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Abstract. The development of real-world ontologies is a complex un-
dertaking, commonly involving a group of domain experts with different
expertise that work together in a collaborative setting. These ontologies
are usually large scale and have a complex structure. To assist in the
authoring process, ontology tools are key at making the editing process
as streamlined as possible. Being able to predict confidently what the
users are likely to do next as they edit an ontology will enable us to
focus and structure the user interface accordingly and to enable more ef-
ficient interaction and information discovery. In this paper, we use data
mining techniques to investigate whether we are able to predict the next
editing operation that a user will make based on the change history. We
have analyzed the change logs of two real-world biomedical ontologies,
and used association rule mining to find editing patterns using different
features. We evaluated the prediction accuracy on a test set of change
logs for these two ontologies. Our results indicate that we can indeed
predict the next editing operation a user is likely to make. We will use
the discovered editing patterns to develop a recommendation module for
our editing tools, and to design user interface components that are better
fitted with the user editing behaviors.

1 Collaborative Ontology Development and Related
Work

Distributed and collaborative development by teams of scientists is steadily be-
coming a norm rather than an exception for large ontology-development projects.
In domains such as biomedicine the majority of large ontologies are authored by
groups of domain specialists and knowledge engineers. The development of on-
tologies such as the Gene Ontology (GO) [7], the National Cancer Institute
Thesaurus (NCI Thesaurus) [17] and the International Classification of Diseases
(ICD-11) deploys varying collaborative workflows [16]. Many of these projects
have several things in common: First the ontologies are very large (e.g., GO
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has over 39,000 classes; ICD-11 has over 45,000). Second, many users who con-
tribute to the ontologies are not themselves ontology experts and they do not
see ontology development as part of their day-to-day jobs. Indeed, the majority
of contributors to ICD-11, for example, are medical professionals. At the same
time, researchers have long contended that ontology development is a cognitively
complex and error prone process [6,15]. The overarching goal of our research on
collaborative ontology development is to develop methods that facilitate this
process and make it more efficient for users.

In this paper, we explore the use of structured change logs to predict the
changes that users are likely to make next. Ontology change logs provide an ex-
tremely rich source of information. We and other investigators have used change
data from ontologies to measure the level of community activity in biomedical
ontologies [11], to migrate data from an old version of an ontology to a new
one [10], and to analyze user roles in the process of collaboration [4,5,18,21].
For example, we have demonstrated that we can use the change data to assess
the level of stabilization in ontology content [21], to find implicit user roles [5],
and to describe the collaboration qualitatively [18]. For example, we found that
changes to ICD-11 tend to propagate along the class hierarchy: A user who alters
a property value for a class is significantly more likely to make a change to a
property value for a subclass of that class than to make an edit anywhere else in
the ontology [14]. Similarly, Pesquita and Couto found that structural features
and the locations of changes in the Gene Ontology are predictive of where future
changes will occur [13]. Cosley and colleagues developed an application that pro-
vided specific suggestions to Wikipedia editors regarding new articles to which
they might want to contribute [3]. The model aggregated information about the
users, such as preferences and edit history. The researchers found that recom-
mendations based on models of the user editing behaviors made the contributors
four times more likely to edit any article compared with random suggestions.

We explore the following hypothesis in this paper: In large collaborative on-
tology development projects, there are patterns of change that persist over time,
across different users, and across different projects/ontologies. We evaluate a set
of features for ontology changes, such as properties being edited, and evaluate
their predictive power. We use association rule mining, a popular data mining
technique to extract the patterns based on these features. Association rules pro-
vide straightforward guidance to the user-interface designer by suggesting editing
patterns. Indeed, we focus on the features and the types of pragmatic patterns
that help us build more efficient interface for ontology development.

Specifically, this paper makes the following contributions:

– We develop a data mining method to predict change patterns in collaborative
ontology development (Section 3).

– We propose a set of features for association rules that describe change pat-
terns in collaborative ontology development (Section 3).

