
Discovering Executable Semantic Mappings
Between Ontologies

Han Qin, Dejing Dou, and Paea LePendu

Computer and Information Science
University of Oregon

Eugene, OR 97403, USA
{qinhan, dou, paea}@cs.uoregon.edu

Abstract. Creating executable semantic mappings is an important task
for ontology-based information integration. Although it is argued that
mapping tools may require interaction from humans (domain experts) for
best accuracy, in general, automatic ontology mapping is an AI-Complete
problem. Finding matchings (correspondences) between the concepts of
two ontologies is the first step towards solving this problem but match-
ings are normally not directly executable for data exchange or query
translation. This paper presents an systematic approach to combining
ontology matching, object reconciliation and multi-relational data min-
ing to find the executable mapping rules in a highly automatic manner.
Our approach starts from an iterative process to search the matchings
and do object reconciliation for the ontologies with data instances. Then
the result of this iterative process is used for mining frequent queries.
Finally the semantic mapping rules can be generated from the frequent
queries. The results show our approach is highly automatic without los-
ing much accuracy compared with human-specified mappings.

1 Introduction

The emergence of the Semantic Web has emphasized the need for systems that
are able to query, integrate and exploit data from multiple, disparate sources
which may use different ontologies, but are about the same domain. Research
involving the Semantic Web is experiencing huge gains in standardization in that
OWL becomes the W3C standard for ontological definitions in web documents.
However, it is extremely unreasonable to expect that ontologies used for similar
domains will be few in number [5]. As the amount of data collected in the fields
of Biology and Medicine grows at an amazing rate, it has become increasingly
important to model and integrate the data with ontologies that are biologically
meaningful and that facilitate its computational analysis. Hence, efforts such as
the Gene Ontology (GO) [16] in Biology and the Unified Medical Language Sys-
tem (UMLS) [19] in Medicine are being developed and have become fundamental
to researchers working in those domains. However, different labs or organizations
may still use different ontologies to describe their data.

Some ontology-based information integration systems have been developed to
process queries and exchange data from data resources with different ontologies.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 832–849, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Discovering Executable Semantic Mappings Between Ontologies 833

A survey can be found in [32]. For example, the InfoSleuth [4] project provides an
agent and ontology based infrastructure for information gathering and analysis
in distributed environments such as the Web. In OBSERVER [23] the informa-
tion sources are described by domain ontologies, and user queries are rewritten
by using the inter-ontology matchings. In our own previous work, we used Onto-
Engine (an inference engine) and our expressive Web-PDDL ontology language
to translate Semantic Web documents and answer queries [13] between ontolo-
gies. We enhanced these tools with the ability to handle relational databases in
addition to Semantic Web documents in OntoGrate [11,12].

Ontology matching and mapping is the key step to enable ontology-based in-
formation integration. The goal of ontology matching is to generate correspon-
dences between the concepts from different but related ontologies. In most cases,
formal mapping rules with clear semantics need to be generated for information
integration systems. The problem of finding matchings and mappings between
information resources has been extensively studied by different research commu-
nities. To be clear, we distinguish between matching (correspondence) and map-
ping. Matching pairs related concepts. One matching example is “both property
phone and property work at in one ontology are matched to property workphone
in another.” However, mapping not only pairs concepts but also formally defines
the relationships between them. For example, “for all Office which has a phone
number, all People who work at that office must have workphone as the same
number” is a mapping between property phone, work at and workphone.

Research in discovering and representing semantic mappings is still in very
preliminary stages. Indeed, the ideal choice of the mapping language, one care-
fully balancing expressivity with scalability, is an open question. Current map-
ping languages, such as Datalog, F-Logic, DLR, KIF or LOOM, are more or
less subsets of first order logic [31]. In this paper, we mainly use general first
order logic syntax to represent mapping rules, such as the above mapping we
mentioned:

∀x, y, z, People(x) ∧ Office(y) ∧ String(z)
∧work at(x, y) ∧ phone(y, z) → workphone(x, z)

Our OntoEngine takes these kinds of rules in Web-PDDL1 for information inte-
gration. The rules also can be represented as Datalog, SWRL [1] or other logic
languages which some tools can process. Therefore, we call them executable map-
pings. It is similar as that Clio [24,17] calls operational mappings for database
schemas.

In general, automatic ontology mapping is an AI-Complete problem. Many
challenges remain. For example, although it is argued that mapping tools may
require interaction from domain experts for best accuracy [29], it is not clear
what kind of interaction between the system and domain experts should be
supported. In this paper, we propose to combine ontology matching, object

1 Web-PDDL is also a subset of first order logic. We call mapping rules in Web-PDDL
syntax bridging axioms in our previous work [13,11,12].

834 H. Qin, D. Dou, and P. LePendu

reconciliation and multi-relational data mining to find the executable mapping
rules as automatically as possible. Our approach starts from an iterative pro-
cess to search the matchings and do object reconciliation for the ontologies with
data instances. Then the result of this iterative process could be used for mining
frequent queries. Finally the semantic mapping rules can be generated from the
frequent queries. The results show our approach is highly automatic without
losing much accuracy compared with human-specified mappings.

