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a b s t r a c t

In the present paper, we use data mining methods to address two challenges in the sharing and

integration of data from electrophysiological (ERP) studies of human brain function. The first challenge,

ERP metric matching, is to identify correspondences among distinct summary features (‘‘metrics’’) in ERP

datasets from different research labs. The second challenge, ERP pattern matching, is to align the ERP

patterns or ‘‘components’’ in these datasets. We address both challenges within a unified framework.

The utility of this framework is illustrated in a series of experiments using ERP datasets that are

designed to simulate heterogeneities from three sources: (a) different groups of subjects with distinct

simulated patterns of brain activity, (b) different measurement methods, i.e, alternative spatial and

temporal metrics, and (c) different patterns, reflecting the use of alternative pattern analysis techniques.

Unlike real ERP data, the simulated data are derived from known source patterns, providing a gold

standard for evaluation of the proposed matching methods. Using this approach, we demonstrate that

the proposed method outperforms well-known existing methods, because it utilizes cluster-based

structure and thus achieves finer-grained representation of the multidimensional (spatial and

temporal) attributes of ERP data.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the last few decades, neuroscience has witnessed an explo-
sion of methods for measurement of human brain function, including
high-density (multi-sensor) electroencephalography (EEG) and
event-related potentials (ERP), or so-called ‘‘brainwave’’ methods. In
comparison with other neuroimaging techniques, the ERP method
has several advantages: it is completely noninvasive and, unlike fMRI
(which measures blood flow), it is an inexpensive, portable, and
direct measure of neuronal activity. Moreover, it has excellent
(millisecond) temporal resolution, which is critical for accurate
representation of neural activity. Furthermore, ERP studies have
given rise to many complex neural patterns that can be used to
predict human behavior and to detect clinically relevant deviations in
behavior, cognition, and neural function [1,2]. Dozens of these
patterns have been proposed over the past several decades. Yet there
is remarkably little agreement in how these patterns should be
identified and described. Further, tens of thousands of large and
information-rich datasets have been collected and analyzed. Yet there
are few (arguably, no) quantitative comparisons (‘‘meta-analyses’’)
ll rights reserved.
of ERP data from different studies. Given the unique importance of
ERP research in human neuroscience, this lack of integration may be
the central obstacle to a robust science of human behavior and brain
function.

To address these challenges, we have designed a system called
Neural ElectroMagnetic Ontologies, or NEMO [3–6]. NEMO includes
a suite of computational methods and workflows that are built
around formal ontologies (description logic representations for the
ERP domain) and can be used to facilitate ERP data sharing, analysis,
and integration.

In the present paper, we introduce a new component of the NEMO
workflow, which uses data mining methods to address two key
problems—what we term the ERP metric matching and ERP pattern

matching problems. In both cases, our goal is to align variables across
multiple, heterogeneous ERP datasets. This would provide a data-
driven alternative to top-down (knowledge-driven) methods, such as
advocating the use of restricted methods for analysis, or a controlled
vocabulary for data annotation. While these top-down approaches are
of considerable value [5,6], we believe that data-driven approaches
may provide a complementary approach that can lead to new insights
into complex ERP data structures.

The remainder of Section 1 describes the ERP metric and pattern
matching problems and summarizes our approach to these two
problems. Section 2 presents a theoretic framework, along with a
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description of our approach to the two matching problems. In
Section 3, we describe two case studies in which we used our
approach to align different variables (metrics and patterns) across
simulated ERP data. These data were designed to mimic three
sources of variability that are present in real ERP data. Section 4
presents results from the two case studies. Section 5 compares the
proposed method with existing methods, summarizes some
assumptions and limitations of our study, and suggests some
directions for future work. Finally, Section 6 summarizes the
contributions of the present work.
1.1. ERP metric matching problem

ERP patterns are characterized by three features: time course
(e.g., early or late), polarity (positive or negative), and scalp
distribution, or topography [4,7,8]. For example, the visual-evoked
‘‘P100 pattern’’ (Fig. 1A) has a peak latency of approximately
100 ms (Fig. 1B) and is positive over occipital areas of the scalp
(Fig. 1C), reflecting generators in visual regions of the cerebral
cortex.