– We evaluate our method by analyzing a large number of changes from change
logs on two large real-world ontology development projects that are run by
the World Health Organization (WHO) (Section 4).
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2 Preliminaries

We start by providing background on iCAT, which is a custom-tailored version of
WebProtégé [20], a tool that we designed for collaborative ontology development.
Today hundreds, if not thousands of users, rely on WebProtégé in their projects
(Section 2.1). We then describe the two large ontologies that use WebProtégé
and that we used in our evaluation. These are two ontologies in the Family of
International Classifications that are developed and maintained by the WHO
(Section 2.2). Finally, we provide background on association rule mining (Sec-
tion 2.3), a technique that we use to find patterns of changes.

2.1 WebProtégé

In this paper, we analyze the data from two ontologies that are developed us-
ing a custom-tailored version of WebProtégé [20], which is itself a web-based
version of Protégé, the most widely used open-source ontology-editing envi-
ronment. WebProtégé enables users to edit ontologies in their web browser
in a distributed fashion. Users can contribute to the ontology simultaneously,
comment on each other’s edits, maintain discussions, monitor changes and so
on. One of the key features of WebProtégé is the ability of project admin-
istrators to custom tailor the user interface to suit the needs of a particular
project. Specifically, in this paper we focus on the two ontologies that are de-
veloped in iCAT, a version of WebProtégé that is custom tailored to the data
model that the WHO uses. Figure 1 shows a screenshot of a panel for editing
classes in iCAT. Because each class (e.g., disease description) has as many as
56 properties defined in the data model, iCAT groups these properties visually
into “tabs” in the user interface. Each tab is used for editing values for prop-
erties in the same property category. For example, the Title & Definition

tab in Figure 1 shows the properties in the category with the same name:
ICD-10 Code, Sorting label, ICD Title, Short Definition and Detailed

Definition. The Clinical Description tab and property category contains
the properties: Body system, Body part and Morphology. iCAT has 15 such
tabs and corresponding property categories.

Protégé (and, hence, iCAT) keeps a detailed structured log of changes and
their metadata [12] shown in Figure 2. This log contains information about the
content of the change and its provenance. We focus on changes to property
values in the editing of ICD-11 and ICTM, by far the most frequent operation
performed by the users. For example, in ICD-11 from 182,835 total changes,
180,896 are property changes. An example of a property value change tracked
by iCAT is shown in the first row of Figure 2: Replaced Sorting label of DB Acute
myocardial infarction. Old value: DB. New value: BB. For each property-value
change, Protégé records the following structure information: property name, class
identifier where the change occurred, the old and new value, the author, and
timestamp of the change. Based on the user interface configuration (which follows
the underlying data model), there is a unique association between a property
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Fig. 1. The iCAT user interface used for editing the ICD-11 and ICTM ontologies. The
left panel shows the disease class hierarchy and the right panel shows the properties
of the selected disease class. The properties are organized in different tabs. Each tab
(e.g., Title & Definition) corresponds to a property category with the same name. A
property category contains several properties that are displayed in the respective tab.
For example, the Title & Definition category contains the properties ICD-10 Code,
Sorting label, ICD Title, Short Definition and Detailed Definition.

and a property category, so we can easily associate to each change the property
category in which it occurred.

However, Protégé is not a requirement for the method that we describe in this
paper; it is the presence of a detailed log of changes that is a requirement for
the type of data mining that we present. As long as an ontology has a detailed
structured log of changes available—regardless of the development environment
that its authors use—it is amenable to association rule mining that we describe.

