
Ontology Database: A New Method for Semantic

Modeling and an Application to Brainwave Data

Paea LePendu1, Dejing Dou1, Gwen A. Frishkoff2, and Jiawei Rong1

1 Computer and Information Science
University of Oregon, USA

{paea,dou,jrong}@cs.uoregon.edu
2 Learning Research and Development Center

University of Pittsburgh, USA
gwenf@pitt.edu

Abstract. We propose an automatic method for modeling a relational
database that uses SQL triggers and foreign-keys to efficiently answer
positive semantic queries about ground instances for a Semantic Web
ontology. In contrast with existing knowledge-based approaches, we ex-
pend additional space in the database to reduce reasoning at query time.
This implementation significantly improves query response time by al-
lowing the system to disregard integrity constraints and other kinds of
inferences at run-time. The surprising result of our approach is that load-
time appears unaffected, even for medium-sized ontologies. We applied
our methodology to the study of brain electroencephalographic (EEG
and ERP) data. This case study demonstrates how our methodology can
be used to proactively drive the design, storage and exchange of knowl-
edge based on EEG/ERP ontologies.

1 Introduction

With recent advances in data modeling and increased use of the Semantic Web,
scientific communities are increasingly looking to ontologies to support web-
based management and exchange of scientific data. Ontologies can be used to
formally specify concepts and relationships between concepts within a domain.
The resulting logic-based representations form a conceptual model that can help
with storage, management and sharing of data among different research groups.

In addition to the representation of classes and properties, ontologies can
store intensional knowledge in the form of general facts, often called rules, ax-
ioms or formulae, such as, “All Sisters are Siblings.” Extensional data include
specific facts, or ground terms, such as, “Mary and Jane are Sisters.” Relational
databases can effectively store and retrieve extensional data, but they lack ob-
vious mechanisms to perform the inferences necessary to answer extensional
queries over intensional data, as in, “Which individuals are Siblings?” Unlike a
typical relational database, a knowledge base can support the deduction that
Mary and Jane are siblings by using an inference engine.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 313–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

314 P. LePendu et al.

Intensional knowledge reduces the need to store large amounts of extensional
data. For example, we do not need to store the fact, “Mary and Jane are Sib-
lings,” to know that it is true. The trade-off, however, is that inferences are
required at run-time to generate this fact. What we have, therefore, is an exam-
ple of the classical trade-off between time and space: the more extensional data
we store, the less time it will take to answer queries about them. In this paper,
we challenge traditional approaches for modeling knowledge-based or deductive
database systems of this sort, which typically aim to find a balance between space
and time requirements. Instead we propose that space is expendable and a great
deal of inference (time) can be saved through the use of triggers and foreign-keys
to forward-propagate inferences at load-time. Interestingly, when we compared
our methods against existing benchmarks, we found we significantly improved
query performance as expected, but load-time was remarkably unaffected.

In addition to these performance gains, we demonstrate that semantics can
play an essential role in data management and query answering. In fact, both
ontologies and database systems are important, leading us to propose a new
methodology for database design, which we will call ontology databases.

To illustrate this idea, we describe the application of our methodology to brain
electroencephalographic (EEG and ERP) data. In this application, we describe a
database design that is ontology-driven. Moreover, we demonstrate how queries
can be posed by domain experts at the ontology-level rather than using SQL di-
rectly. Database projects like ZFIN [8] and MGI [1], housing large central reposi-
tories for zebrafish and mouse genetic data, respectively, were later reinforced by
the Gene Ontology [25] to help normalize knowledge across these kinds of repos-
itories. By contrast, our Neural ElectroMagnetic Ontology (NEMO) project uses
expert knowledge in the form of EEG/ERP ontologies to drive the data modeling
and information storage and retrieval process.

The paper is organized as follows. We begin with related work (Section 2),
followed by a description of our ontology-based modeling methodology and a
performance analysis (Section 3). We then present a case study in which we
applied our methodology to develop ontology databases for EEG/ERP query
answering (Section 4). We conclude with a discussion and an outline of future
work in Section 5.

2 Related Work

Ontologies can be regarded as a conceptual or semantic model for database
design. Hull and King [19] provide a nice summary of semantic models of all
kinds: Entity-Relational, Object-Oriented, Ontological and so on. While the no-
tions in their survey make clear that there are firm connections between models,
database implementations, and logics, we have been interested in exploring the
question, “What is a semantic data model?” In particular, we wish to explore it
from an ontology-based perspective that addresses practical issues in collabora-
tive scientific research, especially, biomedical research. Increasingly, biomedical
researchers are looking to develop ontologies to support cross-laboratory data

Ontology Database: A New Method for Semantic Modeling 315

sharing and integration. These ontologies can be found at ontology repositories
around the world [34]. For example, more than 62 biomedical ontologies can be
found at the National Center for Biomedical Ontology (NCBO) [6].

Pan and Heflin proposed a similar approach, which they call description logic
databases (DLDB) [26]. DLDB is a storage and reasoning support mechanism
for knowledge base facts (RDF triples), which has been compared to well-known
systems such as Sesame [10]. Although we structure the database relations in a
way that is similar to DLDB (i.e., unary and binary predicates become unary or
binary relations), our implementation using triggers and foreign keys to support
reasoning, as opposed to SQL views, allows for a significant performance gain by
trading space for time by eagerly forward-propagating data at load-time. In this
context, it is informative to consider the recent work by Paton and Dı́az [27],
which examines rules and triggers in active database systems.