The rest of the paper is organized as follows. We first give some background
and related work in Section 2. Then we demonstrate our general framework for
ontology mapping in Section 3. We elaborate our iterative approach for ontology
matching and object reconciliation in Section 4. In Section 5, we show our ex-
tension to a well-known multi-relational data mining tool (i.e., FARMER [25])
for supporting mapping rules discovery. We show some promising results by case
studies with real ontologies in Section 6. We conclude the paper and discuss the
future directions in Section 7.

2 Related Work

In this section we first give background and more detail of some existing schema
or ontology matching and mapping systems. We also introduce an object recon-
ciliation system and several Multi-Relational Data Mining systems.

Not surprisingly, the database community was one of the first to invest con-
siderable effort in developing systems that match different database schemas
(see [29] for a survey). Most schema matching systems, such as LSD [8], CU-
PID [20], iMap [7] and COMA [14], focus on retrieving correspondences between
attributes using a variety of similarity or correlation heuristics. Similarly, re-
search in knowledge engineering and the Semantic Web has resulted in tools
for ontology matching that are absolutely critical in ontology-based information
integration. These tools also show promising applications in the database arena
(see [26] for a survey). Chimaera [22], Protégé [27], GLUE [9] and MAFRA [21]
are some examples of such systems. GLUE [9] employs machine learning and
exploits data instances to find matchings between concepts. It uses domain
knowledge and domain-independent constraints to increase matching accuracy.
Chimaera [22] provides a ontology editor to allow user to merge ontologies. It
suggests potential matchings based on the names of properties but needs users
to verify them. The disadvantage of this system is that it leaves what to do
entirely to users. Protégé [27] gives initial ontology alignments by plugging in
one of existing matching algorithms and focuses on guiding users to refine align-
ments. This system updates its suggestions based on the input of user and gives
new alignments to user. MAFRA [21] is an interactive, incremental and dynamic
framework, which builds a semantic bridging ontology for distributed ontologies.
These semantic bridges specify how to translate entities from source ontology
to target ontology. BMO [18] can generate block matchings using a hierarchical
bipartition algorithm. This system builds a virtual document for each ontol-
ogy and compares each pair of concepts with the information in the virtual

Discovering Executable Semantic Mappings Between Ontologies 835

document. This algorithm is efficient but it does not figure out how two blocks
are matched, however these matching blocks still can be very helpful for finding
mappings.

Clio [24,17] is a schema mapping system that can generate operational (i.e.,
executable) mappings in different formats such as SQL and XQuery for database
integration. This system uses semantic information to find matchings first and
allows the user to modify them or add new matchings. Then it produces mapping
rules based on matchings. It is semi-automatic since it needs human interactions.
The research by An, Borgida and Mylopoulos [3,2] provides very interesting
methods to construct complex mapping rules between relational tables or XML
data and ontologies when given an initial set of correspondences between the
concepts in the schemas and ontologies. They offer the mapping formalisms
to capture the semantics of XML or relational schemas by constructing the
semantic trees from them. Their generated rules will be useful to domain experts
for further refinement, as well as to applications. Our approach is to combine
ontology matching, object reconciliation and multi-relational data mining to find
executable mapping rules in a highly automatic manner.

The object reconciliation problem is studied for determining whether two
different objects of data sets refer to the same real-world entity. Xing Dong
et al [10] propose to reconcile the object references in three steps. The first
step is constructing the dependency graph, which describes the relationships
between object pairs. One object pair (i.e., a reconciliation decision) needs to
be decided as reconciled or not. The next step is an iteratively re-computing
process, which computes the similarity scores of reconciliation decisions. Since
the similarity score of one reconciliation decision can both affect and be affected
by the similarity score of its neighbors, the algorithm sets a fixed point to stop
the process. Finally, transitive closure is computed for the final reconciliation
results.

Multi-relational mining techniques are already applied in many research ar-
eas such as subgraph mining. FOIL [28] is a first-order learning system which
can generate Horn rules for target predicates by examining both positive and
negative examples. WARMER [6] is designed for frequent pattern mining in re-
lational databases. This system is built on the foundations of Inductive Logic
Programming (ILP) and does not need negative examples. FARMER [25] is also
a frequent pattern mining system, it takes object identity as the starting point
and introduces several optimizations, and thus it has better performance than
WARMER. In this paper, we will borrow some ideas from FARMER for gen-
erating ontology mapping rules. We will give more detail of our algorithm in
Section 5.

3 Framework

In this section, we first introduce our general framework for mapping discovery,
then we illustrate our idea with some simple examples. Given a source ontology
and a target ontology which model the same domain, ontology matching can

836 H. Qin, D. Dou, and P. LePendu

find that some of their concepts (e.g., classes and properties in OWL ontologies)
are matched to each other. Object reconciliation can find that some instances
from both ontologies represent the same real world entities. Our final goal is to
generate executable mapping rules based on that information.

3.1 System Architecture

Figure 1 shows the architecture of our system. There are five main components.

