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Abstract. Ontologies play a key role in agent communication and the
emerging Semantic Web to define a vocabulary of concepts and their re-
lationships. Different agents and web services may use vocabularies from
different ontologies to describe their data. The current research on on-
tology mapping and ontology translation mainly focuses on how to map
and translate vocabularies and associated data instances from one on-
tology to another. However, more complicated true statements, such as
axioms (rules), are used or being developed to describe the relationships
among the concepts. When extending one ontology using complicated
true statements (theory) from another, we must confront the problem of
theory translation, which is difficult because of the asymmetry of trans-
lation. In this paper, using an inferential approach we call axiom deriva-
tion, we show how to translate complex axioms between different time
ontologies. We also prove the validity of our algorithm.

1 Introduction

Ontologies, which can be defined as the formal specification of a vocabulary of
concepts and the relationships among them, play a key role in agent communi-
cation and the emerging Semantic Web [3]. Multiple agents and Semantic Web
services often need to share data, in spite of the fact that they describe similar
domains using different vocabularies, or use the same symbols to mean different
things. This semantic heterogeneity problem has received significant attention.
(See [21] for a survey.) We can distinguish several different problems:

1. Ontology matching and mapping: Finding correspondences (matchings) and
mappings between the concepts of two ontologies. The mappings are of-
ten equivalences, subclass-superclass (or subproperty-superproperty) rela-
tionships and other more complicated relationships.

? This work was partly supported by the DARPA DAML project, under contract
F30602-00-2-0600. This is an invited paper that is extended from our short paper
“Deriving Axioms across Ontologies” in AAMAS2006 [12].



2. Ontology translation: Translating a dataset (assertions) or a query expressed
using one ontology (or set of ontologies) into a form that uses a different
ontology (or set).

3. Theory translation: Translating more complicated true statements (theory),
such as axioms, of one ontology into the vocabulary of another while pre-
serving their validity.

Significant works [10, 17, 20, 5] cover the first category while others [15, 7, 9, 14,
8] concern the second. In this paper we focus on the third.

Ontologies constrain the meanings of vocabularies by expressing relationships
among their symbols, such as subset-superset links, role declarations, and the
like. Complex relationships can be expressed only with logical theory, such as
axioms (rules). For example, to overcome the expressivity limitation of OWL
(Web Ontology Language [2]), the research on OWL Rule languages [16] has
proposed a Horn clause rules extension to represent the relationships among
properties. On the other hand, the semantic mappings between the concepts of
different ontologies also can be represented as logical axioms. For example, the
research on MAFRA [17] and C-OWL [4] can represent the mappings between the
contents of different ontologies by extending DAML+OIL [1] and OWL syntax
and semantics. Our previous work on OntoMerge [13, 14] has used first order
bridging axioms to represent semantic mappings. It is well known that complex
mapping rules can not be generated fully automatically; human experts may
need to help the process based on the mapping suggestions from automatic or
semi-automatic ontology mapping tools such as those described in [10, 17, 20,
5].

Normally, the data instances and queries can be automatically translated
from the source ontology to the target ontology once the semantic mappings
have been discovered and presented to translators [7, 9, 14, 8]. However, little
research has been done on translating the axioms or other complicated true
statements (theory) automatically, which raises the possibility that important
semantic constraints will be lost in translation. It is important to represent
theories in different vocabularies and preserve their validity.

In this paper, we will first use one inferential framework to unify the ontology
translation and theory translation for facts, queries, axioms and other compli-
cated true statements. One assumption of our framework is that the mappings
between the concepts from different ontologies are represented as Horn-like map-
ping rules, which we call bridging axioms. We point out that it is the asymmetry
of translation that makes the translation of axioms and other complicated the-
ories difficult. We then describe an algorithm called axiom derivation for trans-
lating theories, such as those axioms in time ontologies, from one ontology to
another by both forward and backward chaining. We also prove the validity of
our algorithm.