Recent research on bridging the gap between OWL and relational databases
by Motik, Horrocks and Sattler [24] provides unique insight into the expressive-
ness of description logics versus relational databases. The integrity constraints
in databases can be described with extended OWL statements (axioms). An
important contribution of this research is to show that the constraints can be
disregarded while answering positive queries, if the constraints are satisfied by
the database.

The idea of balancing space and time when we couple databases and reason-
ing mechanisms comes from seminal works by Reiter [28,30]. Reiter proposed a
system that uses conventional databases for handling ground instances, and a
deductive counterpart for general formulae. Since no reasoning is performed on
ground terms, Reiter argues convincingly that in such a system queries can be
answered efficiently while retaining correctness. OntoGrate [13] is precisely such
a system for semantic query translation using ontologies. The key question that
motivated our trigger-based approach was, “Since disk-space is rarely an issue
these days, what would happen if we use even more space?”

The neuroscience community is a recognized leader in the development of
biomedical ontologies. For example, the Human Brain Project has supported the
development of a common data model and meta-description language [17] for neu-
roscience data exchange and interoperability. BrainMap [22] has designed a Ta-
laraich coordinate-based archive for sharing and meta-analysis of brain mapping
studies and literature, as well as a sharable schema for expression of cognitive-
behavioral and experiment concepts. The fBIRN project [20] has pioneered sev-
eral areas for neuroscience data sharing, including distributed storage resources
and taxonomies of neuroscience terms (called BIRNlex). Our project will build
on this prior work and extend it to incorporate ontology-based methods for rea-
soning. In addition to incorporating cognitive-behavioral and anatomy concepts
represented in BrainMap and in fBIRN, NEMO will develop ontologies for tempo-
ral, spatial, and spectral concepts that are used to describe EEG and ERP pat-
terns. In line with OBO “best practices,” we will reuse ontology concepts from
relevant domains. In fact, we are collaborating directly with ontology engineers
and domain experts in the fMRI, as well as the EEG and ERP, communities.

316 P. LePendu et al.

The NEMO project brings some distinctive methods to bare on the problem of
data sharing. Whereas most prior work on data sharing in the neurosciences has
focused on the development of simple taxonomies or relational databases, NEMO
uses ontologies to design databases that can support semantically based queries.
What this means is that NEMO databases can be used to answer more com-
plex queries, which cannot be handled by traditional (purely syntactic) database
structures. For example, the popular Gene Ontology (GO) [25] provides a stan-
dard vocabulary and concept model for molecular functions, biological processes
and cellular components in genetic research. The OWL [7] specification of GO
is over 40 Megabytes in size [25] and terabytes of research data stored in model
organism databases around the world such as ZFIN [8] and MGI [1] are all being
marked-up according to the GO ontology. The NEMO working group is borrow-
ing from this idea and taking it a step further [12,15]. More than a standard
vocabulary of terms, the ontologies NEMO is developing will capture knowl-
edge ranging from the experimental methods used to gather ERP data down
to instrument calibration settings so that results can be shared and interpreted
semantically during large-scale meta-analysis across laboratories.

3 Ontology-Based Data Modeling

We first present a new and general methodology, which takes a Semantic Web
ontology as input and outputs a relational database schema. We call such a
database an “ontology database,” which is an ontology-based, semantic database
model. As we will show in Section 4, after we load ERP data into the NEMO
ontology database, we can answer queries based on the ontology while automat-
ically accounting for subsumption hierarchies and other logical structures within
each set of data. In other words, the database system is ontology-driven, com-
pletely hiding underlying data storage and retrieval details from domain experts,
whose only interaction-interface happens at the ontology (conceptual) level.

3.1 The Procedural Extension

Although Description Logics (DL) [9] provide the formal logical foundation for
OWL and Semantic Web ontologies, we do not require the full expressiveness of
this logic for data modeling purposes in most scenarios we have encountered. It
suffices to use rules of the form (reads “if C then D”):

C ⇒ D,

which exclude the analysis-by-cases and contrapositive reasoning provided by
full DL inclusion axioms of the form (reads “C is subsumed by D”):

C � D.

What this means is that we are drawing a line between databases and knowledge
bases. For example, while it may be taken for granted in a knowledge-based

Ontology Database: A New Method for Semantic Modeling 317

system that, “X is either a Rock or it is not a Rock, no matter what X is,” a
database has no such reasoning capability. It can only say which is actually the
case. As such, we technically only allow epistemic inclusion axioms with the K
operator [9] which stands for “know” in the following rule (reads “Only when
we know that C is true can we conclude D”):

KC � D.

The difference is evidenced by the fact that we can immediately conclude D
(without any positive or negative witnesses of C) in:

(C � ¬C) � D,

but not necessarily in:
(KC � K¬C) � D.

This restriction makes knowledge maintenance (reasoning) much easier: all we
need to calculate is the procedural extension of a given set of facts and rules [9].
This can easily be done using database triggers and foreign keys with cascading
deletes, the basic idea of which we outline below.

