that we can avoid device abandonment over the long term only if the device is consistent with user goals, requirements, and capabilities. Since all of these characteristics tend to change over time, we must monitor whether the system is meeting the users needs and in which ways to support system redesign when needed. In addition, we have learned from our studies on mobile assistive devices that a user’s goals, needs, and requirements can change depending on the context (e.g., temporal, environmental, social, technical, etc.) as the user moves through time and space. In consequence, the same system input values may call for a different system response depending on the current context. To continue meeting the user’s needs, the system must monitor the context and the discrepancy between user goals and the system behavior to adjust the system’s response in real time. Figure 3 illustrates the main components required for such personalized monitoring and adaptation. An application consists of interchangeable components whose processing is guided by the application (or mission) rules. A monitor watches the application and usage data with respect to the user’s profile. The system uses results of the analysis to reconfigure the application.

The production and maintenance of requirements monitoring code must be automated if it is to scale: it is not cost-effective to develop individually customized applications by hand. Automation of requirements monitoring for the assistive technology domain is itself a Design Science problem that is currently being addressed in collaboration with Prof. William Robinson under NSF ITR-Science of Design award #0613698 (SoD-TEAM: Monitoring in Support of Design Science Principles). In this project, Prof. Robinson is developing methods and languages for modeling monitoring requirements as well as a tool, called ReqMon [19], that generates requirements monitoring code from the formal specification. A prototype of the tool is currently being applied to the TAL email domain discussed earlier in this section. Professor Robinson will work with us on this proposal to integrate his work into the larger notion of a Software Pharmacy.

3 Our “Generic Drugs”: Software Product-Line Principles

Our approach to the scaling problem builds on our experience in developing process models for software product lines [20; 21; 22]. A software product line is “a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way” [23]. In practice, product-line development has been shown to reduce development effort seventy to ninety percent by systematically reusing common assets (e.g., software architecture, code, documentation, test cases, etc.) to produce members of a family of software systems [xx].

Product-line development support scaling by applying an industrial development model to software. Rather than creating development artifacts from scratch and by hand, artifacts are assembled from pre-built, adaptable components. The product-line development process thus comprises two conceptually distinct activities. The first, called Domain Engineering, focuses on developing the means of production (the factory) – i.e., the software components, infrastructure, tools, and other assets that are used to produce applications in the product-line. The second, called Application Engineering, exploits the asset base to create individual applications meeting a specific set of system requirements.
Our experience in developing personalized AT applications suggests that product-line techniques can be applied in creating personalized software for a large user population. By “personalized”, we do not mean that each system is unique to its user; rather, that each system is tailored to the individual’s goals, capabilities, and context. Personalization is realized by implementing the correct design subset from a set of available designs. Thus, the personalized versions of a a given AT application comprise a software family, and are suitable candidates for product-line engineering [24].

However, our development model for software pharmacies must differ from the one illustrated in Figure 4 and commonly used in product-line practice (e.g., [23; 25]). Since we assume that AT products are customized for individual users rather than market segments, we cannot afford hand coding in the customization, adaptation, or re-design of an application. Such hand tailoring typically comprises ten to thirty percent of the application development effort and more if maintenance is considered [26]. We require more comprehensive automation. In addition, we have design goals for the Software Pharmacy in addition to improving software productivity including: (1) community-based participatory design, (2) automated requirements monitoring, and (3) run-time adaptation. Each of these requires some redesign or refinement of the standard product-line model.

4 “Personalized Medicine”: Design for Scalable Personalization

Research Hypotheses

Device abandonment in the AT field is well documented[4; 5; 6]. Our previous work on developing personalized AT systems shows that personalization is a successful strategy to combat abandonment[27]. We have extended this work to develop a framework for modeling personal and contextual requirements (PC-RE) and successfully applied the model in the same AT domains [28]. Work is currently ongoing by our collaborator, Prof. Robinson, to provide languages, methods, and tools for requirements monitoring.