1. Matching Generator 2. Object Reconciliation
 Processor

 4. Multi-Relation
Data Mining System 5. Rules Refiner

Source ontology
with data instances

Target ontology
with data instances

A set of 1-1 matchings

Data instances

Merged data instances

A set of groups of
classes and properties
with reconciled data

Sets of frequent queries
Executable
mapping rules

A set of 1-1 matchings
with reconciled data

3. Group Generator

Fig. 1. System Architecture

1. Matching Generator (MG): It takes the source and target ontologies with
their data instances as input. Different matching system could be plugged in
this component. The output of MG is 1-1 matching pairs between classes and
properties. If no new matchings can be found, MG will pass this information
to the next component, Object Reconciliation Processor. It also passes the
data instances.

2. Object Reconciliation Processor (ORP): This component is designed to rec-
oncile instances which refer to the same real world entities. If there are new
matchings from Matching Generator, ORP will try to reconcile more in-
stances. Otherwise it passes the 1-1 matchings and the reconciled data to
the next component, Group Generator.

3. Group Generator (GG): The matchings are not always 1-1 matchings. GG
combines close related 1-1 property matching pairs, class matching pairs and
their instances together as a group. For every group, GG generates a set of
input data for multi relation data mining system.

4. Multi-Relation Data Mining System (MRDMS): We borrow some ideas of
FARMER system to mine frequent queries. This system requires certain in-
put format and it can find interesting frequent queries. Since every group
generated by GG is comparably small, the search space is not a concern.

Discovering Executable Semantic Mappings Between Ontologies 837

5. Rules Refiner (RR): Generating executable mapping rules from frequent
queries is a natural extension. However, it is not suitable to set a fixed
threshold for support and confidence. The threshold can be different for dif-
ferent cases. RR will filter out the rules which are distinctly incorrect and
keep the rest.

3.2 Approach Overview with a Simple Example

We give the overview of our approach with a simple mapping example based
on the People Ontology2 from UMD and the Person & Employee Ontology3

from CMU. And we also use these two ontologies to illustrate our system in the
following sections.

The first step of our approach is to find corresponding classes and proper-
ties. Currently we use a string matching algorithm [30] to get 1-1 matchings.
For example, two properties name(Person, String) (from the People Ontology)
and name person(Person, String) (from the Person& Employee Ontology) have
similar names and are considered matched. Before finding (mining) the seman-
tic mapping of these two concepts, there is one problem that must be solved.
Instances from different ontologies may represent the same object but have dif-
ferent names. For example, both of the instance “person001” described by the
People Ontology and the instance “p001” described by the Person& Employee
Ontology may actually refer the same person (e.g., Han Qin). Therefore we have
to reconcile them by renaming “p001” to “person001” or vice-versa. This is ac-
tually an object reconciliation problem. Giving the matchings we can use some
mature object reconciliation algorithm to reconcile the instances. The reconcili-
ation result can help find new matchings. Therefore this is an iterative process
between ontology matching and object reconciliation.

In the next step, we generate matching groups of classes and properties. Then
we generate the input for the data multi-relational data mining (MRDM) sys-
tem. Finally MRDM system will mine the frequent queries based on the input
data. A query is a logical expression of the form ? − P1, ..., Pn, which contains
an atom key used for counting. For one query if the number of answers of atom
key exceeds the threshold, we call this query as frequent query. For this example,
one frequent query could be:

?- @UMD:Person(x), @UMD:name(x,y), @CMU:name person(x,y)

where Person is the atom key and we use “@UMD:” and “@CMU:” to represent
prefixes of the People and Person& Employee ontologies respectively. Since we
are interested in the frequent queries related to name and name person, we will
derive one rule from this frequent query:

∀x, y @UMD:Person(x)∧@UMD:name(x, y) → @CMU:Person(x) ∧
@CMU:name person(x, y)
2 http://www.cs.umd.edu/projects/plus/DAML/onts/personal1.0.daml
3 http://www.daml.ri.cmu.edu/ont/homework/atlas-cmu.daml

838 H. Qin, D. Dou, and P. LePendu

4 Matching and Object Reconciliation

In this section, we introduce an iterative process between the Matching Gen-
erator and Object Reconciliation Processor. We still use some examples based
on the People and Person&Employee ontologies to help demonstrate how this
process works.

4.1 Basic Name Matching

We begin from finding class matching pairs and property matching pairs based
on their names. We make use of “Iterative SubString Matching Algorithm” [30]
to calculate the similarity of names of each pair. We basically examine every pair
of classes and properties from both ontologies. For example, if N is the number
of classes in the source ontology and M is the number of classes in the target
ontology, there are N ∗ M potential class matching pairs. For each pair we can
get a similarity score and we also set a threshold for name similarity to get class
matching pairs. Similarly we find some property matching pairs. Other existing
matching approaches (e.g., synonym-based approaches by using Wordnet[15])
can also be used in this step to help find more matchings.