3.2 Triggers

Triggers are used for each rule to propagate data in a forward-chaining manner
as facts are loaded into the ontology database. For example, suppose we have
the following first-order rule (reads “all Sisters are Siblings”):

∀x, y : Sisters(x, y) → Siblings(x, y).

Whenever a new pair of sisters is inserted into the ontology database, such as
Sisters(Mary, Jane), a trigger fires, eagerly inserting Siblings(Mary, Jane) as
well. This process is depicted in Figure 1.

Sisters (subj, obj)

(Mary, Jane)

Siblings (subj, obj)

(Mary, Jane)
(Lily, Zena) (Paul, Mary)

(Lily, Zena)
(Mary, Jane)trigger

f-keyf-key

Fig. 1. This figure shows that upon asserting Sisters(Mary,Jane) which means in-
serting (Mary, Jane) into the Sisters-property table, the trigger causes (Mary, Jane)
to first be inserted into the Siblings-property table. Triggers generate knowledge in
a forward-chaining manner for the Sisters-Siblings rule, ∀x, y : Sisters(x, y) →
Siblings(x, y). Implicitly understood in this sub-property rule is also the contraposi-
tive, ∀x, y : ¬Siblings(x, y) → ¬Sisters(x, y), an integrity check that foreign-keys can
enforce, shown here as the dotted line.

318 P. LePendu et al.

Although the above is an example of a sub-property (Sisters is a sub-property
of Siblings), triggers can be used for both sub-class and sub-property hierarchies.
Each trigger is a straightforward encoding of the epistemic rule, in SQL:

CREATE TRIGGER subPropertyOf-Sisters-Siblings SUCH THAT

UPON DETECTING EVENT INSERT (x,y) INTO Sisters(subject,object)

FIRST EXECUTE INSERT (x,y) INTO Siblings(subject,object)

3.3 Foreign Keys with Cascading Delete

Foreign keys are used to check integrity constraints as usual, but by using the
“on delete cascade” option, they also propagate deletions whenever facts are
negated (which is not uncommon in scientific domains). For example, in the
Sisters-Siblings sub-property rule of Figure 1 it is understood implicitly that if
two people are not Siblings, then they cannot be Sisters either:

∀x, y : ¬Siblings(x, y) → ¬Sisters(x, y).

Semantically, we interpret the contrapositive to mean two things. First of all, it is
an integrity constraint: if Siblings(Mary, Jane) is not true, then it cannot be the
case that Sisters(Mary, Jane) is true, so an integrity check is performed to val-
idate that Siblings(Mary, Jane) is true before inserting Sisters(Mary, Jane).
Of course, care must be taken to ensure triggers and integrity checks happen
in the correct order (note the “FIRST” keyword in the SQL trigger). Secondly,
if deletions (negations) are performed, they must be propagated to ensure con-
sistency is maintained, thus explaining the “on delete cascade” option. Indeed,
this is the pattern for all sub-class and sub-property rules: they are both triggers
(knowledge generating) and integrity constraints (knowledge checking), consis-
tent with the semantics of inclusion axioms.

Integrity constraints also occur in domain and range restrictions on properties.
In this case, we have foreign keys but no triggers. For example, when we assert
Sisters(x, y) we generally presume that x and y are People. That is, we mean:

∀x, y : [¬Person(x) ∪ ¬Person(y)] → ¬Sisters(x, y),

but not necessarily:

∀x, y : Sisters(x, y) → [Person(x) ∩ Person(y)].

In other words, given the statement Sisters(Mary, buddyTheFrog), we do not
intend to automatically conclude that buddyTheFrog is a Person but rather
hope the assertion is rejected unless we know for sure that buddyTheFrog is a
Person (and not a Frog). This kind of reasoning is due in large part to the notion
common in database systems that any fact not known to be true is presumed
false, known as the closed world assumption [29].

Ontology Database: A New Method for Semantic Modeling 319

Table 1. The ontology database methodology is summarized in this table. Here, re-
spectively, subj and obj refer to the subject and object of a property, MinCard and
MaxCard refer to cardinality, and f-key and p-key stand for foreign key (with an “on
delete cascade” option) and primary key.

Logical Feature FOL Formalism Ontology DB Implementation

Structure

Class(A), Class(B) A(x), B(y) relation: A(id), B(id)
Property(P) P (x, y) relation: P (subj, obj)

Restrictions

Domain(P, A) ∀x, y : P (x, y) → A(x) f-key: P (subj) ref A(id)
Range(P, B) ∀x, y : P (x, y) → B(y) f-key: P (obj) ref B(id)

MaxCard(P, 1) ∀x, y, z : P (x, y) ∧ P (x, z) p-key: P (subj)
→ y = z

MinCard(P, A, 1) Domain(P, A) f-key P (subj) ref A(id);
→ (∀x : A(x) trigger: on insert on A(id)

→ ∃y : P (x, y)) insert ignore P (id, null)

Subsumption

subClassOf(B, A) ∀x : B(x) → A(x) trigger: before insert on B(id)
insert ignore A(id);

f-key: B(id) ref A(id);

subPropertyOf(Q, P) ∀x, y : Q(x, y) → P (x, y) trigger: before insert on Q(subj,obj)
insert ignore P (subj, obj);

f-key: Q(subj, obj) ref P (subj, obj);