Still lacking is a design model that incorporates these capabilities to provide large numbers of personalized, adaptable AT systems at low cost. We propose to develop and validate such a model based on the following research hypotheses:

H1: We can develop and formalize a design approach (the Software Pharmacy) that supports rapid, cost-effective mass-customization of AT systems using a combination of personal and contextual requirements engineering, modified software product-line engineering, and automated requirements monitoring in feedback/control development cycle.

H2: We can apply the Software Pharmacy approach to the AT travel domain (GO Systems) to produce personalized application that demonstrably meet user travel goals and satisfy our goals for rapid, cost-effective system software production.

In the following, we lay out our development model, plans for introducing automation, methods of evaluation, and approach for generalizing the process to other applications.
The Software Pharmacy Process Model
We propose a Software Pharmacy process model (sometimes called a “pattern”) that integrates personal requirements engineering (PC-RE) and requirements monitoring into a product-line model in a way that supports mass-production of personalized systems. The proposed model is illustrated in Figure 5. The right side shows the major activities (rectangles) and products (ovals) of the Software Pharmacy model. Since the different development phases are driven by requirements in different dimensions of the PC-RE framework, Figure 5also illustrates the key relationships between the layers of the PC-RE framework and activities in the process model.

[image: image2]
Figure 5: the Software Pharmacy process model

While the picture is somewhat complex in its details, the underlying conceptual structures are straightforward. The PC-RE framework organizes personal requirements in three dimensions: stakeholder set, temporal change, and spatial change. In concert, the Software Pharmacy development model proceeds from broadly scoped activities (application domain, stakeholder-wide, and over the life-cycle) to tightly scoped ones (single user, personal device, in real-time). The PC-RE outputs drive activities in the Software Pharmacy model as follows: the domain level requirements (DR) drive the Domain Analysis and Domain Implementation phases, the user level (UR) requirements drive the Application Engineering phase, and the personal user goals (PG) drive the real-time adaptation.

In the following, we describe how the parts of the process work together to define a prescription for an AT system, generate the system as a member of a product line, then monitor for discrepancies between the user’s goals and the system’s behavior in context.
Software Prescriptions

We use the term “software prescription” to refer to a formal specification of an individual user’s goals and requirements for a member of the AT system product-line implemented by a Software Pharmacy. Adequately understanding the design and development issues that must be addressed in creating a software pharmacy requires understanding (1) what kinds of information must be specified in an AT prescription for a CI user and (2) what design and development activities must take place to “fill” and maintain such a prescription over time.

To provide personalized systems, a software prescription must map an individual users goals and capabilities to a set of requirements for a member of an AT system product line. A CI user adopts an AT system to help them achieve some set of personal goals: for example, being able to correspond with friends by email or travel unassisted to the public library to check out films. Meeting any particular goal requires the user to perform a set of functional tasks such as planning a trip, understanding the bus schedule, bringing bus fare, and so on. It follows that the skills needed to accomplish the tasks associated with a particular goal must either be present in the user, provided by the AT device, or supported by the user’s community.

This has two implications for creating successful AT systems. First, developing AT devices for a class of users in a functional domain (e.g., travel or email) requires understanding the universe of personal skills required in the domain. For example, our work in the assisted travel domain resulted in a taxonomy of prerequisite skills around six distinct types of tasks including pre-trip planning, trip initiation, resource gathering, egress, on-route navigation, and troubleshooting [29].
Second, creating an effective device for any particular user requires understanding which skills the user possesses, and which capabilities must be provided by the device or by outside assistance (e.g., the caregiver or bus driver). This means that we must assess the individual goals and skills of the user to develop his or her individual prescription.

Further, we cannot expect a user’s prescription to remain static. In the forward-looking case, the user’s skills improve with learning. However, it also occurs that skills can decline (e.g., in degenerative diseases). We have seen both cases occur in our study populations. Thus the design process must support activities for (1) detecting when a system no longer meets user needs, (2) reassessing skills and rewriting the prescription, and (3) rapidly generating re-designed software to the new requirements.