Researchers use a variety of metrics to describe the three
features. These metrics reflect different ways that temporal and
spatial features of ERPs can be operationally defined. For example,
one research group might use a measure of peak latency (time of
maximum amplitude) to summarize the timecourse of the ‘‘P100’’
pattern in a visual object recognition experiment [9,10], while
another group might use measures of pattern onset and offset to
operationalize the concept of latency for the same dataset.

The use of different metrics has a long history in the ERP
research. While these diverse practices present a nuisance for
data sharing and integration, there are reasons to embrace this
heterogeneity, since different metrics may yield distinct and
complementary insights [11]. The challenge then becomes how
to find valid correspondences between these metrics. In the
previous work, we have described top-down (knowledge-driven)
methods, that is, annotation of data using a formal ontology [4–7].
This approach minimizes heterogeneity that arises from the use of
different labels (e.g., ‘‘latency’’ vs. ‘‘peak latency’’ for time of
maximal amplitude). It does not, however, address heterogene-
ities that reflect different operational definitions of time (e.g.,
peak latency vs. duration of a pattern), as described above. For
this reason, we have also explored the use of bottom-up (data-
driven) methods [11] to align different metrics across ERP
datasets. In the present paper, we extend our bottom-up
approach by developing and testing a more general formulation
of the metric matching problem. Specifically, we view metric
matching as an assignment problem and articulate a more general
Fig. 1. (A) 128-Channel EEG waveplot; positive voltage plotted up. Black, response to wo

extracted using Principal Components Analysis. (C) Topography of P100 factor. (For inte

the web version of this article.)
solution that can also be used to address a second problem—that
of ERP pattern matching.

1.2. ERP pattern matching problem

The ERP pattern matching problem is the problem of finding
correspondences among ERP patterns from different datasets.
This problem is challenging for several reasons. The most trivial
reason is that authors use a variety of labels to refer to the same
pattern [4,7], just as they use different names for the same or
similar metrics. This issue is readily addressed by the use of a
standard ontology (or controlled vocabulary), although there is no
guarantee that such a would be adopted by all research labs. The
second reason is related to the metric matching problem (Section
1.1): when two different measures are used to characterize the
timecourse of a pattern, they may capture subtly different views
of the same data. Accordingly, they may introduce additional
variability into the pattern matching equation. Finally, the most
profound challenge is a consequence of the physics and physiol-
ogy of signal generation: scalp-measured ERPs reflect a complex
and unknown mixture of latent patterns. The reason is that
neuroelectric signals are generated in cortex and are propagated
to the scalp surface. Moreover, at each moment, multiple regions
of cortex are co-active. Thus, at every timepoint and at every
point in the measurement (i.e., scalp) space, a pattern in the
measured data actually corresponds to multiple overlapping
patterns, that is, different underlying sources. This overlap or
‘‘superposition’’ is exacerbated by volume conduction of these
signals through the resistive skull.

Given these complexities, ERP researchers have adopted a
variety of solutions for identification and extraction of ERP
patterns (e.g., [1,2]). It can therefore be hard to compare results
from different studies, even when the same experimental stimuli
and task are used. Nonetheless, alternative analysis methods, like
alternative metrics, may provide different, and equally informa-
tive views, of the ‘‘same’’ data. Thus, we propose to embrace this
heterogeneity, rather than forcing researchers to use a restricted
set of solutions for data analysis. As a consequence, our approach
to data integration will require pattern matching, as well as
metric matching, across different ERP datasets. Moreover, this
matching should ideally be robust to differences among patterns
that arise from the use of alternative pattern analysis methods.

1.3. Study goals and hypotheses

In this paper, we address the ERP metric and pattern matching
problems by transforming them into two more general problems,
rds; red, response to non-words. (B) Time course of P100 pattern for same dataset,

rpretation of the references to color in this figure legend, the reader is referred to
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both of which have well-known solutions. The metric matching
problem is viewed as a schema matching problem, where the
alternative sets of metrics are treated as attributes (column
names) in the schemas that correspond to different ERP datasets.
Similarly, the pattern matching problem is characterized as a
cluster comparison problem, where patterns are extracted from
different ERP datasets using cluster analysis. At an even more
general level, the two problems are characterized as a type of
assignment problem. In this way, they can be solved using a
common framework, as described in the following section. We
test this framework in a series of case studies, using ERP datasets
that were designed to simulate heterogeneous data from different
groups of subjects under different conditions (via distinct simu-
lated brain activity profiles), as well as distinct measurement
methods (spatial and temporal metrics) and distinct patterns
(reflecting different pattern decomposition techniques).

