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Abstract

To realize the Semantic Web, it will be necessary to
make existing database content available for emerging Se-
mantic Web applications, such as web agents and services,
which use ontologies to formally define the semantics of
their data. Our research in the design and implementa-
tion of an ontology-based system, OntoGrate, addresses the
critical and challenging problem of supporting human ex-
perts in multiple domains to interactively integrate infor-
mation that is heterogenous in both structure and seman-
tics. Databases, knowledge bases, the World Wide Web,
and the emerging Semantic Web are some of the resources
for which scalable integration remains a challenge. To in-
tegrate databases into the Semantic Web, we use Semantic
Web ontologies to incorporate database schemas. An ex-
pressive first order ontology language, Web-PDDL, is used
to define the structure, semantics, and mappings of data re-
sources. A powerful inference engine, OntoEngine, can be
used for query answering and data translation. In this pa-
per, besides introducing new ideas in the OntoGrate system,
we will elaborate on two case studies for which our system
works well.

1 Introduction

During the last several years, we have seen many
achievements towards realizing the Semantic Web [5],
where ontologies play a key role in defining the seman-
tics of data. Besides developing Semantic Web ontol-
ogy languages (e.g., OWL [2]) and applications (e.g., web
agents and services [20]), it is necessary to make exist-
ing data resources, such as databases, available for Seman-
tic Web applications to access and share. Currently, rela-
tional databases are some of the largest data resources in
the world, but the structure and integrity constraints of re-

lational tables are defined by schemas, which are not as
expressive as ontologies when representing the semantics
of data. To deal with both the expressivity gap between
schemas and ontologies and the syntax difference between
different definition languages, we apply our ontology-based
information integration system, OntoGrate, and thereby in-
tegrate relational databases into the Semantic Web.

Despite considerable progress in research on informa-
tion integration, as well as several commercial implemen-
tations in this field [15, 17], current information integration
systems suffer from several major drawbacks. First, in the
foreseeable future, databases, knowledge bases, the World
Wide Web, and the Semantic Web will coexist. It is still
a challenge for current systems to accommodate their con-
tents, which are either defined by schemas based on struc-
ture or defined by ontologies based on semantics. Second,
automatic tools cannot generate 100% accurate matchings
and executable mappings based on the semantics of data:
only domain experts can perform judicious validation. As
such, integration systems must be interactive and usable by
domain experts who are not necessarily computer experts.
Third, the mapping tools and data translation or query an-
swering systems may use different theoretical models to in-
terpret the semantics of mappings. Syntax translators alone
are inadequate, since semantics cannot be ignored.

As a result, the maturity of current research and practical
applications has demonstrated the need for a broader and
more formal approach to information integration. We have
several goals to achieve in our ongoing research project,
OntoGrate. First, we are extending the expressivity of Se-
mantic Web ontologies to incorporate database schemas,
defining both structure and semantics. Second, we are us-
ing machine learning and data mining techniques to pro-
vide more meaningful mapping rules to users, and stimulate
further interaction with domain experts to justify the rules
and make them executable. Third, our inference engine,
OntoEngine [12], is being extended not only to help check
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the consistency and redundancy of mapping rules, but also
to conduct optimized query answering and data translation.
Once users in multiple domains generate large amounts of
metadata (e.g., mapping rules), we expect to provide online
services that make available to the public the storage and
efficient access to large collections of metadata.

In this paper, we will focus on how to integrate databases
into the Semantic Web by incorporating database schemas
with Semantic Web ontologies. We will first summarize our
previous work on ontologies, Web-PDDL, and our inferen-
tial data integration model (section 2). We will then briefly
describe our new ideas for interactive information integra-
tion by introducing the OntoGrate architecture (section 3).
In section 4, we will elaborate on two scenarios in which
we integrate relational databases into the Semantic Web us-
ing the OntoGrate system. We will report the testing results
based on these scenarios. We will finalize this paper with
a section on related work (section 5) and present our future
work and conclusions in section 6.

2 Previous work

2.1 Schemas, Ontologies, Web-PDDL

In previous work, we have described in some detail how
to represent database schemas as ontologies and how to use
logic axioms to merge two database schemas [11]. We use
Web-PDDL [19], a strongly typed first order logic language
with Lisp-like syntax, to internally describe and process
these representations. We now briefly review and summa-
rize this work.