Because skills can improve, it is also important that the system address deferred goals. In many cases, we found that individuals expressed goals for which they currently lacked the prerequisite skills. For example, a user may wish to travel to the library to access a DVD collection. However, the user might have the skills only to take a facility van, e.g., on a group shopping trip. But over time, the user may pick up the skills to use public transportation, and thus, bring the library goal into focus. In general we find that it is important to user’s long term satisfaction to capture all goals, current and deferred. in the user’s personal requirements prescription and address them in system evolution. The Software Pharmacy will track deferred goals and monitor for development of the necessary skill set by the user.
Prescription Delivery

A Software Pharmacy fills a prescription by generating AT system software that satisfies the set of requirements captured in a prescription. To avoid hand coding the Software Pharmacy must support the automated generation of application software and other artifacts from a formal Software Prescription. In terms of the software product-line model, this means that the Domain Engineering process should develop an automated Application Engineering environment. While this differs from the usual product line practice where some hand coding is the norm, this approach is consistent with the existing process model.

Where we propose to extend the model is the formalization of application requirements and the generation of requirements monitoring code (discussed in the following section). A product-line strategy for developing automated application generators requires more formality, completeness, and consistency of specification than one permitting partially ad hoc development. This has the following implications for the Software Pharmacy development model:

· Domain Analysis: the domain analysis process determines the scope of the product line as well as which requirements will be common to all product-line members (called “commonalities”) and which will be allowed to vary from one member to another (called “variabilities” or “variation points”). Since automatic generation must address the entire scope of a product line, we require that these processes produce a complete, consistent specification of all of commonalities and variabilities. Further, these requirements must be expressed formally so the mapping to variation points is deterministic and unambiguous. Thus, the PC-RE process must be extended to support domain analysis, commonality analysis, and domain scoping.

· Domain Engineering: products of the domain engineering activities include a common software architecture, generation mechanisms, and a language for expressing application requirements (Application Modeling Language). The modeling language must provide the constructs necessary to map decisions about the software requirements to values of variation points. In turn, the generation mechanism must map such decisions to variation points in the software architecture. For the Software Pharmacy, this means that the language for expressing prescriptions must support these capabilities as well as modeling user goals.
While the Software Pharmacy process will use code generation technology to automate software production, we intend to apply existing technology. Except for the generation of requirements monitory code, there is no apparent need for novel generation technology. Generation of the requirements monitoring code is currently being addressed in the ReqMon tool set [19].
Less well developed are techniques for generating application code where variabilities may be bound at run-time as well as system generation time. Though self-adaptation techniques have been used for many years, such approaches typically build monitoring and configuration functionality directly into the code [30]. This does not meet our need for design-time adaptability or systematic reuse. However, researchers have recently begun to integrate adaptation techniques with software product lines [31; 32]. Our work differs in the formal approach to specification requirements and binding time based on the PC-RE framework and our goal of developing run-time configuration based on capabilities of the ReqMon tool set.
Prescription Monitoring

Experience that abandonment is likely when there are discrepancies between the user’s needs and the AT devices capabilities. A Software Pharmacy design goal is to continue meeting user needs over time by continuously monitoring the discrepancy between user goals and system behavior. The Software Pharmacy process must support the specification of system monitors and generation of instrumented code. Monitoring results then drive feedback loops in three distinct time scales: run-time adaptation, generation time personalization, and domain design evolution. We will accomplish this using the requirements monitoring methods and tools being developed by Prof. Robinson. Prof. Robinsons work satisfies our design goals in (1) analyzing monitoring requirements in the context of the PC-RE framework, (2) specifying required monitoring using a formal language, and (3) providing tool support for automatic generation of the code for monitoring, data logging, and synthesis [33].
5 Design Science Contributions

Historically, the problem of customizing mass-produced software to user needs has been left to the users themselves. This paradigm necessarily omits large populations of users who lack the skills or abilities needed to choose and implement appropriate customization. In addition to the CI population, this includes many children, older people, and those lacking computer literacy. Nonetheless, as people must interact with increasingly ubiquitous software systems, it is clear that personalization is a prerequisite to exploiting AT functionality. For example, different people use different navigation strategies hence benefit form GPS navigation systems that are consistent with their strategy [16].