2.2 Ontologies: ICD-11 and ICTM

The 11th Revision of the International Classification of Disease (ICD-11) 1,
developed by the World Health Organization, is the international standard for
diagnostic classification that health officials in all United Nations member coun-
tries use to encode information relevant to epidemiology, health management,
and clinical use. Health officials use ICD to compile basic health statistics, to
monitor health-related spending, and to inform policy makers. As a result, ICD
is an essential resource for health care all over the world. ICD traces its origins
to the 19th century and has since been revised at regular intervals. The current
in-use version, ICD-10, the 10th revision of the ICD, contains more than 20,000

1 http://www.who.int/classifications/icd/ICDRevision/

http://www.who.int/classifications/icd/ICDRevision/


474 H. Wang et al.

Fig. 2. Protégé (and iCAT) track every change in the system in a structured format.
A change record has a textual description, a timestamp and an author, as well as other
metadata not shown in this screenshot.

terms. The development of ICD-11 represents a major change in the revision
process. Previous versions were developed by relatively small groups of experts
in face-to-face meetings. ICD-11 is being developed via a web-based process with
many experts contributing to, improve, and reviewing the content online [19]. It
is also the first version to use OWL as its representation format.

The International Classification of Traditional Medicine (ICTM) is another ter-
minology in the WHO Family of International Classifications. Its structure and
development process is very similar to that of ICD-11. However, it is a smaller
project, which was started later than the ICD-11 project. Thus, it has benefit-
ted from the experiences of ICD-11 development and it used the tools that were
already built for ICD-11. ICTM will provide an international standard termi-
nology as well as a classification system for Traditional Medicine that can be
used for encoding information in health records and as a standard for scientific
comparability and communication, similar to ICD-11. Teams of domain experts
from China, Japan and Korea are collaborating on a web platform with the goal
of unifying the knowledge of their own traditional medicines into a coherent
international classification. Even though ICTM shares some of the structures
with ICD-11, there are many characteristics that are specific only for traditional
medicine. ICTM is also developed concurrently in four different languages (En-
glish, Chinese, Japanese and Korean).

Data sources. We used the change logs generated by iCAT for both ICD-11
and ICTM. Table 1 shows some statistics about the ontologies themselves and
their change logs. As the statistics show, ICTM is a smaller project compared
to ICD-11. While ICTM has around 1,500 classes, ICD-11 has over 45,000. ICD-
11 has also a deeper class hierarchy with 11 levels, compared to ICTM which
has 7 levels. ICTM had a small number of users (12) who were making actively
changes for the period of our data, while ICD-11 had 90 such users. The number
of property changes which we use for our analysis also differ a lot: ICTM has
21,466 changes, while ICD-11 has 180,896.
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Table 1. Ontology and change history statistics for ICTM and ICD-11

Data source characteristic ICTM ICD-11

Number of classes 1,511 45,028
Depth of ontology (number of levels) 7 11

Number of users 12 90
Time period 2/7/2011 - 8/21/2011 11/19/2009 - 5/24/2012

Total number of changes 26,607 182,835
Total number of property edit changes 21,466 180,896

2.3 Association Rule Mining

The change logs generated by iCAT provide a wealth of information that we
can use to extract change patterns. These patterns of change can enable us to
predict what operation the user is likely to perform next, based on her current
operation and other features. We used data mining for the pattern-discovery
task. Data mining is “the process of discovering interesting patterns from a
large database” [9].

Association Rule Mining is a data mining technique that explores frequent
patterns in large transactional data. The frequent patterns are usually expressed
in terms of the combinations of features with certain values that appear together
more frequently than the others. Agrawal and his colleagues introduced associ-
ation rule mining in 1993 [1] and developed the Apriori Algorithm, a fast asso-
ciation rule mining algorithm, in 1994 [2]. The rules were presented in the form
of inference rules with quantitative values to indicate the measure of interest-
ingness. In the past decades, researchers have shown that association rules can
discover and predict patterns with high efficiency and accuracy [9].

Let D be the set of n data tuples D = t1, t2, ..., tn, where ti ⊆ I. I =
i1, i2, ..., im is the set of features we want to discover the associations on. Let
X and Y be two disjoint events such that X ⊂ I, Y ⊂ I and X ∩ Y = Ø. An
association rule is an implication, X ⇒ Y , where X is called the antecedent and
Y is called the consequent. The antecedent and consequent are conjunction of
conditions on disjoint events. The rule provides the information on how likely
Y is, given that we observed X . For example, if a user edits the title for a class
(X), she may be likely to edit its definition next (Y ). Therefore, association rule
mining is a promising approach to predict the next editing operation that a user
will make given the previous change logs.