Consider an Informix database schema, Stores7, from
the online sales domain, in Figure 1. It defines the relations,
such as customer, order and item, and associated attributes.

Customer

 customernumber
 customerfname
 customerlname
 customercompany
 customeraddress1
 customeraddress2
 customercity
 customerstatecode
 customerzip

Order

 ordernumber
 ordercustomernumber
 orderdate
 ordershipweight
 ordershipcharge
 ordershipinfo

Item

 itemnumber
 itemordernumber
 itemstocknumber
 itemquantity
 itemtotalprice
 itemmanufacturercode

Manufacturer

 manufacturercode
 manufacturername
 manufacturerleadtime

Employee

 employeeid
 employeelastname
 employeefirstname
 employeeaddress
 employeecity
 customerregion

Call

 callcustomernumber
 calldatetime
 calluserid
 calldescription
 calltypecode

CallType

 calltypecode
 calltypedescription

Catalog

 catalognumber
 catalogstocknumber
 catalogmanufacturercode
 catalogdescription
 catalogpicture

State

 statecode
 statename

Stock

 stocknumber
 stockdescription
 stockunit
 stockunitprice
 stockunitdescription
 stockmanufacturercode

Figure 1. The database schema of Stores7.

Although Web-PDDL was originally designed as a lan-
guage for representing ontologies, their mappings, data in-

stances, and queries on the Semantic Web, it also can be
used to represent Stores7 as an ontology as shown in Fig-
ure 2.

(define (domain stores7-ont)

   (:extends

      (uri "http://www.cs.uoregon.edu/~paea/research/sql.pddl#" 

         :prefix sql) ...)

   (:types

      Customer State - @sql:Relation

      String - @sql:Varchar ...)

   (:predicates

      (customerfname x - Customer y - @sql:varchar)

      (customerlname x - Customer y - @sql:varchar)

      (customerstatecode x - Customer y - @sql:varchar) ...)

   (:axioms

      (forall (c - Customer code - @sql:varchar)

         (if (customerstatecode c code) 

            (exists (s - State) (statecode s code)))) ...)

   (:facts

      (@sql:primarykey Customer "customernumber") ...))

Figure 2. The Stores7 schema as an ontology.

Some of the highlights of the Web-PDDL syntax include:

• Inheritance: The :extends declaration in Figure 2
expresses that Stores7 inherits features from the
“sql” domain, which defines concepts for relational
databases such as relations, data types, and aggre-
gate functions. Therefore, the inheritance capability of
Web-PDDL allows us to incorporate some of the more
common and desirable features of SQL.

• Namespaces: To avoid symbol clashes, symbols im-
ported from other ontologies are given prefixes, such
as @sql:Relation. These correspond to XML
namespaces, and when Web-PDDL is translated into
RDF, that is exactly what they become [19].

• Types: Types (also known as “classes”) start with cap-
ital letters. A type T1 is declared to be a subtype of
a type T0 by writing “T1 - T0” in the :types field
of a domain definition. In other contexts, the hyphen
notation is used to declare a constant or variable to be
of a type T , by writing “x - T .”

• Predicates: Predicates correspond roughly to proper-
ties in the Web Ontology Language (OWL [2], which
is based on Description Logics), but they can take any
number of arguments.

• Axioms: The axiom in Figure 2 is the Web-PDDL ex-
pression for the foreign key relationship between Cus-
tomer and State, where customerstatecode is the
foreign key.

• Functions: There are also functions in Web-PDDL, in-
cluding Skolem functions and built-in functions such
as + and -, that can be evaluated when appropriate.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06) 
0-7695-2571-7/06 $20.00 © 2006 IEEE 



• Facts: Assertions (facts) are written in the usual Lisp
style: e.g. (@sql:primarykey Customer “customer-
number”) states that the primary key attribute of the
Customer relation is “customernumber.”

In our initial findings, a few simple rules relating
schemas to ontologies can accomplish the majority of trans-
formations. These rules also play an important part in de-
veloping the SQL wrappers (PDDSQL) for OntoGrate ar-
chitecture:

Relation ↔ Type

Attribute ↔ Predicate

Integrity Constraint ↔ Axiom

Primary Key ↔ Fact

Although these simple rules appear to work well for rudi-
mentary transformation, we believe further work is required
to capture more subtle database semantics.