2 Framework and Previous Work

2.1 Merged Ontologies & Bridging Axioms

In this section we briefly review our previous work on ontology translation. We
assume that in order to translate facts from one ontology to another there must
be a merged ontology in which all the relevant symbols are allowed to interact.
For example, consider a pair of genealogy ontologies Gonto1 and Gonto2. The
former uses the symbols husband and married while the latter uses male partner,
spouse, and in marriage. The matchings (correspondences) between them can be
represented as:

husband −→ male partner, spouse
married −→ in marriage

but these correspondences only hint at the actual semantic relationships, which
can be expressed exactly using these axioms (rules):

(∀x, y)husband(x, y) → male partner(x, y) (1)

(∀x, y)husband(x, y) ↔ spouse(x, y) (2)

(∀x, y)married(x, y) ↔ in marriage(x, y) (3)

where x and y are universal variables to represent male and female respectively.
We call these axiomatic mapping rules bridging axioms. We have developed Web-
PDDL as a strongly typed first-order logic language with Lisp-like syntax, to
express Horn-like bridging axioms. These axioms are embedded in a merged
ontology complete with namespace declarations and type-equivalence rules. For
example, to represent axiom 2, we use the following Web-PDDL expression:

(forall (x - @Go1:Male y - @Go1:Female)
(iff (@Go1:husband x y)

(@Go2:spouse x y)))

where Go1 and Go2 are prefixes of Gonto1 and Gonto2. These correspond to XML
namespaces, and when Web-PDDL is translated to RDF [19], that is exactly
what they become. The hyphen notation is used to declare a constant or variable
to be of a type T , by writing “x - T”.

However, unlike typical Horn clauses, bridging axioms can have conjunction
of predicates on the conclusion side (see more examples later in Section 5). The
predicates in bridging axioms can have built-in (but non-recursive) functions as
arguments. Based on our previous experience with mapping different pairs of
ontologies, this form is expressive enough for most mappings found by mapping
tools or human experts.



2.2 Inferential Ontology Translation

We will use the symbol Ã to indicate translation: α Ã β means that β is the
translation of α. We call the ontology Os that α uses the source ontology and
Ot, the one β uses, the target. In the case of sets of assertions (“datasets”), we
stipulate that the translation of αd is simply the strongest set of assertions, βd,
in Ot entailed by αd. A consequence of this stipulation is that

(KB;αd) Ã βd only if (KB; αd) ² βd

where we add to the left-hand sides the symbol KB to refer to the merged ontol-
ogy which includes bridging axioms (mapping rules). It means we use entailment
(²) to define dataset translation: if all the bridging axioms in KB and all the
assertions in αd are true, then all the assertions in βd should be true. Alter-
natively, we say that βd is a logical (or semantic) consequence of KB and αd.
The only way to guarantee this entailment is to use sound inference (`) in first
order theory. In other words, “Ã” entails soundness, so we actually can use `
to implement dataset translation:

(KB;αd) Ã βd ⇔ (KB; αd) ` βd ⇒ (KB; αd) ² βd

This definition means that βd is the largest set of assertions that can be derived
from KB and αd by inference.

Similarly, if αq is a query in Os, its translation is a query βq in Ot such that
any answer (set of bindings) to βq is also an answer to αq. In other words:

(KB; αq) Ã βq only if (KB; θ(βq)) ² θ(αq)

for any substitution θ, which is from the facts in the target database. It means
we still use entailment (²) to define the query translation. It is easy to get, for
any substitution θ,

(KB; αq) Ã βq ⇔ (KB; θ(βq)) ` θ(αq)
⇒ (KB; θ(βq)) ² θ(αq)

where a sound inference (`) can actually implement and guarantee the entail-
ment. The point is that βq need not be (and seldom is) equivalent to αq, in
the sense that any answer to one is an answer to the other. All we need is that
any answer to βq be an answer to αq. If we take Os to be Gonto2 and Ot to
be Gonto1, the query male partner(?x, ?y) in Gonto2 will be translated into the
query husband(?x, ?y) in Gonto1. But the set of all husbands is not equivalent to
the set of all male partners, since husbands are only one kind of male partners.

In order to use bridging axioms for inferential ontology translation, we built
a special purpose first-order theorem prover called OntoEngine. OntoEngine has
both forward chaining and backward chaining reasoners using generalized modus
ponens [22]. The dataset translation can be implemented by a forward chaining
reasoner and the query translation can be implemented by a backward chaining
reasoner. Our framework has been evaluated by using OntoEngine on several
real ontology translation tasks. Some of them need OntoEngine to process large
sets of data. The results of experiments show that the translation for both data
and queries works efficiently [14, 11].