It is common to use qualitative measures of interestingness in order to rank
and filter association rules. Two of the most popular measures of interestingness
are support and confidence. The support of an association rule supp(X ⇒ Y )
is a measure of how frequently the set of involved items appears in the data.
Given event set X , support s(X) is defined as the fraction of tuples T i ∈ D such
that X ⊂ T i. For rule X ⇒ Y ,

support(X ⇒ Y ) = P (X ∩ Y )
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is defined as a percentage of data tuplesX∩Y ; in other words, it is the probability
that both X and Y happens. Support is used to filter out association rules with
too few occurrences because these rules do not provide enough information about
the data and they are usually rare patterns.

Confidence is a measure of how precise these rules are. For rule X ⇒ Y ,

Confidence(X ⇒ Y ) = P (Y |X) = P (X ∩ Y )/P (X)

In other words, confidence is the probability of Y given that X happens.

3 Method Description

The main goal of our analysis is to predict what the user is likely to do next
given her current action. Therefore, our data tuples are transitions from one
action to the next. Each transition in our set captures two operations from the
structured change log: the features describing the current operation that the
user performed and the features describing the next operation. We look for co-
occurrences of features of the current operation and the next operation. For
example, if the user edited the title of a class and then edited the definition,
then the first edit is the current operation and the edit of the definition is the
next one.

3.1 Data Preprocessing

We start our data processing by performing the following two preprocessing
steps: (1) feature extraction and (2) data aggregation. The first step extracts the
prediction related features from change log entries. The second step aggregates
goal-irrelevant data into one data entry which will result in a cleaner and more
goal-concentrated result.

Feature Extraction. A typical entry for a property change in the ICD-11
ontology (Figure 2) contains: (1) the information on the user who performed the
change, (2) the timestamp, (3) the class identifier on which the change occurred,
and (4) a textual description of the change. The latter item, the key source of
features for our analysis, looks as follows:

Replaced ‘Text’ for ‘Short Definition’ of I21 Acute myocardial infarc-
tion. Old value: Myocardial infarction (MI) is defined as of heart muscle cells.
Myocardial infarction occurs ... New value: Myocardial infarction (MI) is de-
fined as the death of heart muscle cells. Myocardial infarction occurs...

To use this log entry in our data mining analysis, we need the structured infor-
mation that the change log provides and the additional features that we extract
from the change description text. For example, for the change entry from the ex-
ample, we extract the property onwhich the change occurred (Short Definition)
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and we associate to it the property category (Title & Definition).We then ana-
lyze the next change performed by the same user—represented by a similar
string—to extract the same feature about the next operation, as well as the fea-
ture reflecting whether the next change occurred in the same class or a different
one.

As a result, we generate five features (see Table 2). Two features describe the
current change—the antecedent features—and three features that describe the
next change and the transition information—the consequent features.

Table 2. The 5 extracted features for each record in the change log that are used for
association mining

Feature Description of feature

NAME OF PROPERTY The name of the edited property
(antecedent) (Example: Short Definition)

CATEGORY OF PROPERTY The category of the edited property
(antecedent) (Example: Title & Definition)

NEXT NAME OF PROPERTY The name of the next edited property
(consequent) (Example: Body System)

NEXT CATEGORY OF PROPERTY The category of the next edited property
(consequent) (Example: Clinical Description)

A boolean flag that describes if the
NEXT ENTITY next edit operation is on the same entity
(consequent) as the previous change, or not.

(Possible values: Same or Not the same)

Data Aggregation. The data change log provides abundant information that
captures all aspects of user editing behaviors. For example, the user might edit
a few characters of a property value, click elsewhere, and then come back and
continue editing the same property. This behavior will result in two log entries
describing consecutive edits to the same property. In reality though, it is usually
just one editing operation from the user’s point of view. We define a consecutive
operation as two editing operations by one user on the same entity and the same
property or category of property within a certain time interval (e.g., one hour).
We aggregate such consecutive operations into a single operation.