Horn Rules & GMP

∀x1, x2 . . . xm : ∀k ∈ [1..n] trigger(rule premise-k):
on insert on Pk(xh−1, xh)

P1(x1, x2) ∧ . . . update [rule-premise-table with Pk]
∧Pn(xm−1, xm) → Q(xi, xj)

trigger(rule activate):
(1 ≤ i, h ≤ m, 1 ≤ j, h ≤ m) on update on [rule-premise-table]

if [all premises satisfied]
then insert ignore Q(xi, xj)

(1 ≤ i, h ≤ m, 1 ≤ j, h ≤ m)

3.4 Modeling Summary

Table 1 summarizes the main logical features we implement in the ontology
database methodology. These features can be categorized according to struc-
tures, restrictions and subsumptions which come from OWL, RDF [3] and gen-
eral first-order logic. The database relational structure we have chosen (unary
and binary predicates become unary and binary relations) is almost identical to
the hybrid approach of DLDB [26], which combines approaches from prior works
to effectively store RDF triples.

3.5 Logical Justification

Our ontologies are generally restricted to Horn Normal Form (HNF) [32], which
is a disjunction with only one positive literal as in:

320 P. LePendu et al.

¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn ∨ q.

These formulae can be written as implications without disjunctions on the right-
hand side, like Datalog [33] rules, which we call implicative normal form (INF):

p1 ∧ p2 ∧ . . . ∧ pn → q.

Generalized Modus Ponens (GMP) [32] is an inference rule based on the well-
known modus ponens rule:

p′1 ∧ p′2 ∧ . . . ∧ p′n p1 ∧ p2 ∧ . . . ∧ pn → q

SUBST (θ, q)
GMP

GMP allows us to unify several antecedents simultaneously to prove a con-
clusion. It is well-known that GMP is sound and complete for knowledge bases
in HNF (and therefore INF) [32]. A trigger is essentially a forward-chaining im-
plementation of GMP, recursively calling other triggers as necessary. Because all
definitions are acyclic, the procedure is guaranteed to terminate. Foreign-keys
and null-valued triggers together provide the machinery for solemnization under
existential constraints (such as, “All Employees have an SSN.” [31]). According
to this method, an ontology database therefore produces and maintains the pro-
cedural extension, guaranteeing that the database is a Herbrand Model for the
given set of facts (see [32] for details on the Herbrand universe, interpretation
and model).

3.6 General Performance Analysis

We tested our methodology using the Lehigh University Benchmark (LUBM) [18]
ontology1, and compared the load-time (see Figure 2) and query-answering (see
Figure 3) performance against DLDB [26], an ontology data storage model not
unlike our own.

The LUBM features an ontology for the university domain (e.g., faculty,
courses, departments, etc.) together with a data generation tool for creating
OWL datasets of arbitrary size and a set of queries for evaluating performance.
The most significant difference between DLDB and our ontology database
(OntoDB) is that DLDB uses SQL views instead of triggers to propagate sub-
sumptions. In other words, our approach is like an eager evaluation strategy for
subsumption inferences whereas DLDB is lazy. Because we propagate knowledge
as data is loaded so as to increase query performance, we expected to incur a
load-time hit. To our surprise, the load-time was largely unaffected even though
query-time benefitted significantly. Our only explanation of this phenomenon is
that the underlying database file system is optimized to perform several inser-
tions (caused by triggers) in relatively constant-time – which might eventually
be affected as the depth of the subsumption hierarchy grows. Naturally, our ap-
proach uses more disk-space (roughly 3-times the space), a trade-off we knew
we had to make (space versus time has to give) [30]. Again, our results are
summarized in Figures 2 and 3.
1 All experiments were performed on an unremarkable personal laptop computer with

a 1.8Ghz Centrino processor and 1Gb of RAM running MySQL 5.0 as the RDBMS.

Ontology Database: A New Method for Semantic Modeling 321

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600

tim
e

(h
ou

rs
)

facts (thousands)

load time (university ontology)

DLDB (10/2007)
OntoDB (10/2007)

Fig. 2. The load-time results for the Lehigh University benchmark ontology data show
that the load-time of our ontology database approach (OntoDB) is comparable to that
of DLDB. The blips at around 1.2M and 1.4M are probably due to disk resizing or
other background effects.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14

tim
e

(m
ill

is
ec

on
ds

)

benchmark number

query time (university ontology)

OntoDB (10/2007)
DLDB (10/2007)

Fig. 3. The query-answering time results for the Lehigh University benchmark ontology
data show that the query-time of our ontology database approach is often significantly
faster than DLDB. Charted here are the running-times for 10 of the 14 benchmark
queries published by Lehigh University. Queries 2, 4, 8, and 9 are not shown here due
to scale, having extremely long running-times.

322 P. LePendu et al.

4 Case Study: Application of Ontology Databases to
Brainwave Data

4.1 EEG and ERP Data Sharing in Clinical and Cognitive
Neuroscience

The problem of data sharing in brain electromagnetic research, like that in
other scientific fields, is challenged by data scale, multivariate parameterizations,
and dimensionality. Neuroinformatics must address these challenges with robust
data management and integration techniques. To this end, neuroinformatics re-
searchers have developed a number of database and XML-based methods [21],
providing effective solutions for annotation and storage of complex, large-scale
datasets. Going beyond syntax and structure, the hard problems that remain
are closely linked to the neuroscience community’s requirements for rich seman-
tic representation and integration of patterns across disparate experiment and
laboratory procedures and paradigms.