4.2 Datatype Property Matching

There are some property matching pairs which can strengthen our confidence
about potential class matching pairs. For example, one kind of OWL properties
is datatype properties and the range is a data type, such as string and num-
ber. Datatype property matching pairs can support our system to match a class
pair with higher confidence. We can use the types of property arguments to find
them. Given the datatype property pair p(X, Y) and q(U, V), where X and U
are classes and Y and V are data types, if there is a class matching pair X � U
and Y is the same data type as V , we consider p(X, Y) � q(U, V) as one po-
tential datatype property matching related to the class matching pair X � U .
Not only the name similarity of p and q is needed to make more confidence of
X � U , but also the data value similarity of p and q. One potential datatype
property matching will be verified by data value similarity which will be fur-
ther discussed in Section 4.3. An example is that @UMD:name(Person, String)
� @CMU:name person(Person, String) is one potential datatype property
matching based on class matching pair @UMD:Person � @CMU:Person. The
higher the similarity of datatype property matching pairs are, the more confi-
dence this class matching pair has. Support of class matching pair is calculated
according to the following equation:

Support(X � U) = ΣDatatypePropertyPairSimilarity (1)

Datatype property pair similarity is the sum of name similarity and data simi-
larity, which will be further discussed in Section 4.3.

Discovering Executable Semantic Mappings Between Ontologies 839

Another problem we should cope with is that two classes may have totally
unrelated names, but they represent the same concept. One clue to handle this
case is actually from datatype property matchings. If several property matching
pairs indicate that class X and class U should be a pair, we can assume X � U
is one class matching pair and add those property matching pairs as its datatype
property matchings.

4.3 Data Similarity of Datatype Property Pairs

Having a similar name does not necessarily mean that two properties definitely
represent the similar concept. Therefore, calculating data similarity of property
matching pairs is necessary. Note that data similarity is based on the assump-
tion that the data instances of two ontologies overlap at a relatively high level,
otherwise we can not benefit from data level examination. The data similarity
can help verify both property matching pairs and those class matching pairs that
they are related to. For an existing property matching pair p(X, Y) � q(U, V),
we can calculate the data similarity of p and q by using the following formula:

DataSimilarity(p(X, Y) � q(U, V)) =
2 ∗ |same pairs(Y, V)|
|p(X, Y)| + |q(U, V)| (2)

where |same pairs(Y, V)| is the number of the instance pairs which have the
same integer value or very similar string value, and |p(X, Y)| and |q(U, V)| stand
for the number of instances of property p(X, Y) and q(U, V).

Then we can calculate the total similarity of each class matching pair. For one
class matching pair X � U , the similarity is the sum of name similarity and its
support. If both clues show that this matching pair is not correct, we remove it
from the class matching pair list.

4.4 Object Reconciliation

After we get the selected class matching pairs, we adopt an object reconcilia-
tion algorithm developed by Dong, Halevy and Madhavan in [10] to reconcile
the instances of classes from two ontologies. The original algorithm considers
the relationship of matching pairs and determines whether two data objects in
different databases represent the same real-world entity. We successfully use the
idea in our ontology mapping examples.

We do not want to repeat the detail algorithm since it can be found in the
paper [10]. In a summary, for all the possible instance pairs, we can draw a
similarity graph and calculate the similarity between them. The formula we
use is a simple aggregation of the similarity of datatype matching pairs. For
example, Figure 2 shows one positive example and one negative example for
People and Person&Employee ontology mapping. Node (person001, p001) has
a high similarity and is considered as reconciled. Node (person002, p003) has a
comparably low similarity and is considered as not reconciled.

840 H. Qin, D. Dou, and P. LePendu

person001

25

MaleHan Qin

p001

Qin, Han

person002

34

MaleDejing Dou

p003

Male

31

LePendu,
 Paea

Male

25

Fig. 2. Positive and negative object reconciliation examples

4.5 Object Property Matching

In OWL, object properties represent the relationships between two classes, such
as the property alumnus(Organization, Person) from the UMD People ontol-
ogy. Similar to datatype property matching pairs, the object property matching
pairs may have similar property name or not. However, it is harder to find
object property matchings because their data instances can not help before
object reconciliation process is performed. Therefore, only after we reconcile
some data instances we can calculate the data similarity of object property
matching pairs. Note that this kind of matching pairs have two ways to match:
given p(X, Y) � q(U, V), the first matching is X � U, Y � V while the other
is X � V, Y � U . When we calculate the data similarity of object property
matchings, whether it is cross matched should be labeled. Similar to data prop-
erty matching pairs, we give the following formula:

DataSimilarity(p(X,Y) � q(U,V)) =
|same pairs(X,U)| + |same pairs(Y, V)|

|p(X, Y)| + |q(U, V)|
(3)

After Object Reconciliation Processor executes in each iteration, the Match-
ing Generator tries to create new object property matching pairs based on
the object reconciliation results. Figure 3 shows an example of this iterative
process: after the first time Object Reconciliation Processor executed based
on @UMD:Person � @CMU:Person, the system found that “person001” is
the same entity as “p001”. Given this result, Matching Generator will find a
new object property matching pair @UMD:alumnus (Organization, Person)
� @CMU:has employes(Organization, Person), since there exists two class
matching pairs @UMD:Organization � @CMU:Organization and
@UMD:Pe− rson � @CMU:Person and the data similarity of this property
matching pair also shows these two properties should be matched. This new
property matching pair will be returned to the system to suggest reconcile more
data instances related to @UMD:Organization � @CMU:Organization, such
as “uo cs” and “CS dept”. This reconciliation result may help Matching Genera-
tor to find more object property matching pairs related to @UMD:Organization
and @CMU:Organization. The process will be end if no new object property
matchings can be found. At the end we have the complete graph of class match-
ing pairs and property matching pairs as shown in Figure 4.