Datasets for Rule Mining. The aggregated data with selected five features
are ready for association rule mining. In our work, the data processing step
generates four independent data sets. For each ontology (i.e., ICTM or ICD-11),
we generated two datasets: one dataset with the operations aggregated based on
property category and another one aggregated on property name.
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3.2 Association Rule Mining: Apriori Algorithm

We generate the association rules by using the Apriori algorithm [2]. We use
WEKA [8], the open source data mining software to generate association rules.

The Apriori algorithm contains two steps: find all frequent itemsets and gen-
erate strong association rules from frequent itemsets. An item is defined as
a feature with assignment values, such as CATEGORY OF PROPERTY= Temporal

Properties. An itemset is the conjunction of items. The Apriori Algorithm take
two threshold as input: t support and t confidence. The find all frequent itemsets
step will generated all the possible itemset I that satisfy support(I) > t support.
It uses the downward closure property of frequent itemsets: itemsets with more
features are generated from frequent itemsets with fewer features. This prop-
erty greatly reduces the search space and lowers the algorithm complexity. After
finding all the frequent itemsets, the find strong association rules step divides
the features in the frequent itemset I into two disjoint sets: antecedent X and
consequent Y . We test the condition confidence(X =⇒ Y ) > t confidence to
generate the association rules.

The following is an example of an association rule generated by WEKA based
on ICTM data:

CATEGORY OF PROPERTY = Temporal Properties 101 =⇒
NEXT CATEGORY OF PROPERTY = Diagnostic Method NEXT ENTITY = same 70

conf : (0.69)

This rule indicates an association between the feature CATEGORY OF PROPERTY,
NEXT CATEGORY OF PROPERTY and NEXT ENTITY. It shows that the users per-
formed 101 edits in Temporal Properties, and 70 of these edits were followed
by the edits in Diagnostic Method property on the same class. Therefore the
confidence of this rule is 69% (i.e., 70 divided by 101).

3.3 Prediction Using Association Rules

Recall that our goal is to predict the next editing operation that a user will make
given the current change. The association rules show the relationships between
users’ next editing operations and the previous edits. To simulate the prediction
process, we split our data into two sets: a training set and a test set. We generate
the association rules based on the training set and assess the confidence values
of these rules in the test set. The difference in the confidence values between
these two sets will indicate how much the editing patterns drift. Specifically
we evaluate the drift along three dimensions: (1) different stages of ontology
development over time; (2) different user groups; and (3) different ontologies.

To split the data based on different group of users, we introduce a method
that keeps splitting the data randomly by users into training and testing sets
until the two data sets satisfy: 1) They are of roughly the same size. 2) The
number of users in the two data sets are roughly the same. The advantage of
splitting the data in this way is obvious. First, with two sets with roughly equal
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Table 3. Number of data entries in the change log before and after aggregation

No. of change entries ICTM ICD-11

Original Data 21,466 180,896
Aggregated on property category 6,962 53,908
Aggregated on property name 10,208 63,654

size we will have enough data for both training and testing data sets. Secondly,
users with different numbers of data entries are randomized into both training
and testing datasets so that no bias is introduced due to the splitting process.
To split the data based on the time, we divide the data roughly in the middle of
the dataset to have equal size of data for both training and testing.

We present the results of this evaluation in the following section.

4 Experimental Results

We have applied the data aggregation process to all ICTM and ICD-11 datasets
with five selected features. To show the effect of data aggregation, we list the
statistics before and after the data aggregation in Table 3. In both the ICTM
and ICD-11 datasets, more than half of the data have been aggregated.