The development of ontologies may be central to addressing these problems.
Indeed, adoption of ontologies has already enabled major scientific progress in
biomedical research [6,20,23,25] and is a rapidly growing area in bioinformatics
and neuroinformatics research. The present work aims to extend and combine
Semantic Web and database modeling technologies to address issues in ERP
data representation and semantic query answering. The project is called “Neural
ElectroMagnetic Ontology” (NEMO). Eventually, we hope that our ontology-
based framework will support large-scale semantic data sharing, give rise to
meta-analysis, and lead to major advances in brain functional mapping using
ERP and related methods.

Electroencephalographic (EEG) data consist of changes in neuroelectrical ac-
tivity measured over time (on a millisecond timescale), across two or more lo-
cations, using noninvasive sensors (“electrodes”) that are placed on the scalp
surface. A standard technique for analysis of EEG data involves averaging across
segments of data (“trials”), time-locking to stimulus “events,” to create event-
related brain potentials (ERPs). The resulting measures are characterized by a
sequence of positive and negative deflections across time, at each sensor. For
example, to examine brain activity related to language processing, the EEG
may be recorded during presentation of words versus non-words, using 128 or
more sensors (Figure 4). Averaging across trials within a given stimulus cate-
gory accentuates brain activity that is related to processing the specific type of
stimulus. In principle, activity that is not event-related will tend towards zero
as the number of averaged trials increases. In this way, ERPs provide increased
signal-to-noise (SNR), and thus increased sensitivity to functional (e.g., task)
manipulations.

The resulting datasets comprise rich sets of spatial, temporal, and functional
(task-related) measurements. This case study describes the ontology that has
been developed by domain experts and refined by data mining techniques to
capture this knowledge. Furthermore, we demonstrate how the ontology database
methodology can be used to automatically implement an effective storage and

Ontology Database: A New Method for Semantic Modeling 323

Fig. 4. (A) 128-channel EEG waveplot; positive voltage plotted up; responses to words
versus non-words. (B) Time course of P100 factor for same dataset, extracted using
Principal Components Analysis. (C) Topography of P100 factor (negative on top and
positive at bottom). See [15] for details.

retrieval mechanism for ERP data that preserves the meaning and interpretation
prescribed by domain experts.

4.2 ERP Ontology Development

In previous work, an ERP ontology for a limited domain (word recognition) was
designed collaboratively with domain experts, using data collected in a series
of visual word recognition experiments (see [12,16] for details). To support the
development of an initial ERP ontology, based on automated data analysis and
labeling, we applied data decomposition methods to help separate signal (brain
activity) from noise (noncerebral artifacts) and to disentangle overlapping pat-
terns [16]. More specifically, temporal Principal Components Analysis (PCA)
was applied to ERP data consisting of 128 electrodes, 275 timepoints (sampling
rate, 250Hz), 34 human subjects, and 4 experimental conditions (see [11] for
details on PCA methods).

For each PCA factor, we extracted summary metrics representing spatial,
temporal and functional dimensions of the ERP patterns of interest. Thus, the
data represent the individual PCA factors, weighted across individual subjects
and experiment conditions. These data were post-processed by ERP domain
experts and represented as points in a 25 dimensional attribute space. In previous
work, we characterized eight types of robust patterns, P100, N100, N2, N3, MFN,
P1r/P2, N4 and P300 [16]. Rules for each pattern were based on results from
prior literature. For example, the P100 rule was operationalized as follows:

∀x, i, j : [PCA Factor(x)∧ (80 < i) ∧ ti max(x, i) ∧ (i < 150)∧
factorEvent(x,STIMON) ∧ factorModality(x, V ISUAL)∧
in mean roi(x, j) ∧ (0 < j) ∧ roi(P100v, OCC)]

→ occursIn(P100v, x)

where “ti max” is the peak latency, “in mean roi” is the mean amplitude
over a given region-of-interest (ROI), and ROI for “P100v” is specified as “oc-
cipital.” In addition to “top-down” (expert-defined) pattern rules, we performed
“bottom-up” (data mining) analysis using clustering-based classification to

324 P. LePendu et al.

discover class and property hierarchies and association rule mining to find ax-
ioms as a way to complement and refine the concepts and rules articulated by
domain experts [12,16]. Evaluation was performed against a “Gold Standard”
labeled dataset described in [16].

Our initial ERP ontology consists of classes, class taxonomy, properties and
their relationships. The ontology consists of roughly 29 classes, 40 properties,
27 sub-class relationships, and 3 super-properties. We show a partial view of
the ERP ontology in Figure 5. We would like to stress that this ontology has
undergone significant changes since the time of this writing. The latest version
of the NEMO ERP ontology is available online at http://aimlab.cs.uoregon.
edu/NEMO/NEMO ERP.owl2 and will soon be available on NCBO. Figure 5 shows

Factor

Pattern

Channel_Group

IN_LOCC

Voltage

Number

String

measurementValue

measurementUnits

IN_ROCC

...etc...