2.2 Merging Ontologies with Bridging Axioms

A merged ontology consists of common elements from
a source and target ontology, but also defines the semantic
mappings between them as bridging axioms [12]. A merged
ontology allows all the relevant symbols in a domain to in-
teract with each other, so that facts can be translated from
one ontology to another using inference over the bridging
axioms.

customerregioncustomercontactname

Art Farley
Al Malony

Oregon
Washington

Customer

Nwind

State

Customer
customerfname customerlname customerstatecodecustomernumber

   101
   102

   Michal
   Al

   Young
   Malony

   OR
   WA

Stores7
statecode statename

OR
WA

Oregon
Washington

Figure 3. Portions of two database schemas
and the mappings between them.

Suppose we have a different sales schema, such as
Nwind from Microsoft. Although Stores7 and Nwind are
similar schemas, they do have some differences. We can
write bridging axioms in Web-PDDL to express mappings
between Stores7 and Nwind. Consider, for example, the
mappings depicted in Figure 3. The 3-way mapping from
Nwind’s region to Stores7’s statename and statecode in-
formation, can be expressed in Web-PDDL as:

(forall (x - @nwind:Customer y - @sql:varchar)
(if (@nwind:customerregion x y)
(exists (z - @stores7:State t - @sql:varchar)

(and (@stores7:customerstatecode x t)
(@stores7:statename z y)
(@stores7:statecode z t)))))

We can finally put all bridging axioms into the new, merged
ontology, called Stores7-Nwind.

2.3 Inferential Data Integration

Given a merged ontology between two sources expressed
in the first order ontology language, Web-PDDL, we can
then perform integration using first order theory. In this sec-
tion, we specify the problem of integration and show how
inference can solve it, forming the basis of our inferential
data integration model.

• Query Translation: The process of extracting data ex-
pressed by one schema to answer a query posed using
another schema, also known as query answering.

• Data Translation: Translating data from a source
schema to a target (or integrated) schema for the pur-
pose of information exchange.

The problem of query answering has been the focus of
most recent work, but data translation is also important [9].
We argued that both of these problems can be addressed
seamlessly by using sound inference in [11]. We repeat
that argument here for the sake of completeness.

Suppose we have already used bridging axioms to de-
scribe the mappings between two schemas, Schema S
from DBs and Schema T from DBt (such as the 3-way
mapping for Stores7 and Nwind). Let the set of bridging
axioms be denoted Ms t. Let the symbol �D indicate data
translation between two schemas (such as S and T) so that:
αs �D βt means βt is the translation of αs, where αs and
βt are assertions (facts) corresponding to data instances in
DBs and DBt. For example, the following is an assertion
from Stores7 and its equivalent expressed in Web-PDDL:

The statecode of a Customer identified as 101 is OR.

(customerstatecode Customer#101, “OR”)

For a set of assertions (or “dataset”), we stipulate that the
translation of αs is simply the largest set of assertions, βt,
entailed by αs through the mapping rules Ms t. A conse-
quence of this stipulation is that

(Ms t; αs) �D βt only if (Ms t;αs) � 1βt

1The logic symbol, �, can be read as “entails.”
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To guarantee this requires sound inference. In other words,
“�D” entails soundness, so we can use �2 to represent data
translation with our algorithm:

(Ms t; αs) �D βt ⇔ (Ms t; αs) � βt ⇒ (Ms t; αs) � βt

This definition means that βt can be derived from the map-
pings Ms t and assertions αs using inference.

One may assume that translating a dataset means finding
an equivalent dataset in a different vocabulary. As justifi-
cation of our approach, we point out that our standard has
been taken for granted in the case of another main problem
in data integration: query translation, the process of extract-
ing data expressed using one schema to answer a query in
another schema. We will use the symbol �Q to indicate the
query translation. If αs is a query in Schema S, its trans-
lation is a query βt in Schema T such that any answer (set
of bindings) to βt is also an answer to αs. In other words:

(Ms t; αs) �Q βt only if (Ms t; θ(βt)) � θ(αs)

for any substitution θ, where θ(βt) is from the target
database DBt. It also means, for any substitution θ,

(Ms t; αs) �Q βt ⇔ (Ms t; θ(βt)) � θ(αs)

⇒ (Ms t; θ(βt)) � θ(αs)

We claim that βt is the translation of αs if and only if,
for every substitution θ, θ(βt) is the weakest statement in
Schema T such that θ(βt) is from DBt, (Ms t; θ(βt)) �
θ(αs) and Ms t � θ(αs). The weakest statement means
that βt need not be (and seldom is) equivalent to αs, in the
sense that any answer to one is an answer to the other. All
we need is that any answer to βt be an answer to αs. In the
literature this is also known as query containment [17].