To evaluate the performance of our proposed metric matching
method, we use two other methods for comparison—SemInt [12]
and cen-com, a method that relies on segmented central ten-
dency. SemInt calculates statistics, such as maximum, minimum,
mean, and variance, of the data. The statistics are extracted by
running aggregation queries against the whole set of attribute
values. However, it is possible that two different attributes could
have similar mean values; thus, SemInt statistics may be too
coarse-grained to represent different ERP attributes. In contrast
with SemInt, our proposed metric matching method examines the
grouping structure of attribute values through cluster analysis. It
therefore supports fine-grained comparisons between attributes.
In this way, it is conceptually similar to methods that rely on
segmented central tendency—for example, the use of multiple,
combined measures, such as /Mean, StdDevS, to characterize
substructures within a data distribution. Segmented central
tendency (cen-com) is straightforward and suitable for applica-
tions where the data instances are unordered or randomly
ordered. In the present case, the metric values are randomly
ordered across instances (i.e., subjects). We thus apply smoothing
to our point sequence curves as a post-processing step (i.e., after
subsequence reordering), to reduce the within-cluster variance
due to instance order. In the present study, we hypothesize that our

metric matching method will outperform SemInt. We further

hypothesize that our method will perform at least as well as a

method based on segmented central tendency.
Our proposed pattern matching method uses cluster compar-

ison methods. These methods are closely related to methods for
determining cluster validity, such as the technique of external, or
relative, indexing, which is used to compare different clustering
results. Cluster validity methods include the Rand index [13],
Jaccard index [14], normalized mutual information [15]. These
methods aim at evaluating cluster membership, that is, the
assignment of points to clusters. However, an important limita-
tion of these methods is that they can only be reliably used to
Fig. 2. Sample ERP data A and B from two laboratories. The goal of metric matching is

for pattern matching is to find correspondences between different sets of patterns (P a
compare different cluster results on the same dataset. By contrast,
the aim of our study is to align patterns across datasets that
contain non-overlapping observations. Thus, membership-based
cluster validity criteria are unsuitable. Furthermore, our method
should be able to use information about the distribution of
different ERP pattern attributes, i.e., spatial and temporal features
of the data. To this end, we have represented clusters as density
profiles, as proposed by Bae et al. [16], and have selected a cluster
similarity index known as ADCO (Attribute Distribution Cluster-
ing Orthogonality). ADCO determines the similarity between two
clusters based on their density profiles, which capture the
distribution of values along each attribute. We hypothesize that

ADCO scores will reflect high (80%) precision in matching ERP

patterns across datasets. We further expect that the more domain

knowledge we leverage during the cluster analysis process, the more

accurate the resulted clusters will be. To test this second hypothesis,
we apply the ADCO method under three scenarios, where we leverage

varying amounts of domain knowledge.
2. Theoretic framework

2.1. Overview

In the present section, we present our theoretic framework for
finding the general correspondence function MðS,S0Þ between two
sets S and S0. We discuss application-specific parameters in
Sections 2.1.2 and 2.1.3.

2.1.1. Transformation of matching problem to assignment problem

The goal of metric matching is to find correspondence between
alternative sets of metrics M and M0; and the goal for pattern
matching is to find correspondences between different sets of
patterns (P and P0). These two problems can be formulated in a
very general way, as illustrated in Fig. 2. Fig. 2A shows a sample ERP
experiment data from one lab and Fig. 2B from another. Two sets of
column headers, M¼ fM1,M2, . . . ,Mng and M0 ¼ fM01,M02, . . . ,M0ng,
denote alternative sets of metrics used by the two labs. The task
of metric matching is to infer a function MðM,M0Þ that establishes a
correspondence between the two metric sets. On the other hand,
rows in the data represent individual experiment observations and
can be grouped to clusters to capture ERP spatiotemporal patterns.
Fig. 2 shows two sets of patterns, P¼ fP1,P2, . . . ,Png and
P0 ¼ fP01,P02, . . . ,P0ng, extracted by different pattern separation and
analysis methods from two different datasets. The task of pattern
matching is then to infer a function MðP,P0Þ that establishes a
correspondence between the two sets of patterns.