LOCC

ROCC

LFRON

RFON

...etc...

RATEM

LATEM

RORB

LORB

Topography

P3
N300

N100

...etc...
P100

TI_max

TI_duration

Number
SP_min_roi

SP_cor

String

factorEvent

...etc...

roi

occursIn

...etc...

String

Measurement

Time_Instance

StringString

TI_max_minvalue

TI_max_maxvalue

IN_mean_roi_minvalue

IN_mean_roi_maxvalue

patternEvent
patternModality

factorModality

 Legend:

= Property(P)P

= subClassOf(A,B)A B= Datatype(D)D

= Class(A)A

IN_mean_roi

SP_max_roi

Fig. 5. A partial view of the ERP ontology

five basic classes, i.e., factor, pattern, channel group, topography and measure-
ment. Factor objects have temporal, spatial and functional attributes (part of
which are listed in the graph, such as factorEvent, SP cor and factorModality)
which are represented as properties of the factor class in the ERP ontology. TI-
max and IN-mean(ROI) are properties of factor which relates the measurements
(e.g., time-instance and voltage) which have both unit and value properties. The
pattern class has 8 sub-classes (P100, N100, etc.) which correspond to the 8
ERP patterns defined by domain experts [16,12]. The properties of the pattern
class are those used in expert rules or rules discovered by data mining. The
expert rules are represented as Horn rules whose body are conjunctions of pred-
icates. The relationship between factor and pattern can be modeled using the
“occursIn” property. Each pattern has a region of interest, which is a channel
group belonging to the topography class. Each area on the scalp can be divided
into a left and right part. For instance, left occipital (LOCC) and right occipital
2 Human readable OWLDoc: http://aimlab.cs.uoregon.edu/NEMO/OWLdoc ERP

http://aimlab.cs.uoregon.edu/NEMO/NEMO_ERP.owl
http://aimlab.cs.uoregon.edu/NEMO/NEMO_ERP.owl
http://aimlab.cs.uoregon.edu/NEMO/OWLdoc_ERP

Ontology Database: A New Method for Semantic Modeling 325

(ROCC) are sub-classes of channel group and the combination of them is called
occipital (OCC) (not shown). The mean intensity (measured in microvolts) for
each region of interest is calculated based on this relationship.

While the graph representation helps convey the general idea, we use a formal,
first-order ontology language to represent the ontology internally. This internal
language is (and has been) easily translated to and from standard ontology lan-
guages such as OWL [7] or OBO [2] for terminological knowledge and SWRL [5]
for general Horn rules. We plan to contribute our ERP ontology to the National
Center for Biomedical Ontology [6].

4.3 ERP Data Modeling Results

We applied our modeling methodology to the ERP ontology depicted in Fig-
ure 5 to investigate several properties: correctness, space, load-time, and query
answering speed.

We worked with a visual word study data set in which there were 34 different
human subjects, 25 different dimensions in the attribute space and a vector of
1152 different component factors after PCA decomposition. In essence, we were
working with a relatively small matrix of data that was approximately 1152 rows
by 30 columns in size.

For every class in the ERP ontology, we define a unary relation and for every
property a binary relation. For every logical rule in the ontology specification,
we generated the corresponding foreign keys, triggers, and primary keys in the
database. Finally, for every data instance, we generated a unique internal object
identifier. Altogether, the data essentially consists of 100,425 individual facts.

It took approximately 14 seconds to generate the database schema based on
the ontology and load it into the MySQL RDBMS. It took 1.3 hours to load
all of the individual facts. The entire ERP ontology database occupies roughly
10 MB of disk space, and contains over 145,000 facts (including new ones after
all triggers). There are 29 tables for class concepts and 40 tables for properties.
The class hierarchy has a depth of at most 5. The top-class in the hierarchy
has 23,093 instances whereas the average-sized class has 1,152 instances. The
ontology database generated 27 different triggers and 95 foreign-key constraints
to maintain the procedural extension.

Figure 6 shows a visual representation of the entity-relation (ER) diagram
for the ERP ontology database. Although too large and complex to show every
detail in this paper, the diagram gives a rough idea of how many concepts (boxes)
and dependencies (lines) are managed by the database (triggers are not shown).

As for query processing, we tested four different queries that exhibited the
various properties of interest for our implementation: subsumption, data size
(amount of data, joins, etc.), aggregate computations, and ease of formulation
based on ontology concepts. A summary of the queries and properties they are
meant to explore is shown in Table 2. Although we hoped to find at least some
interesting and significant variations in query speed or formulation difficulty (ac-
cording to domain experts), this was not the case. Each query proved extremely
straightforward to formulate in SQL, and execution time was statistically unmea-

326 P. LePendu et al.

Fig. 6. Although too difficult to read in printed form, this visualization of the ER
Diagram for the ERP ontology database gives a general sense of number and complexity
of the concepts (boxes) and foreign-key relationships (lines). Central concepts such as
“pattern,” “factor,” and “channel group” are toward the right-side of the image – they
are the most densely connected nodes.