Since both data translation and query translation can be
defined as an inference, we can call our data integration ap-
proach inferential data integration.

Summary of previous results

Our previous work either focused on the ontology transla-
tion for Semantic Web documents [12] or focused on the
integration of relational databases themselves [11]. How-
ever, our new approach tries to integrate databases and Se-
mantic Web resources together. In our previous work, we
have built a first order inference engine, OntoEngine, to
first evaluate our approach on several real ontology trans-
lation tasks for the Semantic Web documents. Some of
them need OntoEngine to process large sets of data. The
results of our experiments show that the translation works
efficiently. For example, OntoEngine can translate 21,164
facts (about 3,010 individuals and 1,422 families from Eu-
ropean royalty in a daml file3) from one genealogy ontology

2The logic symbol, �, can be read as “infers.”
3http://www.daml.org/2001/01/gedcom/royal92.daml

to 26,956 facts in another genealogy ontology. This takes
less than 1 minute on a typical PC (the details were reported
in [12]). Recently, we also tested OntoEngine on query
translation and answering in an early version of OntoGrate
framework [11] for integrating relational databases. The
system can reformulate conjunctive queries and retrieves
over 100,000 answers from a target database in under 30
seconds. In addition to query answering, the system can
translate 40,000 database facts from source to target in un-
der 30 seconds.

3 OntoGrate Architecture

We are developing OntoGrate, a system that, given dif-
ferent but related ontologies or schemas and their associ-
ated data, will be able to learn or mine a set of first order
mapping rules that accurately describes how the input on-
tologies or schemas relate to each other. These rules will
be used by OntoEngine to perform data integration. For ex-
ample, different genomic databases, which are used to study
NIH model organisms such as the zebrafish, mouse and fruit
fly, and different genomic ontologies (e.g., the Gene Ontol-
ogy [22] in OWL) could benefit from integration when used
to answer more interesting questions geneticists may have
about the human genome.

To explain how OntoGrate can help domain experts (e.g.,
geneticists) integrate their databases and Web resources, we
explain the architecture of OntoGrate, shown in Figure 4. It
is composed of six modules and interfaces with four differ-
ent kinds of data resources related to our specific aims.

user interface

mining

inference

learning

Matching Generator

Semantic
Web

Document

XML
WWW

Document
Database

Knowledge
Base

Mapping
Rules

SQL OWL
Syntax Translators

(adapters)

Figure 4. Architecture of OntoGrate The system is composed
mainly of six modules: the inference module, the learning module,
the mining module, the matching generation module, the syntax
translators, and the user interface module. The input can consist
of four different kinds of data resources, along with their ontologies
(or schemas).

In between OntoGrate and the data resources exist some
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syntax translators (adapters). For example, we have built
an automatic translator between Web-PDDL and OWL
(PDDOWL) and an automatic translator between Web-
PDDL and SQL (PDDSQL). When all ontologies, schemas,
and data are represented in Web-PDDL, the matching gen-
eration module will produce correspondences as sugges-
tions to present to the users. We will briefly introduce our
aims and new ideas as follows.

Integration of schemas and ontologies: Since
databases are defined by schemas, which focus more on
structure than semantics, we first need to build an auto-
matic translator to represent schemas as ontologies. We
have discovered some basic heuristics for transforming
schemas into ontologies. These heuristics can be embed-
ded into an automatic tool to perform most schema trans-
formations, and it has worked well so far in our prelimi-
nary database experiments [11]. While it appears that this
task can be automated, we anticipate some theoretical chal-
lenges, especially given some application-oriented database
schema designs with complex constraints, such as biomed-
ical databases. User interaction may be required to capture
subtle semantics.

Matching (correspondence) generation: To derive
candidate matchings for users, we are building a matching
generator based on the names, structure, and relationships
of concepts in ontologies (schemas). A user interface will
depict the ontologies and candidate matchings based on the
input ontologies and data. The system will then enter into
an interactive loop with the learning and mining modules,
during which the user will make further refinements.