We propose a design model that addresses the scaling problems inherent in mass-personalization of software by integrating the PC-RE framework with software product-line principles. PC-RE provides a basis for both (1) assessing an individual’s goals, requirements, and capabilities relative to the socio-technical context and (2) synthesizing results of PC-RE over a stakeholder population to formally characterize the application domain (e.g., scope, common requirements, and variation points). This provides the input necessary to a Domain Engineering process that enables rapid, low-cost production of an application product line.

While our own studies focus on individual with traumatic brain injury, there is nothing in the proposed design models or methods that assumes properties of the user population. The proposed approach will generalize to other disadvantaged user communities and will support design researchers or developers in with a wide range of assistive technologies.
6 Project Evaluation

Our Current Limitations

While our email research project has ended, our travel assistant project is very much active. As with many federally funded projects, limited dollars constrain the number of participants who can join the project, limiting the N of our experiments and the amount of data we can collect. The problems are twofold: (1) a lack of sufficient programming person-power to build (and rebuild) personalized devices, and (2) lack of analysis time to study log data in detail for each participant. In essence, we are manually building personalized systems with monitoring and adaptation tools that are not automated. Recognizing that this is precisely the design problem of scaling that must be addressed to produce widely-available assistive devices, we propose to exploit our own scaling solution to provide an evaluation laboratory for creative design solutions.
The System That We Need

The GO project is attempting to employ an end-to-end solution to tackle the problem of community navigation. This includes what we refer to as the “first 100 yards”: getting ready for a trip, gathering needed items, getting out the door and to a pick-up spot on time. We have built a simulation using the SceneBeans visualization tool [R. Chatley, J. Kramer,J. Magee and S. Uchitel. Model-based Simulation of Web Applications for Usability Assessment. In Bridging the Gaps Between Software Engineering and Human-Computer Interaction, May 2003] that allows us to test a specific device configuration for the 100 yards problem. Figure 6shows the general process. Figure 6 shows two of the devices built by our project that are used in the process: a smart travel bag and a home TV connected to a set-top box.
[image: image3.jpg]A SceneBeans Animation of The Cognitive Bag Model

O vl b e g [—
et A o e g h g o
iop o nfomethe | [s e bus s

d et o

g e aking the
. s mising The b

Responding lohe nsrcion
el plces he b pss i
{he g, When he b et
{his gl h user ha ey
st ey 0 btk an o

[image: image4.jpg]

Figure 6: Travel bag simulation and prototype
Once on route, a traveler uses the smart bag in conjunction with a PDA to navigate by foot and by public transportation to a destination. The PDA and a route (an iPaq currently) are shown in Figure 7.
[image: image5.jpg]

[image: image6.jpg]

Figure 7: Travel PDA in use
Plugging in a Software Pharmacy

We argue that the scaling problem can be addressed using our proposed Software Pharmacy development model. Our evaluation of this hypothesis will follow the iterative process of design research summarized by Vaishnavi [34]. In the development phase, we propose to first build a Software Pharmacy using our community-based design model and then integrate it with our travel assistant project. Travel project researchers will work with us to operationalize the (abstract) Software Pharmacy process model for the travel assistant domain.

Once we have a working SP, we propose success metrics that track increasing scale without loss of quality: i.e., increasing the number of acceptable systems produced per programmer unit of work. Specifically, our goal is to double the number of participants we can support (we currently support 5 participants), without recruiting any additional programming support. In more detail:

1. In the first 1.5 years of the grant, we will develop and refine the Software Pharmacy (SP) concept as a Science of Design theory. The SP will be tested on laboratory problems.

2. Starting 18 months into the grant, we will integrate the SP into a supply chain for the travel assistant project. We will recruit five new participants at this point.

3. We will assess each participant and develop a profile of his or her abilities and goals.

4. The profile will be passed to the SP, a system will be built that conforms to the profile, and delivery will be made to project personnel.

5. Participants will be trained on their new system, and then become active in the travel assistant project.

We do not propose, in this relatively short time, to build a stand-alone interface to the SP’s application generation facilities. While our overall goal is to make an SP a type of at-a-distance fulfillment-house for PC-RE style travel devices, that cannot be accomplished in the project time-frame. Rather, our metrics for success are:

a) Number of systems delivered to the travel assistant project. Goal: 5 systems.

b) Amount of time needed to deliver a from formally specified requirements. Goal: 1 day

c) Amount of manual programming effort needed to build the systems. Goal: none.