Ontology-2

Data

Merged
Ontology

Ontology-2Ontology-1

Ontology-1

Data

SQL
Wrapper

1 2

45

3
SQL

Wrapper

Schema-1 Schema-2

Source Target

OntoGrate

Fig. 7. A data integration scenario in which the user (1) issues a query using the
semantics of the source ontology which (2) gets translated into the semantics of the
target ontology using the inference engine in OntoGrate which is then (3) issued as a
database query using a SQL syntax wrapper from which (4) target data is returned
and finally (5) translated back into the source semantics for the user to interpret.

surable (somewhere between 0-40 ms) on our equipment. All answers returned
by the database were 100% complete and sound (perfect recall and precision)
as compared to answers expected by our domain experts. The answers and ex-
ecution times for each query are also shown in Table 2. We would like to note
that, although not the focus of this paper, the ontology database approach we de-
scribe adds the unique advantage that queries can be posed at the ontology-level

Ontology Database: A New Method for Semantic Modeling 327

Table 2. This table lists the queries and answers verified by experts. Each query is
meant to test various properties of interest.

Query / Answer Property of Interest

(1) Show the region of interest for all ERP patterns
that occur between 0 and 300ms.

subsumption, data size

Pattern ROI max_value min_value
====================================
N100 LOCC 229 151
N100 ROCC 229 151
N2 LPTEM 300 230
N2 LOCC 300 230
P100 ROCC 150 60
P100 LOCC 150 60

[Fetch MetaData: 0/ms] [Fetch Data: 10/ms]
[Execution: 0/ms]

(2) Which PCA factor do P100 patterns most often
appear in?

subsumption, aggregation,
data size

Pattern occurances Factor_Number
==================================
P100 133 4

[Fetch MetaData: 0/ms] [Fetch Data: 0/ms]
[Execution: 20/ms]

(3) What is the range of intensity mean for the region
of interest for N100 patterns?

ease of formulation

Pattern in_mean_roi_min in_mean_roi_max
===
N100 -infinity -0.4

[Fetch MetaData: 0/ms] [Fetch Data: 0/ms]
[Execution: 10/ms]

(4) Show the patterns whose region of interest is left
occipital and occurs between 220 and 300ms.

subsumption, aggregation

Pattern ROI max_value min_value
==================================
N2 LOCC 300 230

[Fetch MetaData: 0/ms] [Fetch Data: 0/ms]
[Execution: 10/ms]

by domain experts using languages such as SPARQL [4] or OWL-QL [14] and
automatically translated to SQL using wrappers (see Figure 7).

5 Discussion and Future Work

In this paper, we have outlined a new framework for designing and implementing
ontology databases. We have further presented a case study in which we applied

328 P. LePendu et al.

our method to ERP data. This ontology-driven data modeling approach appears
promising, working well for: (1) scientific application scenarios requiring rich
semantics, and (2) “query-mostly” scenarios common to such domains in which
large sizes of data must be queried and analyzed significantly more often than
data are loaded. We have also argued that the ontology database methodology
using triggers and foreign-keys is logically justified: that it correctly generates
and maintains a logical model for a given ontology and set of data.

In terms of scalability, the LUBM is fairly complex but medium in size. GO,
on the other hand, has over 36,000 different concepts arranged in a hierarchy
roughly having depth 14. Although large in size, GO is mostly a class hierarchy
with only one property (“part-of”). The main limiting factor for our approach
will be the number of tables and triggers a database system can realistically
support. MySQL, for example, is limited only by the number of files possible on
the operating system. Unless other DBMSs have strict limitations, we do not
see scalability to be a problem in general since ontologies do not typically grow
to sizes on the order of millions of concepts. To be clear, we mean scalability
in terms of the conceptual model, not the data instances which definitely pose
scalability issues. We tested our system on a toy ontology up to size 40,000 and
depth 20 and there was no visible difficulty. In future work, we will process GO
itself and possibly incorporate data instances from ZFIN and MGI given our
strong working relationship with those groups.

The next goal for the NEMO project is a comprehensive ontology-based mod-
eling and integration system that will facilitate the representation and dissemi-
nation of ERP data across different EEG and ERP analysis methods, different
experiment paradigms, and different laboratories. It is likely that the represen-
tation of EEG and ERP patterns that are associated with different analysis
methods and different functional (experiment) paradigms will require multiple
ontologies to be developed. Ontology-based integration in NEMO will study
the mapping rules between these EEG and ERP ontologies. Given the mapping
rules between different ontologies, once the user query comes in, various ERP
databases with different ontologies can be searched for answers to the query. We
reported an efficient ontology-based data integration system called OntoGrate
that addresses this problem using an inference engine [13]. In general, we antic-
ipate that this research can be generalized for integrating other types of neuro-
science data (e.g., event-related fields (ERF) and functional magnetic resonance
imaging (fMRI) data) and can support other biomedical ontology-based data
sharing efforts (e.g., GO) in the future. Figure 7 highlights the main idea behind
the query answering scenario under this model of integration.

Acknowledgements

We thank the other members in the NEMO working project group, and in par-
ticular Robert Frank, Allen Malony and Don Tucker, for their collaboration on
related work. We also thank Jeff Z. Pan and Zena M. Ariola for valuable discus-
sions on theoretical aspects of this work.