Learning mappings from the knowledge of domain
experts: Based on the matching suggestions, domain ex-
perts may be able to specify simple relationships, such as
“equal,” “subclass” or “subproperty.” However, more com-
plex relationships may be too subtle for a domain expert to
specify accurately at first. We expect machine learning to
be helpful in this case: all a user has to do is to provide
specific examples and let the system generalize them into
formal rules expressed in first order logic. In general, we
expect that this learning module will benefit from the ex-
tensive literature that deals with learning in first order logic
(Inductive Logic Programming) [21, 4]. Well-suited learn-
ing algorithms will have to be developed, depending on (i)
the amount of information available, (ii) the quality of user
input, (iii) the complexity of mapping rules needed, and (iv)
the complexity of the input ontologies.

Mining large data sets to find candidate mappings:
We are using association rule mining in the OntoGrate sys-
tem to discover candidate mappings, which the user can
then select or refine to generate final executable mapping
rules. Association rule mining [3] is a data mining tech-
nique that has been successfully used to find frequent pat-
terns in large data sets. For instance, this technique might

help discover patterns in different databases that share some
partial data, such as different gene databases that share the
same GenBank [1] ID. Similarly, medical databases use
term IDs to point to medical terms in UMLS [18].

User Interface: Interaction between the system and do-
main experts through a user interface is important to real-
izing our vision of an interactive integration system. Our
goal is to have the user interface module present informa-
tion about input ontologies or data resources, the current
candidate mappings generated by data mining and machine
learning, and any intermediate and final data translation or
query answering results in a clean, concise, and accessible
fashion. Also, the user interface will be designed to facil-
itate user feedback, such as having the user select nodes
in the ontologies or facts in the databases, choose mapping
rules mined by the data mining module or learned by the
learning module to refine or verify them, or select sugges-
tions from the matching generation module to further ex-
plore and incorporate.

Inference Engine: The inference module is in charge of
using mapping rules to answer queries and exchange (i.e.,
translate) data among available data sources. It will also be
used for rule refinement, that is, to check the consistency
and redundancy of the generated rule set. OntoEngine is
a special purpose first order theorem prover developed for
ontology translation on the Semantic Web [12]. We are ex-
tending it for the new purposes mentioned in this paper. In
particular, the output from the inference engine can be fed
back into the learning and mining processes for better re-
sults.

4 Case Study

Although OntoGrate is an ongoing research project,
we have applied this framework to integrate relational
databases and Semantic Web resources. In this section, we
will elaborate on our approach in two different scenarios.

4.1 Integrating DBs into the Semantic Web with-
out an existing domain ontology

After we get the Stores7 ontology in Web-PDDL (as
in Figure 2), we can call our syntax wrapper PDDOWL to
transform it into OWL syntax like:

...
<owl:Class rdf:ID="Customer">
<rdfs:subClassOf

rdf:resource="...sql#Relation"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="customercity">
<rdfs:domain rdf:resource="#Customer"/>
<rdfs:range rdf:resource="...#String"/>

</owl:DatatypeProperty>
...
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Besides classes and property definitions, PDDOWL can
also translate axioms (rules) into RDF syntax using our ap-
proach in [19]. We can put the Stores7 OWL ontology on
the web.

Suppose some Semantic Web agents or services wish to
access (e.g., query) the data in the Stores7 database using
the new Stores7 OWL ontology. One way to do this is to
use the Stores7 OWL ontology to mark up (annotate) data
tuples from the database into an OWL document, but it is
obvious that the annotation of all data tuples is not efficient
and will create much redundancy on the Semantic Web. It
would be better to let web agents or services access rela-
tional databases directly.

However, web agents or services may want to use some
Semantic Web query languages to send queries to the
Stores7 database, after they locate the new Stores7 OWL
ontology. OWL-QL4 is a promising Semantic Web query
language and it may become W3C standard in the future.
If that, we just need to provide functions in PDDOWL to
translate OWL-QL queries into Web-PDDL queries. Then
we call the PDDSQL translator to translate Web-PDDL
queries into SQL queries and get relational answers (i.e.,
tables) directly from the Stores7 database. PDDSQL can
again translate those answers to bindings in Web-PDDL.
Finally, the bindings can be filled in to provide answer bun-
dles in OWL-QL by PDDOWL. The process is illustrated
in Figure 5.

Database

PDDSQL

Stores7
(Web-PDDL)

Bindings
(Web-PDDL)

PDDOWL

Queries
(OWL-QL)

Answers
(OWL)

Figure 5. Integrating databases into the Se-
mantic Web without an existing domain on-
tology.