In the current project, the generation of members of the software product line will be achieved by collaboration between programmers. In future work, we will address the issue of providing widely available, common SP interfaces - i.e., an online pharmacy, which can be accessed by non-CS (e.g., clinical) staff.

Monitoring and Adaptation

 Currently project personnel manually analyze monitored travel-data in weekly meetings. Data for each individual is examined and then evaluated against his or her abilities and personal goals. The staff then decides whether any system adaptations are needed. Finally, programmers make changes to the system. We do not propose to alter this process for our current participants; it is successful and we do not wish to endanger the results we are getting. However, if we add five participants (as part of this grant), we lack available staff to continue using a manual process. To mitigate this, we propose to modify and apply Robinson’s ReqMon tool for the five new participants:

1. ReqMon will be integrated into the SP. The ReqMon tool will (a) be privy to monitoring data that is collected, and (b) keep a record of each participant’s profile.

2. A set of ReqMon rules will be defined that match monitored data against profiles and lead to recommendations for adaptations.

3. A second set of rules, loosely defined as device-abandonment warnings, will watch for decreased use of the device, including sudden non-use.

4. We will not attempt to directly connect adaptation recommendations coming from ReqMon to the SP. Instead, they will be passed to staff on the travel assistant project for review.

5. If staff agrees with the recommendation, the adaptation request will be given to the SP and a modified system produced.

We propose to use step 4 as the basis for evaluation. SP Programmers will explain recommendations in weekly staff meetings. A record will be kept of recommendations accepted (true positives) and recommendations rejected (false positives). This will form one metric. However, this does not account for missed recommendations: i.e., necessary adaptations that are missed by ReqMon. We have added step 3 to partially account for this problem. Our past experience says that if adaptations do not accompany changes to the user or the environment, device abandonment will eventually follow. However, to catch false negatives quickly would require adding more staff to monitor both the additional participants and ReqMon; this is not feasible. Our compromise is to attempt to catch at least the late stages of incipient abandonment. At this point staff will need to step in to get the train back on the tracks. We will keep a record of these false negatives as a metric. To mitigate a surge in extra staff time, we will sequence the introduction of new participants over several months.
Incremental Design Approach
We expect to use the knowledge we gain during our evaluation to better the system. We will record and time stamp all problems found. We will also use that problem data to modify the SP and ReqMon to do a better job. We expect that there may be a number of errors reported in the early stages of the evaluation, but very few by the end.
7 Schedule, Personnel & Prior Results, Dissemination

Research Schedule

Faulk and Fickas will guide two Ph.D. and one Masters student in the research design and implementation. Table 1 shows an overview of our three-year project plan. Theory and software development will be incremental and iterative, with major releases occurring yearly. The theory development, project management, and publication activities of the senior members are implicit in the plan. Yearly phases end with publications, software releases, and conference presentations. In the final year, we will provide complete documentation and analysis of the Software Pharmacy project, so that researchers in the assistive technology field can readily see how they apply to their own projects.

Table 1 Project plan summary.

	Yr
	Development
	Experimentation
	Generalization

	1
	Formalize PC-RE to travel domain analysis: commonality analysis and scoping of AT travel domain. Specification of variation points, monitoring requirements. Develop product line common architecture.
	Trial application of ReqMon tool in travel domain. Code generation for useful system subset in laboratory. Initial tests of run-time re-configuration. Define experimental scenarios.
	Initial formalization of SP model.

	
	

	2
	PC-RE analysis of new subjects,

Initial system specification.

Prototype system generation, hardware integration, & testing.

Monitoring code generation.
	Subject integration in GO project test bed. Training on personalized systems and trial use. Comparison of automated and hand data collection. Experimental design and run-time adaptation.
	

	
	

	3
	Improve generation capabilities. Improve feedback and re-design. Refine run-time configuration.
	Controlled experiments and their analysis against success metrics.
	