Discovering Executable Semantic Mappings Between Ontologies 841

person001

25

MaleHan Qin

p001

Male

25

Qin, Han

person001
 uo_cs

 p001
 CS_dept

uo_cs CS_dept

person001

25

MaleHan Qin

person001

Male

25

Han Qin

person001
 uo_cs

person001
 CS_dept

uo_cs CS_dept

person001

25

MaleHan Qin

person001

Male

25

Han Qin

person001
 uo_cs

person001
 CS_dept

uo_cs CS_dept

person001

25

MaleHan Qin

person001

Male

25

Han Qin

person001
 uo_cs

person001
 uo_cs

uo_cs uo_cs

State 1 State 2

State 3State 4

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

@UMD:Organization -
 @CMU:Organization

@UMD:alumnus -
 @CMU:has_employes

@UMD:Person-
 @CMU:erson

@UMD:name -
 @CMU:name_person

@UMD:sex -
 @CMU:sex

@UMD:age - @CMU:age

Fig. 3. The Iterative Process Of the People and Person&Employee Ontol-
ogy Mapping Example: After Matching Generator creates new matchings in each
iteration, Object Reconciliation Processor can reconcile more data instances and then
help MG to find more new matchings. This process will terminate when MG can not
find any new matchings.

alumnus

Person

age

sexname

Person

sexname_person

age

Organization Organization

has-employes workFor employer

Employee Employee

emailAddress email

Fig. 4. The Graph Of Class Matching Pairs and Property Matching Pairs

842 H. Qin, D. Dou, and P. LePendu

5 Semantic Mapping Rule Mining

Based on the matching and object reconciliation results, we first generate group
matchings and then use data mining techniques to discover final mapping rules.

5.1 Matching Groups

In this step, we tackle the problem of reducing the search space of the MRDM
systems by generating groups based on 1-1 matchings. The simplest case is to
put some of them together as a group based on related classes or properties, such
as that @UMD:name(Person, String) � @CMU:name person(Person, String),
@UMD:Person � @CMU:Person compose one group. The basic grouping rule
we have used is:

Basic Grouping Rule: For one property matching pair @source:p(X,Y) �
@target:q(U,V), if there are class matching pair @source:X � @target:U and
@source:Y � @target:V, we generate one group which includes all these three
matchings.

Note that if @source:Y � @target:V is a pair of string or number, we do
not have to really put them in. This rule can cover most of the 1-1 property
matching pairs, especially datatype property matching pairs.

p(X , Y)

q(U , V)

Source Ontology

Target Ontology

Matching Group

Fig. 5. Matcha ming Group Based On One Property Matching Pair

A complex case is that when we check @source:p(X,Y) � @target:q(U,V)
we only know that one class matching pair (i.e., @source:X � @target:U or
@source:Y � @target:V) exists. Suppose that @source:X � @target:U ex-
ists, then obviously this group is not complete yet. Therefore, we have to include
other properties in this group to make it complete. The basic idea is: assume we
can find @source:Z � @target:V and in the source ontology there is one prop-
erty @source:r(Y,Z), then we can make the guess and include @source:r(Y,Z) in

Discovering Executable Semantic Mappings Between Ontologies 843

this group. Another possible solution is try to find @target:t(W,V) if @source:Y
� @target:W exists. To sum up, we have to find some connection between
@source:Y � @target:V. One example in Figure 6 is @UMD:workphone
(Person, String) � @CMU:phone(Office, String). In the source ontology (i.e.,
CMU), we can find one related property @CMU:office(Employee, Office), which
connects @UMD:Person with @CMU:Office since @CMU:Employee is a subclass
of @CMU:Person and @UMD:Person � @CMU:Person is a class matching
pair. Thus this group contains three properties.

For more general cases, we should find connections between both @source:X
� @target:U and @source:Y � @target:V. Figure 5 shows what a complete
group is. The dashed line refers to zero or several predicates, super-sub class
relationships or class matching pairs. Based on this, we can draw the general
group rule:

General Grouping Rule: For one property matching pair, such as @source:
p(X,Y) � @target:q(U,V), if we do not have class matching pair @source:X �
@target:U (or @source:Y � @target:V), we can search among the properties and
class matching pairs to find a connection path from @source:X to @target:U (or
from @source:Y to @target:V). In the path there must exist one class matching
pair that connects the source and target ontologies.