3 Asymmetry and Composition of Theory Translation

3.1 Asymmetry of Translation

In the previous section, we have shown that a genealogy ontology Gonto1 has
two concepts (properties): husband and married. There may be a first-order logic
axiom to describe their relationship:

(∀x, y)husband(x, y) → married(x, y) (4)

We also know that another genealogy ontology Gonto2 has male partner, spouse
and in marriage as mapped properties. Some facts (assertions) expressed in the
language of Gonto1, can be translated into the language of Gonto2 by simply
replacing corresponding properties:

husband(John,Mary) Ã male partner(John, Mary)

husband(John, Mary) Ã spouse(John, Mary)

married(John, Mary) Ã in marriage(John, Mary)

The translations are correct in terms of the semantics of Gonto1 and Gonto2,
where husband can be thought of as spouse and a special kind of male partner.
However, if we use the same technique to translate the axiom (4) of Gonto1 to
Gonto2, we get:

(∀x, y)male partner(x, y) → in marriage(x, y) (5)

(∀x, y)spouse(x, y) → in marriage(x, y) (6)

It is obvious that (5) is not always true since a man is a partner of a woman
doesn’t mean that he must be in a marriage with her; (5) is not a valid axiom
in Gonto2. But (6) is true as an axiom in Gonto2. Why is it that the translation
from (4) to (6) is correct, but the translation from (4) to (5) is not correct?

Given our inferential ontology translation framework, translation exhibits
certain asymmetries that one must be wary of. Query translation is different from
assertion translation. We will subscript the symbol Ã with a “Q” to indicate
the query case (ÃQ), and with a “D” (for “data”) to indicate the assertion or
dataset case(ÃD). (We leave the subscript off in those cases where the context
allows either reading.) In addition, if βt is the translation of αs:

(KB; αs) Ã βt

that doesn’t mean αs is the translation of βt:

(KB; βt) Ã αs

Slightly less obviously, if (KB;P ) Ã Q we can’t conclude (KB;¬P ) Ã ¬Q.



3.2 Composition of Theory Translation

Instead (not surprisingly), negation ends up involving the same duality as query
translation. Assume that R is an expression which can be derived from KB and
¬Ps by inference. Using the deduction theorem in first-order logic and consider-
ing that ¬Ps → R is equivalent to ¬R → Ps, we know that

(KB;¬Ps) ` R ⇔ KB ` (¬Ps → R)
⇔ KB ` (¬R → Ps)
⇔ (KB;¬R) ` Ps

This gives us a way to translate negations. We can think of Ps as a “ground
query” (θ(Ps) = Ps): Given Ps, try to find a Q

′
t, which satisfies (KB; Q

′
t) ` Ps.

But this is just the problem of translating the query Ps: (KB; Ps) ÃQ Q
′
t.

Therefore, if the query translation of Ps is Q
′
t, ¬Q

′
t can be derived from KB

and ¬Ps by the data translation and vice versa:

(KB; Ps) ÃQ Q
′
t ⇒ (KB;¬Ps) ÃD ¬Q

′
t

(KB; Ps) ÃD Q
′
t ⇒ (KB;¬Ps) ÃQ ¬Q

′
t

Theory, such as axioms, are usually more complex than a typical dataset
element, and it would be useful if we could attack this complexity by translat-
ing the pieces of a complex formula and composing the results. The presence of
asymmetry means that care is required in doing the composition. For conjunc-
tions and disjunctions, composition of translation is straightforward. It is easy
to show that if we know that

(KB; Ps1) Ã Qt1 ; (KB;Ps2) Ã Qt2

then

(KB;Ps1 ∧ Ps2) Ã Qt1 ∧Qt2

(KB;Ps1 ∨ Ps2) Ã Qt1 ∨Qt2

But when we encounter a negation we must flip from “D” mode to “Q” mode
or vice versa.

Since every complicated true statement (theory) in first-order can be put into
CNF 3, we just need to consider the translation of negations and disjunctions.
The composition of the translation of disjunctions is straightforward. In the
following section, we will describe an algorithm for translating implications (e.g.,
axiom (4)), which includes translating negations. It actually shows that we can
translate any true statement (theory) from one ontology to another ontology,
after we transform the theory to CNF form.
3 Conjunctive normal form (CNF): a conjunction of clauses, where each clause is a

disjunction of literals. Literals can have negations and variables. For example, the
implication Ps1 → Ps2 can be transformed to its equivalent ¬Ps1 ∨ Ps2.