4.1 Rule Analysis for Training Data

All the meaningful rules that we generated from the training data fall into the
following three types:

Type One
(a) CATEGORY OF PROPERTY = A =⇒

NEXT CATEGORY OF PROPERTY = B NEXT ENTITY = Same

(b) NAME OF PROPERTY = A =⇒
NEXT NAME OF PROPERTY = B NEXT ENTITY = Same

Type Two
(a) CATEGORY OF PROPERTY = A =⇒

NEXT CATEGORY OF PROPERTY = A NEXT ENTITY = Not the same

(b) NAME OF PROPERTY = A =⇒
NEXT NAME OF PROPERTY = A NEXT ENTITY = Not the same

Type Three
(a) CATEGORY OF PROPERTY = A =⇒

NEXT CATEGORY OF PROPERTY = B NEXT ENTITY = Not the same
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(b) NAME OF PROPERTY = A =⇒
NEXT NAME OF PROPERTY = B NEXT ENTITY = Not the same

For each rule type, we show the rules generated when aggregating on the
property category (rules a), and when aggregating on the property name (rules
b). Type One rules capture the case where the user continues to edit the same
class, but changes the property category (1a) that she edits or the property
name (1b). The transition means that the following edit occurs in a different
tab (1a), or in a different field on the form (1b), respectively (Figure 1). Type
Two rules describe the situation where the user is focused on editing a single
property category (2a) or a single property (2b), e.g., Short Definition, for
different classes: she edits the property for one class and then edits the same
property for another class. Type Three rules describe the user who edits both in
a different entity and a different property category (3a) or property (3b) in the
next operation.

In the rest of this section, we show the top five association rules for ICD-11
and ICTM datasets, aggregated on property category.

Example Association Rules from the ICTM Data. Specifically, Table 4
lists the top five association rules generated from the ICTM data aggregated on
category of property. We rank the rules by the confidence measures. For example,
rule 1 states that after editing property category Title & Definition, users
will, with probability of 77% (i.e., 2632 divided by 3409), edit the same property
category (Title & Definition) but on a different entity. The rest rules are
interpreted in a similar way. Rule 2 and rule 3 (Type One) show that after
editing property category Temporal Property or Causal Property, users likely
continue editing the same class, transitioning to property category Diagnostic

Method. Rule 1 and rule 4 (Type Two) indicate that users will keep editing on the
same category of property in the next operation even they transit into another
entity. These rules show that the editing tasks of these categories of properties
usually come as a batch work. During certain period of time users will edit a set
of Title & Definitions or Classification Properties on different entities.

Example Association Rules from the ICD-11 Data. Table 5 lists the top
five generated association rules from the ICD-11 data aggregated on category of
property. Again, we rank them by the confidence measures. We found that the
editing patterns in ICD-11 are different from the ones in ICTM. The first four
rules are Type Two rules and the fifth rule is a Type Three rule. There are no
Type One rules in this set. The first four rules show that the users of ICD-11 are
very likely to keep editing on the same category of property in the next operation
even they transit into another entity. Only rule 5 shows that users may change
from editing Diagnostic Method to Title & Definition while they transit
into another entity.
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Table 4. Top 5 Association Rules from the ICTM Data

1. CATEGORY OF PROPERTY=Title & Definition 3409 =⇒
NEXT CATEGORY OF PROPERTY=Title & Definition NEXT ENTITY=Not the same 2632
conf:(0.77)

2. CATEGORY OF PROPERTY=Temporal Properties 101 =⇒
NEXT CATEGORY OF PROPERTY=Diagnostic Method NEXT ENTITY=Same 70 conf:(0.69)
3. CATEGORY OF PROPERTY=Causal Properties 369 =⇒
NEXT CATEGORY OF PROPERTY=Diagnostic Method NEXT ENTITY=Same 205 conf:(0.56)
4. CATEGORY OF PROPERTY=Classification Properties 1413 =⇒
NEXT CATEGORY OF PROPERTY=Classification Properties NEXT ENTITY=Not the same
673 conf:(0.48)

5. CATEGORY OF PROPERTY=Diagnostic Method 447 =⇒
NEXT CATEGORY OF PROPERTY=Classification Properties NEXT ENTITY=Not the same
170 conf:(0.38)

Table 5. Top 5 Association Rules from the ICD-11 Data

1. CATEGORY OF PROPERTY=Classification Properties 16794 =⇒
NEXT CATEGORY OF PROPERTY=Classification Properties NEXT ENTITY=Not the same
14772 conf:(0.88)