Ontology Database: A New Method for Semantic Modeling 329

References

1. MGI: Mouse Genome Informatics, http://www.informatics.jax.org/

2. Open Biomedical Ontologies (OBO),
http://www.geneontology.org/GO.format.obo-1 2.shtml

3. Resource Description Framework, http://www.w3.org/RDF/

4. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/

5. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/

6. The National Center for Biomedical Ontology, http://www.bioontology.org/

7. Web Ontology Language (OWL), http://www.w3.org/TR/owl-ref/

8. ZFIN: The Zebrafish Information Network, http://www.zfin.org

9. Baader, F., Nutt, W.: Basic description logics. In: Description Logic Handbook,
pp. 43–95 (2003)

10. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: International Semantic Web Confer-
ence, pp. 54–68 (2002)

11. Dien, J.: Addressing misallocation of variance in principal components analysis of
event-related potentials. Brain Topography 11(1), 43–55 (1998)

12. Dou, D., Frishkoff, G., Rong, J., Frank, R., Malony, A., Tucker, D.: Development
of NeuroElectroMagnetic Ontologies (NEMO): A Framework for Mining Brain-
wave Ontologies. In: Proceedings of the 13th ACM International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 270–279 (2007)

13. Dou, D., LePendu, P.: Ontology-based integration for relational databases. In:
ACM Symposium on Applied Computing (SAC), pp. 461–466 (2006)

14. Fikes, R., Hayes, P.J., Horrocks, I.: Owl-ql - a language for deductive query an-
swering on the semantic web. J. Web Sem. 2(1), 19–29 (2004)

15. Frishkoff, G.A.: Hemispheric differences in strong versus weak semantic priming:
Evidence from event-related brain potentials. Brain Lang. 100(1) (2007)

16. Frishkoff, G.A., Frank, R.M., Rong, J., Dou, D., Dien, J., Halderman, L.K.: A
Framework to Support Automated Classification and Labeling of Brain Electro-
magnetic Patterns. In: Computational Intelligence and Neuroscience (CIN), Special
Issue, EEG/MEG Analysis and Signal Processing (2007)

17. Gardner, D., Knuth, K.H., Abato, M., Erde, S.M., White, T., DeBellis, R.: Com-
mon data model for neuroscience data and data model exchange. J. Am. Med.
Inform. Assoc. 8(1), 17–33 (2001)

18. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
J. Web Sem. 3(2-3), 158–182 (2005)

19. Hull, R., King, R.: Semantic database modeling: survey, applications, and research
issues. ACM Comput. Surv. 19(3), 201–260 (1987)

20. Keator, D.B., Gadde, S., Grethe, J.S., Taylor, D.V., Potkin, S.G.: A general xml
schema and spm toolbox for storage of neuro-imaging results and anatomical labels.
Neuroinformatics 4(2), 199–212 (2006)

21. Koslow, S.H., Subramaniam, S. (eds.): Databasing the Brain: From Data to Knowl-
edge (Neuroinformatics). Wiley-Liss, Chichester (2005)

22. Laird, A.R., Lancaster, J.L., Fox, P.T.: Brainmap: The social evolution of a human
brain mapping database. Neuroinformatics 3(1), 65–78 (2005)

23. Lindberg, D., Humphries, B., McCray, A.: The Unified Medical Language System.
Methods of Information in Medicine 32(4), 281–291 (1993)

http://www.informatics.jax.org/
http://www.geneontology.org/GO.format.obo-1_2.shtml
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL/
http://www.bioontology.org/
http://www.w3.org/TR/owl-ref/
http://www.zfin.org

330 P. LePendu et al.

24. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between owl and relational
databases. In: Proceedings of the 16th International Conference on World Wide
Web (WWW), pp. 807–816 (2007)

25. G.Ontology Consortium. Creating the Gene Ontology Resource: Design and Im-
plementation. Genome Research 11(8), 1425–1433 (2001)

26. Pan, Z., Heflin, J.: Dldb: Extending relational databases to support semantic web
queries. In: Workshop on Practical and Scalable Semantic Systems (2003)

27. Paton, N.W., Dı́az, O.: Active database systems. ACM Comput. Surv. 31(1), 63–
103 (1999)

28. Reiter, R.: Deductive question-answering on relational data bases. In: Logic and
Data Bases, pp. 149–177 (1977)

29. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
30. Reiter, R.: On structuring a first order data base. In: Proceedings of the Canadian

Society for Computational Studies of Intelligence, pp. 90–99 (1978)
31. Reiter, R.: What should a database know? J. Log. Program. 14(1&2), 127–153

(1992)
32. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.

Prentice-Hall, Englewood Cliffs (2003)
33. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Com-

puter Science Press (1988)
34. Yu, A.C.: Methods in biomedical ontology. J. of Biomedical Informatics 39(3),

252–266 (2006)

	Ontology Database: A New Method for Semantic Modeling and an Application to Brainwave Data
	Introduction
	Related Work
	Ontology-Based Data Modeling
	The Procedural Extension
	Triggers
	Foreign Keys with Cascading Delete
	Modeling Summary
	Logical Justification
	General Performance Analysis

	Case Study: Application of Ontology Databases to Brainwave Data
	EEG and ERP Data Sharing in Clinical and Cognitive Neuroscience
	ERP Ontology Development
	ERP Data Modeling Results

	Discussion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