	
	, documentation, guidelines, and publications

Personnel
The multi-institution research team has a proven record and is academically diverse, with each member contributing specific disciplinary expertise. The team will continue their tradition of mentoring underrepresented groups members through their research, at the Masters and Doctoral levels. Moreover, the accessibility of this project lends itself to undergraduate participation, through the NSF REU program, and through our existing university student internship programs.

Dr. Stuart Faulk (UO Research Associate Professor, Computer Science, Ph.D.) has over twenty-five years of experience in requirements and design methodology addressing software productivity. This includes ongoing research and education in software product-line methodology. Recent work has focused on software architecture and design methodology for improving productivity in next-generation super computers.
Dr. Stephen Fickas (UO Professor, Computer Science Ph.D.) was co-PI on the TAL project and co-founded Life Technologies LLC, which produces CogLink, the commercial version of TAL. Dr. Fickas is an eminent scholar of requirements engineering and assistive technology. Professor Fickas is an Affiliated Faculty at OGI, part of the Oregon Health Sciences University (OHSU). At OGI, he works on eHealth systems for the cognitively impaired. He is also a research scientist at Electrical Geodesics, Inc, which developed a new generation of high-resolution EEG measurement and analysis systems for use in medicine, psychology, and neuroscience research.

Dr. William N. Robinson (GSU Associate Professor; Computer Science Ph.D.) is secretary of the International Federation for Information Processing (IFIP) Working Group 2.9 on Requirements Engineering (Dr. Fickas is a member and founder), past program chair of the IEEE International Symposium on Requirements Engineering (RE’99), and editorial member of the Requirements Engineering Journal. His prior works include ReqMon and Reuser as referenced in this proposal.

Dr. McKay Sohlberg (Associate Professor, Communication Disorders & Sciences, University of Oregon) was co-PI on the TAL project and co-founded Life Technologies LLC. She has served as Co-PI on a number of funded projects developing tools to help people with chronic long-term impairments following brain injury integrate into the community. Her recent work includes NSF funded projects to develop and evaluate navigation and trip assistant tools for this population. Her work in developing and evaluating cognitive rehabilitation programs for adolescents and adults with brain injury is well known internationally. She serves on the national committee responsible for generating the evidenced based practice guidelines for treating cognitive impairments following brain injury and has published two leading textbooks in the field along with numerous treatment efficacy studies.
Dissemination of Results

Scholarly peer reviewed, archival publications, white papers, and technical reports will be our primary means of dissemination. Additionally, we will maintain a dynamic web-based resource, for both internal and external communications. The web site will communicate project objectives, status, and results, along with links to related initiatives. It will contain a repository of all communications, tools, demonstrations, and analyses. More than just one-way communication, the site will allow participation from collaborators, administrators, educators, and students. All software will be open source, and available from SourceForge.net.
8 Broader Impact
In Support of Research
It is difficult to do information technology research in the field of assistive technology for the cognitively impaired. Very little tool support exists. Because of the closed nature of both ROTS and COTS systems in the field, research teams are forced to build systems from scratch. No one, to date, has stepped up to start an open source movement in the field to support research. The SP developed as part of this grant is, first and foremost, a demonstration that the Science of Design can be used to support researchers: it allows them to scale their programming effort, and hence, to consider PC-RE type systems in the heart of their studies. Of course, we have a selfish motive here: we have found that the lack of personalization is a major cause of device abandonment; we would like to promote it to all that will listen. We believe that one way to attract listeners is to give them tools.

In Support of the Industry

Our experience with the Assistive Technology industry over the last six years paints a grim picture. We have been to and talked at multiple conferences, workshops, government panels and tradeshows that cater to the cognitively impaired and the assistive technology industry. It appears that companies in this field have neither a Science of Design nor an inclination to open systems. Each device built is stand-alone. Companies do not share their ideas. Devices are high-cost, one can assume from a labor-intensive development process. And devices are abandoned at alarming rates. Can positive results from this grant change all this? We believe it can make a start. If we can demonstrate a more cost-effective means of producing systems, and it is non-proprietary, we believe the market will pick it up. And eventually consumers will see more affordable prices. If we can show companies that the PC-RE model, as embedded in the SP, allows them to build personalized systems, a dent might be made in abandonment, benefiting all. Finally, if we can show companies that the SP model allows them to connect to hospitals and clinical practices, by fitting with the patient-centric model they employ, new markets may open up, allowing companies to innovate. It sounds grandiose, but something needs to be done for this field.