4http://ksl.stanford.edu/projects/owl-ql/

For example, a simple query one might pose to the sys-
tem: “What are the names of customers in the Stores7
database living in the city of Eugene?” Suppose the query
is using the Stores7 OWL ontology.

<owl-ql:query
xmlns:owl-ql=".../owl-ql-syntax#"...>

<owl-ql:premise>
<rdf:RDF>

<rdf:Description rdf:about="#C">
<rdf:type rdf:resource="#Customer"/>
<customercity rdf:resource="#Eugene"/>

</rdf:Description>
</rdf:RDF>

</owl-ql:premise>
<owl-ql:queryPattern>

<rdf:RDF>
<rdf:Description rdf:about="#C">
<customerfname rdf:resource="...#x"/>
<customerlname rdf:resource="...#y"/>

</rdf:Description>
</rdf:RDF>

</owl-ql:queryPattern>
<owl-ql:answerKBPattern>
<owl-ql:kbRef rdf:resource="...stores7.owl"/>
...

PDDOWL translates the OWL-QL query into a query in
Web-PDDL, described by the Stores7 ontology:

(and
(customercity ?C - Customer "Eugene")
(customerfname ?C - Customer ?x - String)
(customerlname ?C - Customer ?y - String))

PDDSQL then takes this Web-PDDL query and trans-
lates it into a query in SQL:

SELECT C.customerfname, C.customerlname
FROM Customer C
WHERE C.customercity = "Eugene"

The SQL query returns a table, which is then trans-
formed into Web-PDDL bindings by PDDSQL:

{?x/Paea, ?y/LePendu}
{?x/Dejing, ?y/Dou}
{?x/Shiwoong, ?y/Kim}
...

The Web-PDDL bindings are used to generate an OWL-
QL answer bundle by PDDOWL:

<owl-ql:answerBundle
xmlns:owl-ql="...owl-ql-syntax#" ...>

<owl-ql:answer>
<owl-ql:binding-set>

<var:x rdf:resource="#Paea"/>
<var:y rdf:resource="#LePendu"/>

</owl-ql:binding-set>
<owl-ql:answerPatternInstance>
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<rdf:RDF>
<rdf:Description rdf:about="#C">
<customerfname rdf:resource="#Paea"/>
<customerlname rdf:resource="#LePendu"/>

</rdf:Description>
</rdf:RDF>

<owl-ql:answerPatternInstance>
</owl-ql:answer>
<owl-ql:answer>
<owl-ql:binding-set>

<var:x rdf:resource="#Dejing"/>
<var:y rdf:resource="#Dou"/>

</owl-ql:binding-set>
...

Testing results in this scenario

We have put more than 100,000 data records in a Stores7
database running in a local PC.5 Both the translation of the
query from OWL-QL to Web-PDDL using PDDOWL and
the translation from Web-PDDL to SQL using PDDLSQL
are less than 1 second. The speed of getting an answer table
from the Stores7 database by MySQL database engine de-
pends on the size of table, for example, 1000 data records
(e.g., 1000 customers are living in Eugene) takes 3 seconds.
Next, PDDSQL takes less than 1 second to transform the
table with 1000 facts into Web-PDDL bindings. Finally,
PDDOWL can translate those 1000 Web-PDDL bindings to
OWL answers in 3 seconds.

4.2 Integrating DBs into the Semantic Web with
an existing domain ontology

It is possible for an existing ontology to be applied by
some Semantic Web applications within the same domain.
For example, for the domain of sales and orders, it was easy
for us to find that there is an Order ontology written in OWL
and published on the Web6. Suppose that some Semantic
Web applications have already used this ontology. Once
the Stores7 schema has been represented in Web-PDDL,
we can also run PDDOWL to transform the Order ontology
into Web-PDDL syntax. These two ontologies can then be
merged using bridging axioms. Unlike the process of trans-
forming schemas to ontologies, defining semantic relation-
ships between concepts is often too subtle for full automa-
tion. Some tools do exist [24, 10, 26, 8, 30] that facilitate
the process, but human interaction is invariably required. In
OntoGrate, although we are developing both machine learn-
ing and data mining tools to aid this process, it still can not
be fully automated and it needs human involvement. Based
on our experience, an ontology representation can help us to
define bridging axioms manually. For example, the follow-
ing are some bridging axioms between Stores7 and Order:

5All experiments were performed on a 1.8Ghz Centrino processor with
1Gb of RAM and a MySQL database engine.