4 Axiom Derivation

4.1 Conditional Facts and ICF Axioms

To explain our approach to theory (axiom) translation, we first show how to
translate conditional facts using OntoEngine. A conditional fact is a formula of
the form:

P1 ∧ · · · ∧ Pi · · · ∧ Pn → Q1 ∧ · · · ∧Qj ∧ · · · ∧Qm

where all Pi(1 ≤ i ≤ n) and Qj(1 ≤ j ≤ m) are ground atomic formulas (facts).
The axioms, such as axioms 4 and horn-like bridging axioms, can be put in this
form which we call ICF (Implicative Conjunction Form), but of course axioms
have quantified variables:

∀v1 . . . ∃vk . . . vl, P1 ∧ · · · ∧ Pi · · · ∧ Pn → Q1 ∧ · · · ∧Qj ∧ · · · ∧Qm

where the v are quantified and typed variables, some universal (e.g., v1) and
some existential.

It is unusual but not unheard of for people to need to express that some facts
are true only if some other facts are also true:

precedes(deathof(Roosevelt), endof(WW2)) →
president(Truman, endof(WW2))

“If Roosevelt died before the end of World War 2, then Truman was president
at the end of World War 2.”

4.2 Conditional Fact Translation

Conditional fact translation is the translation of a conditional fact from the
source ontology to the target ontology. This is a typical example for which we
need to consider asymmetry of translation since the translation of implications
actually includes the translation of negations and disjunctions. For example,
suppose we have a simple conditional fact in Gonto1:

@Go1 : husband(A,B) → @Go1 : married(A,B)

where Go1 is the prefix of Gonto1 (adopting some syntax from Web-PDDL) and
A and B are a male and a female. We want to translate this conditional fact to
Gonto2 which has prefix Go2.

Considering the asymmetry of translation, the antecedent @Go1:husband(A,B)
can be translated to @Go2:spouse(A,B) by the query translation with backward
chaining, and the conclusion @Go1:married(A,B) can be translated to @Go2:
in marriage(A,B) by data translation with forward chaining. We know the re-
sult

@Go2 : spouse(A,B) → @Go2 : in marriage(A,B)

is a true statement in Gonto2.
In summary, the algorithm to do conditional fact translation is:



Procedure CFT(Cs, M)
input: conditional fact Cs in the source ontology Os, bridging axioms M

between Os and the target ontology, Ot

output: translated conditional fact Ct in Ot

steps:
1. Let Ants be the antecedent of Cs and Cons be the conclusion of Cs (Cs: Ants →

Cons.)

2. Get the antecedent of Ct, Antt, by backward chaining of Ants with M from Os

to Ot.

3. Get the conclusion of Ct, Cont, by forward chaining of Cons with M from Os to

Ot.

4. Return Ct as Antt → Cont.

It should be obvious that this process yields a valid result, in the sense that
the translated fact follows from the original fact and the axioms. If backward
chaining from the antecedent fails to find any goals in the target ontology, then
the antecedent of the translated conditional fact will be empty, or false, making
the translation itself equivalent to true — and hence useless.

4.3 Extending Conditional Facts Translation to Axiom Derivation

The translation of ICF axioms can still be thought of as an inference process
called axiom derivation, if we can transform the axioms to conditional facts and
transform the conditional facts back to axioms. The idea is to substitute Skolem
constants for the variables temporarily. (A similar technique was used in [18].)
In general, axiom derivation can be broken into three steps:

From ICF axioms to conditional facts: we can use Universal Elimination
and Existential Elimination [22] to transform ICF axioms to conditional facts.
Suppose that we have an axiom in the source ontology O s:

(∀x, y)@O s : P(x, y) →
(∃z)@O s : Q(x, z) ∧@O s : R(z, y)

We can substitute the universal quantified variables with constants (e.g., Atx and
Bty) and substitute the existential quantified variables with uniquified Skolem
terms (e.g., Skz01):

@O s : P(Atx, Bty) →
@O s : Q(Atx, Skz01) ∧@O s : R(Skz01,Bty)

Conditional facts translation: suppose that the target ontology is O t
and we already have the merged ontology of O s and O t. The conditional fact
in O s can be translated to O t. By backward chaining from the antecedent and
forward chaining from the conclusion, we finally get a conditional fact in O t:

@O t : S′(Atx,Ctc) ∧@O t : T′(Ctc, Bty) →
@O t : U(Atx,Skz01) ∧@O t : V(Skz01,Skd02)

∧@O t : W(Bty, Skz01)



where Ctc is a constant and Skd02 is a new generated Skolem term by forward
chaining.