References

[1] F.C. Alliance, Incidence and Prevalence of the Major Causes of Brain Impairment, 2001.

[2] M.M. Sohlberg, and C.A. Mateer, Cognitive rehabilitation: An integrated neuropsychological approach, Guilford Publication, New York, 2001.

[3] U.S.D.o.H.a.H. Services, ADD Fact Sheet, Administration of Developmental Disabilities, 2002.

[4] E.F. LoPresti, A. Mihailidis, and N. Kirsch, Assistive technology for cognitive rehabilitation: State of the art. Neuropsychological Rehabilitation, in-press.

[5] P. Wright, N. Rogers, C. Hall, B. Wilson, J. Evans, H. Emslie, and C. Bartram, Comparison of pocket-computer memory aids for people with brain injury. Brain Injury 15 (2001) 787-800.

[6] B.A. Wilson, H.C. Emslie, K. Quirk, and J.J. Evans, Reducing everyday memory and planning problems by means of a paging system: a randomised control crossover study. Journal of Neurology, Neurosurgery, and Psychiatry 70 (2001) 477-82.

[7] E. Dorsa, An introduction to universal design: a hand tool project. The Technology Teacher 61 (2002) 27-29.

[8] N. Nicolaisen, Universal access. Computer Shopper 17 (1997) 600-604.

[9] C.S. Fichten, J.V. Asuncion, M. Barile, G. C., F. M., and D. Judd, Technology Integration for Students with Disabilities: Empirically Based Recommendations for Faculty. Educational Research and Evaluation 7 (2001) 185-221.

[10] M.J. Scherer, Assistive Technology: Matching device and consumer for successful rehabilitation, American Psychological Association., Washington, D.C, 2002.

[11] S. Fickas, Clinical Requirements Engineering, 27th International Conference on Software Engineering, St. Louis, 2005.

[12] B. Todis, M.M. Sohlberg, D. Hood, and S. Fickas, Making electronic mail accessible: Perspectives of people with acquired cognitive impairments, caregivers and professionals. Brain Injury 19 (2005) 389-402.

[13] M.M. Sohlberg, and C.A. Mateer, Introduction to Cognitive Rehabilitation, Guilford Press, 1989.

[14] M.M. Sohlberg, S. Fickas, P. Hung, and R. Lemoncello, Community Navigation Profiles for Six Individuals with Severe Cognitive Impairments, Poster session, The annual meeting of the National Academy of Neuropsychology, Seattle, WA., 2004.

[15] M. Hegarty, D.R. Montello, A.E. Richardson, T. Ishikawa, and K. Lovelace, Spatial abilities at different scales: individual differences in aptitude-test performance and spatial-layout learning. Intellegence 34 (2006) 151-176.

[16] R. Kitchin, and M. Blades, Individual and Gender Differences in Cognitive Mapping, The Cognition of Geographic Space, I. B. Tauris, 2002, pp. 99-110.

[17] A. Lobben, Tasks, Strategies, and Cognitive Processes Associated With Navigational Map Reading: A Review Perspective. The Professional Geographer 56 (2004) 270-281.

[18] S. Fickas, and M.S. Feather, Requirements Monitoring in Dynamic Environments, Proceedings of the 2nd International Symposium on Requirements Engineering, IEEE Computer Society Press, York, England, 1995, pp. 140-147.

[19] W.N. Robinson, Implementing Rule-based Monitors within a Framework for Continuous Requirements Monitoring, best paper nominee, Hawaii International Conference On System Sciences (HICSS'05), IEEE, Big Island, Hawaii, USA, 2005.

[20] S. Faulk, G. Campbell, and D. Weiss, Introduction to Synthesis (Intro_synthesis-90019-N), Software Productivity Consortium, 1990.