Discovering the path is the key step for finding group matchings. And the
class matching pair that connects the source and target ontologies is the key
class matching pair. To find the path from @source:X to @target:U , if we can
find the key class matching pair @source:A � @target:B, the path contains
the path from @source:X to @source:A, @source:A � @target:B and the path
from @target:B to @target:U . And we propose Algorithm 1 to find the key class
matching pair:

Algorithm 1. Searching Key Class Matching Pair
Input: class X from source ontology, class U from target ontology, properties of both

ontologies except p(X, Y) and q(U, V), class matching pair set, super-sub class
relationship in two ontologies.

Output: the key class matching pair
Initialize source class set with X
Initialize target class set with U
while There does not exist class matching pair A � B, where A belongs to source
class set and B belongs to target class set. do

For all t(H, K), t(K, H), superclass(H, K) and subclass (H, K) where H is in source
class set, add K into source class set.
For all r(N, M), r(M, N), superclass(M, N) and subclass (M, N) where M is in
target class set, add N into target class set.
If no new classes is added, return No pair.

end while
Return A � B

844 H. Qin, D. Dou, and P. LePendu

5.2 Generating Mapping Rules

The first step of this part is to discover frequent queries. The algorithm should
take a set of predicates and data instances as input, build the search space and
finally output a set of queries with high support. We consider classes and proper-
ties of ontology as unary or binary predicates. FARMER [25] system can be used
for this goal. However, FARMER requires users to specify the input/output type
of each argument of the predicates. To make the whole process as automatically
as possible we borrow some ideas of FARMER but create a new algorithm (see
Algorithm 2) instead in our implementation.

Algorithm 2. Generating frequent queries
Input: A matching group G. Data instances of all the predicates in G.
Output: Frequent queries with their support.

Create the first query with the key class matching pair of G.
while Not all predicates of the source ontology is added to the first query. do

Suppose the type of last argument of the first query is T. Then find predicate P
(in the source ontology) which has first argument type T. Add P to the end of the
first query.

end while
Calculate the support of the first query.
Create the second query as a copy of the first query.
while Not all predicates of the target ontology is added to the second query. do

Suppose the type of last argument of the second query is V. Then find predicate
Q (in the target ontology) which has first argument type V. Add Q to the end of
the second query.

end while
Calculate the support of the second query.
Return two queries with their support.

The next step of rule generation is a natural extension from frequent queries.
The Rule Refiner can generate mapping rules based on frequent queries and class
matching pairs. For example, the output of matching group G is:

? - Person(V0N0),name(V0N0,V1N0) support: 100
? - Person(V0N0),name(V0N0,V1N0),name_person(V0N0,V1N0) support: 95

With class matching pair @UMD:Person � @CMU:Person, a rule like
∀x, y @UMD:Person(x)∧@UMD:name(x, y) → @CMU:Person(x)∧
@CMU:name person(x, y) can be generated.

This process is similar to a typical multi-relational data mining process. The
main difference is that the information of each matching group helps to reduce
the search space of query searching. We consider rules with extremely low sup-
port and confidence as distinctly incorrect. Thus we set a very low threshold and
keep the rest rules.

Discovering Executable Semantic Mappings Between Ontologies 845

6 Case Study

6.1 People vs. Person and Employee Ontology

The first case we test is the complete UMD People Ontology and CMU Person &
Employee Ontology mapping example. The partial examples we give in previous
sections are from this case. Figure 6 shows part of two ontologies and some
human labeled matchings. Dotted lines refer to property matchings and dashed
lines refer to class matchings.

Person Empolyee

Address Organization

emailAddress

age

sex

title

birthday

homephone

workphone

name

alumnus workFor

address_state

address_zip address_street

address_city

workAddress

Person Employee

sex

name_person

age

job-title

expertise

has-employes

employer

office

start-date

end-date

email

Mission

name_organization

address

phone

building

lab

Organization Office

photo

Image

subclass subclass

Fig. 6. UMD and CMU person ontology

The Matching Generator and Object Reconciliation Processor gives three class
matching pairs and 21 property matching pairs. For some matching pairs, we
cannot find any complete group. Group Generator actually outputs 17 matching
groups. Finally, our system generates 8 rules. With human observation, we can
get 9 rules manually. Therefore, the performance of our system in this case
is satisfying as 8 out of 9. We can represent the mapping rules in first order
logic syntax, such as: ∀x, y Employee(x) ∧ worksfor(x, y) → Employee(x) ∧
employer(x, y). Also we can represent these rules in our Web-PDDL or different
potential standard mapping languages. For example, we can represent rules with
Datalog:

emailAddress(A, B) :- Person(A), email(A,B).