2. CATEGORY OF PROPERTY=Clinical Description 1951 =⇒
NEXT CATEGORY OF PROPERTY=Clinical Description NEXT ENTITY=Not the same 1639
conf:(0.84)

3. CATEGORY OF PROPERTY=Editorial Information 4214 =⇒
NEXT CATEGORY OF PROPERTY=Editorial Information NEXT ENTITY=Not the same 3430
conf:(0.81)

4. CATEGORY OF PROPERTY=Title & Definition 23658 =⇒
NEXT CATEGORY OF PROPERTY=Title & Definition NEXT ENTITY=Not the same 17993
conf:(0.76)

5. CATEGORY OF PROPERTY=Diagnostic Method 447 =⇒
NEXT CATEGORY OF PROPERTY=Title & Definition NEXT ENTITY=Not the same 157
conf:(0.35)

4.2 Prediction Results on the Testing Data

We apply the association rules generated from to training data to the testing
data to simulate the prediction process. If more than 10 meaningful rules are
generated from the training data, we report top 10 rules based on the measure of
confidence. We calculate the confidence values of these rules in the testing data
compared with the original confidence values in the training data. The difference
in the confidence values between these two sets will indicate how much the editing
patterns drift.
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(a) ICD-11 on Category of Property (b) ICD-11 on Property Name

(c) ICTM on Category of Property (d) ICTM on Property Name

Fig. 3. Prediction Across User Groups

Prediction across User Groups. Figure 3 shows a set of prediction results
measured by the confidence values from the training and testing data of ICTM
and ICD-11. We can see that the results from the ICD-11 data have good pre-
diction accuracy (i.e., the similarity of confidence values from the training and
testing data) and are better than the results from the ICTM data. The predic-
tion results from the ICTM data aggregated on the property name are better
than results from the data aggregated on the category of property. It shows the
users in ICD-11 have similar editing patterns.

Prediction across Time. In Figure 4, we show the prediction results when we
split the training and testing data based on time. We can see that the results
from the ICD-11 data aggregated on category of property or property name,
and the results from the ICTM data aggregated on the property name have
good prediction accuracy. The results from the ICTM data aggregated on the
category of property only have 6 rules and the prediction results are not good.

Prediction across Ontologies. We also report the prediction results across
ontologies (Figure 5). There are two scenarios in our study: 1) We use the ICD-
11 data as the training data and the ICTM data as the testing data. 2) We
use the ICTM data as the training data and the ICD-11 data as the testing
data. We can see in Figure 5 that prediction results from the data aggregated
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(a) ICD-11 on Category of Property (b) ICD-11 on Property Name

(c) ICTM on Category of Property (d) ICTM on Property Name

Fig. 4. Prediction Across Time

on property name are still better than the results from the data aggregated on
category of property. On the other hand, using ICTM to predict ICD-11 based
on the data aggregated on property name is a little better than using ICD-11 to
predict ICTM. It may be explained that ICTM use the property names which
have been used in ICD-11. Prediction across ontologies might not be as accurate
as the ones from across time and across user groups, however they still share
plenty of similarities especially on top frequent patterns.

5 Discussion

Our data shows mixed predictive power of association rules. However, the differ-
ence in the patterns is in itself useful in analyzing how ontology editing changes
from one ontology to another and through different stages of the life cycle. Recall
that our key motivation for this work was to find editing patterns so that we
can custom-tailor the user interface in order to direct the users’ attention to the
areas of class definitions that they are likely to edit next.