[21] SPC, Reuse-driven Software Processes (RSP) Guidebook (SPC-92019-CMC), Software Productivity Consortium, 1993.

[22] S. Faulk, D. Raffo, and R. Harmon, Value-Based Software Engineering (VBSE): A Value-Driven Approach to Product-Line Engineering. in: P. Donohoe, (Ed.), Software Product Lines – Experience and Research Directions, (SPLC1), Kulwer Academic, 2000.

[23] P.C. Clements, and L.M. Northrop, Software Product Lines: Practices and Patterns, Addison-Wesley Professional, 2001.

[24] D.M. Weiss, and C.T.R. Lai, Software Product-Line Engineering: a Family-Based Software Development Process, Addison Wesley, 19991.

[25] K. Pohl, G. Bockle, and F.v.d. Linden, Software Product Line Engineering: Foundations, Principles, and Techniques, Software Product Line Engineering., Berlin, Heidelberg, New York, 2005.

[26] C. Kreuger, New methods in software product line practice. Communications of the ACM 49 (2006) 37-40.

[27] M.M. Sohlberg, L. Ehlhardt, S. Fickas, and B. Todis, CORE: Comprehensive Overview of Requisite E-mail Skills, University of Oregon, Department of Computer and Information Science, Eugene, OR, 2002.

[28] A. Sutcliffe, S. Fickas, and M. Sohlberg, PC-RE: a method for personal and contextual requirements engineering with some experience. Requirements Engineering (2006) 2-27.

[29] M. Sohlberg, B. Todis, S. Fickas, P. Hung, and R. Lemoncello, A profile of community navigation in adults with chronic cognitive impairments. Brain Injury 19 (2005) 1249-1259.

[30] J.O. Kephart, and D.M. Chess, The vision of autonomic computing. IEEE Computer 36 (2003) 41-54.

[31] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch, Using product line techniques to build adaptive systems, 10th International Software Product Lines Conference (SPLC 2006, IEEE Computer Society, Baltimore, MD, 2006, pp. 141-150.

[32] J. Lee, and K. Kang, A feature-oriented approach to developing dynamically reconfigurable products in product line engineering, 10th International on Software Product Line Conference (SPLC 10), IEEE Computer Society, Baltimore, MD, 2006, pp. 131-140.

[33] S. Fickas, W. Robinson, and M. Sohlberg, The Role of Deferred Requirements: A Case Study, 13rh IEEE International Conference on Requirements Engineering (RE'05), IEEE, Paris, France, 2005.

[34] V. Vaishnavi, and W. Kuechler, Design Research in Information Systems, 2005

 Figure � SEQ Figure * ARABIC �1�: GO field-lab artifacts

Business & domain evolution,

user skills, expert users

Culture &

localisation

,

interaction language,

style &

FRs

Physical context,

communications &

FRs

,

social context

Location,

social context

General

stakeholder

requirements

User

characteristics,

requirements

Personal goals

Individual user skill & ability

Spatial change

Spatial change

Temporal Change

Temporal Change

Attain individual goals

Layers

Figure � SEQ Figure * ARABIC �2�: The PC-RE Framework

Domain &

Mission

requirements

Application

requirements

Domain Engineering

Define family and develop

Production Capabilities

Reusable Assets/

Production infrastructure

Applications

Application Engineering

Produce Family Members

Figure � SEQ Figure * ARABIC �4�: the product-line model

Qualify Domain: �Socio-Economic Analysis

Application �Engineering

Domain

Implementation

Domain

Analysis

Common Requirements

User / context variations

Goals/Location Variations

Asset Base &

App. Generator

Run-time

Configurator

Application

Requirements

Monitoring

Runtime Monitors

Adaptation

Framework

Generation-time�Adaptation

Design-time�Adaptation

Run-time�Adaptation

User

Prescription

Location/

social context

Personal

goals

Attain individual goals

Physical context

User

characteristics,

requirements

Attain individual goals

Cultural/

Language

General

Stakeholder

requirements

Domain evolution

(DR)

(UR)

(PG)

Spatial change

Temporal change

Key

PC-RE Domain &

Stakeholder�requirements

PAGE
1