6http://www.dayf.de/2004/owl/order.owl

(T-> @stores7:Customer @order:Person)

(forall (C - @stores7:Customer x - String)
(iff (@stores7:customerfname C x)

(@order:FirstName C x)))

(forall (C - @stores7:Customer y - String)
(iff (@stores7:customerlname C y)

(@order:LastName C y)))

(forall (P - @order:Person A - @order:Address
z - String)

(if (and (@order:hasAddress P A)
(@order:City A z))

(@stores7:customercity P z)))

(forall (C - @stores7:Customer z - String)
(if (@stores7:customercity P z)

(exists (A - @order:Address)
(and (@order:hasAddress P A)

(@order:City A z)))))

where order is the prefix of Order ontology.
After we get the merged ontology of Stores7 and Order,

we can use OntoGrate to integrate the Stores7 database with
other Semantic Web applications that use the Order ontol-
ogy. The process is shown in Figure 6:

Stores7
(Web-PDDL
ontology)

Order
(Web-PDDL
ontology)

Bridging Axioms

PDDSQL PDDOWL

Database

Answers
(OWL)

Query on
Order

ontology
(OWL-QL)

OntoEngine

Agents or
Services

Figure 6. Integrating databases into the Se-
mantic Web with an existing domain ontology.

If a Semantic Web agent has an OWL-QL query de-
scribed by the Order ontology, PDDOWL first translates it
into a Web-PDDL query. OntoEngine can then do back-
ward chaining to translate this query into a query in Stores7
with the aforementioned bridging axioms. Afterwards,
PDDSQL can translate the query into a SQL query and get
the relational data from the Stores7 database. The answers
(facts) can be translated back into the Order ontology by
OntoEngine, and then finally get marked up in OWL-QL.
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We will use a similar query as the one from Section 4.1 to
illustrate the process. The only difference is that the OWL-
QL query is described by the Order ontology:

<owl-ql:query
xmlns:owl-ql=".../owl-ql-syntax#"...>

<owl-ql:premise>
<rdf:RDF>

<rdf:Description rdf:about="#C">
<rdf:type rdf:resource="#Person"/>
<hasAddress rdf:resource="#A"/>

</rdf:Description>
<rdf:Description rdf:about="#A">

<rdf:type rdf:resource="#Address"/>
<City rdf:resource="#Eugene"/>

</rdf:Description>
</rdf:Description>

</rdf:RDF>
</owl-ql:premise>
<owl-ql:queryPattern>

<rdf:RDF>
<rdf:Description rdf:about="#C">
<FirstName rdf:resource="...#x"/>
<LastName rdf:resource="...#y"/>

</rdf:Description>
</rdf:RDF>

</owl-ql:queryPattern>
<owl-ql:answerKBPattern>
<owl-ql:kbRef rdf:resource="...order.owl"/>
...

PDDOWL translates this into a Web-PDDL query, which
also uses the Order ontology:

(and (hasAddress ?C - Person ?A - Address)
(City ?A "Eugene")
(FirstName ?C - Person ?x - String)
(LastName ?C - Person ?y - String))

OntoEngine uses backward chaining to translate this
query into a Web-PDDL query that uses the Stores7 ontol-
ogy:

(and
(customercity ?C - Customer "Eugene")
(customerfname ?C - Customer ?x - String)
(customerlname ?C - Customer ?y - String))

The rest of the process is the same as that shown in Sec-
tion 4.1. However, the OWL-QL answer bundle returned
uses the Order ontology, not the Stores7 ontology:

<owl-ql:answerBundle
xmlns:owl-ql="...owl-ql-syntax#"...>

<owl-ql:answer>
<owl-ql:binding-set>
<var:x rdf:resource="#Paea"/>
<var:y rdf:resource="#LePendu"/>

</owl-ql:binding-set>
<owl-ql:answerPatternInstance>

<rdf:RDF>
<rdf:Description rdf:about="#C">

<FirstName rdf:resource="#Paea"/>
<LastName rdf:resource="#LePendu"/>

</rdf:Description>
</rdf:RDF>

<owl-ql:answerPatternInstance>
</owl-ql:answer>
...