From conditional facts to ICF axioms: we can use Universal General-
ization [18] and Existential Introduction [22] to transform conditional facts back
to ICF axioms.

We can use Universal Generalization to replace all constants which have
substituted universal variables with universal variables. For example, Atx, Bty
and Ctc can be replaced by x, y and c. We also can use Existential Introduction
to replace all Skolem terms with existential variables. Skz01 and Skd02 can be
replaced by z and d. Therefore, the generated ICF axiom looks thus:

(∀x, y, c)@O t : S′(x, c) ∧@O t : T′(c, y) →
(∃z, d)@O t : U(x, z) ∧@O t : V(z, d) ∧@O t : W(y, z)

4.4 Proof of Axiom Derivation

It’s not so obvious that this procedure works, but we can prove that it does.
Theorem: Any axiom developed by the above procedure is a logical conse-

quence of the axioms of the merged ontologies.
Proof: It suffices to show that the negation of the axiom is inconsistent with

the merged ontology. As usual, we assume the axiom is in ICF form:

Y1v1 . . . Ykvk(R1 ∧ · · · ∧Ri ∧ · · · ∧Rn → T1 ∧ · · · ∧ Tm)

where the vj are quantified variables and Yj are the quantifiers, some universal
and some existential. The axiom this is derived from is

X1u1 . . . Xkuk(P1 ∧ P2 ∧ . . . ∧ Pn → Q1 ∧ . . . ∧Qm)

where the ui are quantified variables and the Xi are also the quantifiers, some
universal and some existential.

What we will actually show is that a weakened version of the negation of the
axiom is inconsistent; from which it follows that a strong version is inconsistent
as well. Negating the axiom flips the quantifiers, so the existentials become uni-
versals and vice versa. We weaken the negation of the axiom by moving all the
existentials inward. If (∃x∀y)(. . .) is true, then so is (∀y∃x)(. . .). We can then
use the resolution procedure to derive a contradiction. Skolemizing the weakened
version turns the (originally) universally quantified variables into Skolem con-
stants and the (originally) existentially quantified variables into free variables.
In addition, the conclusion becomes disjunctive, so that we have a list of clauses:

R′1 R′2 . . . R′n
¬T ′1 ∨ ¬T ′2 ∨ . . . ∨ ¬T ′m

Now we mimic the deductions performed during our axiom derivation procedure,
running them in reverse. That is, if we inferred θ(R1 ∧ . . . ∧ Rk) from Ri using
a backward-chaining rule R1 ∧ . . . ∧ Rk → Pi, where Pi and Ri unify with



substitution θ, we now infer θ′(R′i) from θ′(R′1 ∧ . . .). The unification then is
possible now, because R′i is derived from Ri by replacing some Skolem constants
with different Skolem constants (possibly losing some of their arguments). The
resulting θ′ is less restrictive than the original θ, so the process can be repeated
until variants of the original Pi are derived. Similarly, we can run the forward
chaining from T1 backward to Q1, resulting in a smaller clause (with some free
variables substituted) ¬T ′′2 ∨ . . .¬T ′′m. We now repeat the procedure for T ′′2 , and
so forth, until the empty clause is derived. Q.E.D.

5 Axiom Derivation for different Time Ontologies

We want to evaluate our axiom derivation algorithm in some real application
scenarios. We are especially interested in the translation between complex on-
tologies which have large sets of axioms. For example, several time ontologies,
such as Cyc time 4, SUMO 5 time, and OWL-Time (formerly DAML-Time) 6,
describe temporal concepts and their relationships which are represented using
large sets of logic axioms (e.g., the OWL-Time ontology has around 180 first
order axioms.)

Researchers have manually built some mappings among the concepts of some
time ontologies, but have not talked about how to represent the axioms in differ-
ent time ontologies. In this paper, we use an example to illustrate the automatic
translation of axioms from the Cyc time ontology to the OWL-Time ontology.

For example, one of the axioms in the Cyc time ontology can be represented
in Web-PDDL as following:

(forall (te1 - TemporalThing da2 - Date)
(if (dateOfEvent te1 da2)

(and (startingDate te1 da2)
(endingDate te1 da2))))

It is an axiom to describe the relationship between three properties: dateOfEvent,
startingDate and endingDate. This axiom means if some event happens on a
specific date, it must begin and end on the same date. The task for OntoEngine
is to represent this axiom in the OWL-Time ontology.