Or we can represent rules with SWRL as following:

<ruleml:imp>
<ruleml:_rlab ruleml:href="#Rule2"/>

846 H. Qin, D. Dou, and P. LePendu

<ruleml:_body>
<swrlx:classAtom>
<owlx:Class owlx:name="&UMD;Person" />
<ruleml:var>x</ruleml:var>

</swrlx:classAtom>
<swrlx:individualPropertyAtom swrlx:property="&UMD;name">
<ruleml:var>x</ruleml:var>
<ruleml:var>y</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:individualPropertyAtom swrlx:property="&CMU;name_person">
<ruleml:var>x</ruleml:var>
<ruleml:var>y</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

The reason we missed one rule is: our system can find the matchings
which contain @UMD:address state, @UMD:address city, @UMD:address zip,
@UMD:address steet and @CMU:address. However, data mining system can-
not introduce functions, therefore we do not derive any rule for these matchings
successfully. This missing rule needs a concatenation function to
combine @UMD:address state, @UMD:address city, @UMD:address zip, @UMD:
address steet to @CMU:address.

Customer

 customerid
 customercontactname
 customercompany
 customeraddress
 customercity
 customerregion
 customerpostalcode

Order

 orderid
 ordercustomerid
 orderdate
 ordershippeddate
 orderemployeeid
 orderrequireddate
 ordershipvia

OrderDetail

 orderdetailorderid
 orderdetailproductid
 orderdetailunitprice
 orderdetaildiscount

Product

 productid
 productname
 productquantityperunit
 productunitprice
 productsupplierid
 productcategoryid

Shipper

 shipperid
 shippercompany
 shipperphone

Supplier

 supplierid
 suppliercompany

Category

 categoryid
 categoryname
 categorydescription
 categorypicture

Employee

 employeeid
 employeelastname
 employeefirstname
 employeeaddress
 employeecity
 customerregion

Customer

 customernumber
 customerfname
 customerlname
 customercompany
 customeraddress1
 customeraddress2
 customercity
 customerstatecode
 customerzip

Order

 ordernumber
 ordercustomernumber
 orderdate
 ordershipweight
 ordershipcharge
 ordershipinfo

Item

 itemnumber
 itemordernumber
 itemstocknumber
 itemquantity
 itemtotalprice
 itemmanufacturercode

Manufacturer

 manufacturercode
 manufacturername
 manufacturerleadtime

Call

 callcustomernumber
 calldatetime
 calluserid
 calldescription
 calltypecode CallType

 calltypecode
 calltypedescription

Catalog

 catalognumber
 catalogstocknumber
 catalogmanufacturercode
 catalogdescription
 catalogpicture

State

 statecode
 statename

Stock

 stocknumber
 stockdescription
 stockunit
 stockunitprice
 stockunitdescription
 stockmanufacturercode

Stores7 Nwind

Fig. 7. Stores7 and Northwind schema

6.2 Online Sale Databases

Our approach can also be applied to databases. Our previous research [11,12]
demonstrates a way to convert database schemas to ontologies. In this case, we
consider two database schemas: Stores7 from IBM Informix44 and Northwind
from Microsoft. Both of them are from online sales domain and have related
concepts, such as Customer, Order and etc. Figure 7 shows the schemas of two
4 http://www.ibm.com/software/data/informix/

Discovering Executable Semantic Mappings Between Ontologies 847

databases. We have used these two databases to test our OntoGrate system but
we used human-specified mappings in [11,12].

Humans can find 18 rules for these two database schemas. And our system
discovers 4 class matching pairs and 201 property matching pairs. Then finally
16 rules are obtained by our system. Two rules of our output are incorrect.
The reason of incorrectness is also that the MRDM system does not introduce
functions, same as the address matching group problem addressed in section 6.1.

7 Conclusion and Future Work

We present a highly automatic approach which combines ontology matching,
object reconciliation and multi-relational data mining to discover the executable
mapping rules between given source and target ontologies from same domain.
Our main novel contributions are:

1. We propose an iterative process: basic matchings can be used to guide
object reconciliation and the result of object reconciliation can guide to find
new matchings. This process also help verify existing matchings.

2. We propose a way to combine matching pairs to form matching groups,
which is used to generate queries and mapping rules.

3. We use a data mining approach to find frequent queries and then convert
them to mapping rules. We use group matchings to reduce the search space.

Our approach relies on both data instances and ontologies, and thus a con-
straint is that we must need ontologies with related data instances. Our system
cannot guarantee 100% accurately generated rules. If users need 100% perfect
results, human effort is surely needed. There are still a lot of interesting prob-
lems we cannot solve yet. The first problem we are going to solve is to discover
mappings with new functions, such as ∀x, y, zPerson(x) ∧ city address(x, y) ∧
street address(x, z) → address(x, concatenate(y, z)). Then we will consider how
to automatically evaluate an ontology mapping system without human-specified
results and how to manage the mapping rules in the scenario that ontologies or
database schemas keep changing.