Testing results in this scenario

The testing results are similar to those in the last scenario.
The only overhead added to this scenario is that OntoEngine
needs to translate the query in the Order ontology into a
query in the Stores7 ontology. The speed of translation is
determined by the complexity of queries. We have tested
the queries with 4 joined tables. The query translation takes
less than 1 second. We also tested translating the data facts
(in Web-PDDL) from Stores7 ontology to Order ontology
(the speed is similar as we reported in [12]: 10,000 facts in
30 seconds). After the facts are semantically translated into
the Order ontology, PDDOWL can mark up 10,000 facts in
OWL syntax with the Order ontology in 11 seconds.

5 Related Work

The primary goal of this paper is to introduce the On-
toGrate framework and our approach to use OntoGrate to
integrate relational databases into the Semantic Web in two
different scenarios. The related approaches can be found in
several disciplines:

Semantic Annotation for Schemas: There are very few
approaches investigating the transformation of relational
schemas into ontologies. The most similar approach to
ours is [28], in which a relational model is mapped to
frame logic, which can then be represented in RDF. The
two approaches share the same process of semantic anno-
tation. However, our focus is not just on the representa-
tion of, but more importantly on the integration of, rela-
tional databases and Semantic Web applications. Another
approach described in the DOGMA ontology framework
also talked about how to translate a query from an ontol-
ogy language to SQL [29], but it did not mention anything
about the translation problem between different ontologies
or schemas.

Schema and ontology mapping: Although the focus
of this paper is not on finding mappings, automatic or
semi-automatic schema (ontology) matching and mapping
tools [24, 10, 26, 8] can be helpful in providing sugges-
tions to a domain expert who uses the OntoGrate system.
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Clio [30, 14] is a semi-automatic tool that can generate map-
pings in SQL and XQuery. COMA [13] combines schemas
with a reference ontology and uses composition to build
mappings. Our approach is to define schema and ontology
mappings as first order logic axioms (bridging axioms).

Data integration and query answering: General integra-
tion models, such as federated databases [27], data ware-
houses [6], and peer-to-peer data management [16], exist.
The integration process is always implemented with a data
mediator and an integrated schema represented as view def-
initions. The MiniCon algorithm [23] rewrites queries ex-
pressed in a global view to a conjunction of queries over
local ones, so that a large set of (materialized) views can
lead to efficient query answering. Our approach uses an in-
ference engine and syntax translators between SQL, OWL,
and first order logic (Web-PDDL) to translate data and an-
swer queries. Although Datalog systems also use inference
to process the queries and data, they are not designed for
data integration.

Logic and inference: Approaches based on a declarative
model (as opposed to a procedural one) often use a logical
framework from the area of knowledge representation and
reasoning. Raymond Reiter’s reconstructions of the rela-
tional data model in first order logic [25] is an early exam-
ple of such approaches. The Carnot, SIMS, and Information
Manifold systems are brilliantly summarized and compared
in [7]. While very similar to our approach, these approaches
tend to be more constricted, depending on fixed global on-
tologies such as CYC or LOOMS, or a less expressive logic
such as Description Logic or Datalog.

6 Conclusion and Future Work

We have applied an ontology-based information integra-
tion framework to make relational databases accessible to
emerging Semantic Web applications. After defining dif-
ferent schemas as ontologies, we can define mapping rules
as bridging axioms and merge the schemas (ontologies)
together. The data integration can then be implemented
as an inference process by our special purpose theorem
prover, OntoEngine, with the help of syntax wrappers (i.e.,
PDDSQL and PDDOWL). Our new OntoGrate framework
not only has the advantage of the rich expressiveness of first
order logic for conceptual modeling, but also exploits both
the desirable features of SQL and OWL. We elaborate on
our two approaches to query sales databases from the Se-
mantic Web applications in two scenarios.

Our testing results so far demonstrate that OntoGrate is
promising for integrating databases into the Semantic Web.
In the immediate future, besides implementing other re-
search aims described in section 3, the scalability and effi-
ciency of OntoGrate needs to be investigated in larger-sized
relational databases of various domains. Also, another in-

teresting integration task is to integrate current XML doc-
uments in the world-wide web with the Semantic Web in
the OntoGrate framework. We believe this will be more dif-
ficult than integrating relational databases into the Seman-
tic Web, since not all XML documents have XML schemas
(which we can treat similarly as relational schemas) or DTD
definitions. We plan to tackle these challenging problems
in our immediate future work while making progress on the
other important aspects of our system outlined in section 3.
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