We have manually generated the bridging axioms between the Cyc time and
OWL-Time ontologies. Here are some examples (cyc and ot are the prefixes for
the Cyc time and OWL-Time ontologies.):

(forall (e1 - @cyc:Eventuality d2 - @cyc:Date)
(iff (@cyc:dateofEvent e1 d2)

(exists (ti - @ot:Interval)
(and (@ot:during e1 ti)

(@ot:int-during ti d2)))))

4 http://www.cyc.com/cycdoc/vocab/time-vocab.html
5 http://ontology.teknowledge.com/
6 http://www.isi.edu/∼pan/OWL-Time.html



(forall (t1 - @cyc:TimeInterval d2 - @cyc:Date)
(iff (@cyc:startingDate t1 d2)

(exists (ti - @ot:Instant)
(and (@ot:begins ti t1) (@ot:inside ti d2)))))

(forall (t1 - @cyc:TimeInterval d2 - @cyc:Date)
(iff (@cyc:endingDate t1 d2)

(exists (ti - @ot:Instant)
(and (@ot:ends ti t1) (@ot:inside ti d2)))))

...

Where the Cyc time ontology’s Date type is treated as a specialization (sub-
type) of TimeInterval. With those bridging axioms, OntoEngine can do axiom
derivation from the Cyc time ontology to the OWL-Time ontology.

First, that axiom in the Cyc time ontology will be transformed to a condi-
tional fact:

(:objects T1 - @cyc:TemporalThing D2 - @cyc:Date)

(if (@cyc:dateOfEvent T1 D2)
(and (@cyc:startingDate T1 D2)

(@cyc:endingDate T1 D2)))

Then OntoEngine can do backward chaining from the antecedent, (@cyc:dateOfEvent
T1 D2), and forward chaining from both (@cyc:startingDate T1 D2) and (@cyc:ending
Date T1 D2). Finally the translated conditional fact in OWL-Time ontology can
be transformed back to an axiom in the OWL-Time ontology:

(forall (e - Eventuality d - Interval)
(if (exists (t - Interval)

(and (during e t) (int-during t d)))
(exists (ti1 ti2 - Instant)

(and (begins ti1 t) (inside ti1 d)
(ends ti2 t) (inside ti2 d)))))

It is interesting that this generated axiom does not belong to those 180 existing
axioms in the OWL-Time ontology. It is a new axiom. However, it does make
sense to describe the relationships between an event and a time interval: during
the interval the event happens but it may not be through the whole interval.
The total 44 axioms in the Cyc time ontology can be automatically translated
to 18 axioms in the OWL-Time ontology in 2 seconds using OntoEngine. Not all
axioms in the Cyc time ontology can be translated to the OWL-Time ontology
because those two ontologies do not have exactly the same concepts.

This real example shows that some time ontologies may have different axioms
from other time ontologies, although they have very similar concepts (i.e., types
and properties). If we fail to port the axioms from one to another, we lose
important aspects of the semantics of the terms involved.



6 Related Work

A lot of other ontology translation work [7, 9] focuses on term rewriting between
different ontologies or different ontology languages, but does not use inference.
To the best of our knowledge, the only other work on axiom (theory) translation
is [6]. This work presents a formalism for knowledge translation based on the
theory of contexts [18]. The authors define knowledge translation in terms of
truth, and like us they propose using a theorem prover to perform translations.
However, the paper doesn’t say exactly how the theorem-proving process would
work. We have shown that a special-purpose inference engine using backward and
forward chaining can be used in an efficient mechanism for translating axioms.

7 Conclusion

Complex ontologies require complicated true statements (theory), such as logic
axioms (rules). Many relationships among their symbols simply can’t be ex-
pressed any other way. Based on our formal framework and inference engine for
inferential ontology translation, this paper has described and proved the correct-
ness of an axiom derivation algorithm for theory translation from one ontology
to another.

We have shown that theory translation is necessary in some real applica-
tion scenarios in which ontologies have large sets of axioms, such as different
time ontologies. Although our algorithm is provably correct, practical applica-
tion requires further work on problems of incompleteness and redundancy. Our
algorithm does not by itself guarantee that the axioms we produce are com-
plete, nor does it avoid producing axioms that are already present in the target
ontology. Those are problems for future research for theory translation.
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