References

1. Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/
2. An, Y., Borgida, A., Mylopoulos, J.: Constructing complex semantic mappings

between XML data and ontologies. In: International Semantic Web Conference,
pp. 6–20 (2005)

3. An, Y., Borgida, A., Mylopoulos, J.: Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In: OTM Conferences
(2), ODBASE, pp. 1152–1169 (2005)

4. Bayardo, R.J., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap,
V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea,
R., Unnikrishnan, C., Unruh, A., Woelk, D.: InfoSleuth: Agent-based semantic
integration of information in open and dynamic environments. In: SIGMOD 1997.
Proceedings of the 1997 ACM SIGMOD international conference on Management
of data, pp. 195–206. ACM Press, New York (1997)

http://www.w3.org/Submission/SWRL/

848 H. Qin, D. Dou, and P. LePendu

5. Bruijn, J.D., Polleres, A.: Towards an Ontology Mapping Specification Language
for the Semantic Web. Technical report, Digital Enterprise Research Institute (June
2004)

6. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min.
Knowl. Discov. 3(1), 7–36 (1999)

7. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: iMAP: Discover-
ing Complex Mappings between Database Schemas. In: Proceedings of the ACM
Conference on Management of Data, pp. 383–394. ACM Press, New York (2004)

8. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. In: Proceedings of the ACM Conference
on Management of Data, ACM Press, New York (2001)

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to Map Between
Ontologies on the Semantic Web. In: WWW. International World Wide Web Con-
ferences, pp. 662–673 (2002)

10. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex infor-
mation spaces. In: SIGMOD 2005. Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, pp. 85–96. ACM Press, New York
(2005)

11. Dou, D., LePendu, P.: Ontology-based Integration for Relational Databases. In:
SAC 2006. Proceedings of the 2006 ACM symposium on Applied computing, pp.
461–466. ACM Press, New York (2006)

12. Dou, D., LePendu, P., Kim, S., Qi, P.: Integrating Databases into the Semantic
Web through an Ontology-based Framework. In: SWDB 2006. Proceedings of the
third International Workshop on Semantic Web and Databases, p. 54 (2006)

13. Dou, D., McDermott, D.V., Qi, P.: Ontology Translation on the Semantic Web.
Journal of Data Semantics 2, 35–57 (2005)

14. Dragut, E., Lawrence, R.: Composing mappings between schemas using a reference
ontology. In: ODBASE. Proceedings of International Conference on Ontologies,
Databases and Application of Semantics (2004)

15. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

16. T. Gene Ontology Consortium. Creating the Gene Ontology Resource: Design and
Implementation. Genome Research, 11(8), 1425–1433 (2001)

17. Haas, L.M., Hernandez, M.A., Ho, H., Popa, L., Roth, M.: Clio Grows Up: From
Research Prototype to Industrial Tool. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 805–810. ACM Press, New
York (2005)

18. Hu, W., Qu, Y.: Block matching for ontologies. In: Cruz, I., Decker, S., Allemang,
D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 5–9. Springer, Heidelberg (2006)

19. Lindberg, D., Humphries, B., McCray, A.: The Unified Medical Language System.
Methods of Information in Medicine 32(4), 281–291 (1993)

20. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: Very Large Data Bases (VLDB) Conference, pp. 49–58 (2001)

21. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA - A MApping FRAmework
for Distributed Ontologies, pp. 235–250 (2002)

22. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: The Chimaera Ontology Envi-
ronment. In: Proceedings of the National Conference on Artificial Intelligence, pp.
1123–1124 (2000)

Discovering Executable Semantic Mappings Between Ontologies 849

23. Mena, E., Kashyap, V., Sheth, A.P., Illarramendi, A.: Observer: An approach for
query processing in global information systems based on interoperation across pre-
existing ontologies. In: CoopIS, pp. 14–25 (1996)

24. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L.-L., Ho, C.T.H., Fagin, R., Popa,
L.: The clio project: Managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)

25. Nijssen, S., Kok, J.N.: Efficient frequent query discovery in farmer. In: Lavrač, N.,
Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI),
vol. 2838, pp. 350–362. Springer, Heidelberg (2003)

26. Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIG-
MOD Record 33(4), 65–70 (2004)

27. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: Proceedings of the National Conference on Artificial
Intelligence, pp. 450–455 (2000)

28. Quinlan, J.R., Cameron-Jones, R.M.: Foil: A midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

29. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. VLDB J. 10(4), 334–350 (2001)

30. Stoilos, G., Stamou, G.B., Kollias, S.D.: A string metric for ontology alignment.
In: International Semantic Web Conference, pp. 624–637 (2005)

31. Stuckenschmidt, H., Uschold, M.: Representation of semantic mappings. Semantic
Interoperability and Integration (2005)

32. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hubner, S.: Ontology-based integration of information: A survey of existing
approaches. In: IJCAI 2001. Workshop: Ontologies and Information Sharing, pp.
108–117 (2001)

	Discovering Executable Semantic Mappings Between Ontologies
	Introduction
	Related Work
	Framework
	System Architecture
	Approach Overview with a Simple Example

	Matching and Object Reconciliation
	Basic Name Matching
	Datatype Property Matching
	Data Similarity of Datatype Property Pairs
	Object Reconciliation
	Object Property Matching

	Semantic Mapping Rule Mining
	Matching Groups
	Generating Mapping Rules

	Case Study
	People vs. Person and Employee Ontology
	Online Sale Databases

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