In general, rules that are based on property name rather than property cate-
gory appear to be more predictive, regardless of whether we look across different
users (Figure 3) or different time spans (Figure 4). In other words, the users’
transitions between categories of properties are less consistent across the training
and test data than their transitions across specific properties. Indeed, a closer
look at the data reveals that in the case of ICTM, patterns were particularly
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(a) Training on ICD-11 and Testing on
ICTM (Category of Property)

(b) Training on ICD-11 and Testing on
ICTM (Property Name)

(c) Training on ICTM and Testing on ICD-
11 (Category Of Property)

(d) Training on ICTM and Testing on ICD-
11 (Property Name)

Fig. 5. Prediction Across Ontologies

different. For example, only two property category (Title & Definition and
Classification Properties) account for almost 90% of the training data in
both cases. Thus, half of the users edited only these two property categories,
and did so in the beginning of the observation period.

Similarly, while prediction on property names was noticeably better, it is
informative to look at the outliers. Consider Figure 3(b), rule 3 in ICD-11:
this rule had very high confidence in the training data and was not useful in
the testing data. This rule involves a very specialized property, Primary TAG, a
property describing which group of editors is responsible for the definition of the
class. It is likely that the editors would fill out this property only at a particular
stage in the lifecycle, and not return to it later. We also selected the association
rules based on the measure of support. Comparing the results from rules selected
by confidence, the prediction results are similar.

Another reason for better prediction results on property names compared
to property categories could be because we had more data in the latter case:
consecutive edits on different properties in the same category (a frequent editing
pattern) were aggregated in the data preprocessing step (Table 3). In general,
the more training data we have, the more reliable the data mining results are.

For the same reason, ICD-11 results show better predictive value than ICTM
results: we had considerably more data for ICD-11. It will be interesting to see,
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as we get more change logs from the users, whether or not the prediction accuracy
for ICTM improves as well.

We have also observed that in cross-ontology prediction, ICTM rules were
better predictors for ICD-11 rules than the other way around. Indeed, because
our data capture the earlier stages of the ICTM development lifecycle, the ICTM
editors focused on the more basic properties, and only occasionally ventured into
the more advanced properties. Thus, the rules capturing the basic properties
carry over well to ICD-11, but there is not enough data—and the patterns are
not yet established—for the other properties.

The rules that we identified have given us important feedback on how we
can improve the user interface to support the users’ editing patterns better. For
instance, we have seen that both in ICTM (Table 4, rules 1 and 4), and especially
in ICD-11 (Table 5, rules 1-4), users are editing the same property category over
and over again, but in different classes. This rule means that the we can improve
the editing experience, if our user interface will preserve the same tab when the
user switches to a different class. Furthermore, we have identified that the users
are editing the same property for different classes very often. The predominance
of this type of rule indicates that we should support a tabular type of user
interface that makes it easier for users to edit the same property for different
classes. For example, a spreadsheet-like tabular interface could contain in each
row a column for the class, another for its title and a third one for its definition.
This type of interface would very likely speed the data entry and support the
editing patterns we have identified in a data-driven way.

The key lesson from the previous observations is the need for including in the
analysis not only the change data but also the data on the lifecycle of the ontology
and the roles of the user. In our earlier work, we demonstrated that it is possible
to distinguish different user roles by analyzing the change data [5]. Integrating
these two analyses will likely produce better predictions. For example, we can
analyze the change data for each user individually, or for a set of users with the
same role, and use data mining on this subset to predict what that particular
user is likely to do. Similarly, accounting for the distribution of the features
themselves in the data—and the changes in this distribution—will enable us to
capture yet another key aspect of changing logs.

6 Conclusions

In this paper, we analyzed the user editing pattern in ontology development
projects with the help of data mining algorithms, specially association rule min-
ing. The experiment result shows that the patterns we generated from the ontol-
ogy editing history data provide useful and straightforward patterns that could
help design a better ontology-editing software by focusing the user attention on
the components of the complex class definition that the user is likely to edit
next. We can use the discovered editing patterns to develop a recommendation
module for our editing tools, and to design user interface components that are
better fitted with the user editing behaviors.
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In order to achieve better predictive power in the data mining, future analyses
must also account for different stages in the ontology life cycle, changing user
roles, and, potentially, other components. However, our initial results reported
in this paper point the way to the data-driven development of user interfaces
that alleviates the cognitive load of complex tasks such as ontology editing for
domain experts.
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