Following Bae et al. [16], we propose a theoretic framework that
encompasses the solution to both the metric matching and pattern
matching problems by transforming them to the assignment pro-
blem. The assignment problem is formally posed as follows. Let us
to find correspondence between alternative sets of metrics M and M0; and the goal

nd P0).



Table 1

A sample similarity table between two sets of ERP metrics M and M0 .

M01 M02 . . . M0n

M1 16 415 11 438 9443

M2 11 395 12 394 6317

^ &
Mn 9132 6384 8376
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first define r as the stochastic permutation of a subscript index set.
Without causing confusion, we also define function rðkÞ that returns
the value at index k in the permutation set (i.e., r¼ frð1Þ,
rð2Þ, . . . ,rðnÞg is the permutation of f0;1, . . . ,ng). We can view r
as a correspondence function between set Sk and S0rðkÞ, assuming
correspondent positions in each set are considered to map to each
other. For instance, if two sets both have three elements, then the
subscript index set ranges over f0;1,2g. Supposing r returns f2;0,1g,
we can then obtain the following matchings: S02S02, S12S00, and
S22S01.

With the notation defined, we can now formalize the problem
of matching two sets of elements in general as an optimization
problem, in which the aim is to select the best r from the set of all
possible permutations of the elements in one set, under the
condition that some distance function characterizing the similar-
ity between two sets in the matching is minimized. Eq. (1)
expresses this idea

MðS,S0Þ ¼ arg min
r

XKmin

k ¼ 1

LðSk,S0rðkÞÞ

 !
, ð1Þ

where S and S0 are two sets under consideration, Kmin denotes the
minimum cardinality of them, and function L denotes the
distance function that we try to minimize. The form of L is
subject to different applications.

To calculate r that satisfies Eq. (1), rather than iterating
through all possible permutations of elements in S0, we can
consider the equation as a minimum-cost assignment problem
between the sets S and S0. Table 1, for example, illustrates a
distance table between two metric sets M and M0. Matching of the
two sets can be considered as an assignment problem where the
goal is to find an assignment of elements fMkg to fM0kg that yields
the minimum total distance without assigning each Mk more than
once. This problem can be efficiently solved by the Hungarian
method in polynomial time of OðK3

minÞ [17]. It is worth noting that
by formulating the problem as the assignment problem, we
assume the matching between two sets to be a one-to-one
function. We will discuss the limitation and implication of this
assumption in Section 5.

2.1.2. Data representation and transformation

To apply Eq. (1) to solve metric matching and pattern match-
ing problems, a central problem remains: what are the appro-
priate methods to model data, so that the distance function L can
be calculated in a meaningful way? To this end, we develop the
following approaches: in the schema matching problem, we
represent ERP metrics (attributes) as either point-sequence curves

or segmented statistical characterization, and in the cluster com-
parison problem, we model clusters by using density profiles [16].

Schema matching problem: The central objects of interest in our
study of the schema matching problem are the numeric-typed
attributes. In order to represent them in ways that meaningful
quantities can be defined to measure the ‘‘goodness’’ of a match-
ing decision, we propose to use two methods, namely, the point-
sequence curve and the segmented statistical characterization to
represent attributes.
The point-sequence curve is a curve plotted as attribute value
against instance number. The distance between point-sequence
curves characterizes the similarity between respective attributes.
However, since instances are randomly ordered within a dataset
and the instance numbering is inconsistent across datasets, the
resulting original graph of point-sequence curves will show no
clear pattern and thus no visible correspondence between alter-
native metrics (see Fig. 6, left frame). The key problem then
becomes to align subsequences of curves in a principled way to
enable valid comparisons among curves across datasets.

Our solution is to introduce structure into these (initially
randomly ordered) point-sequence curves by applying clustering
to extract similar subsequences, which are further labeled using
pattern classes defined in the NEMO ontologies. These labeled
subsequences can then be aligned across datasets (which implies
that pattern matching must be carried out beforehand), and
correspondences between curves established using standard
techniques for sequence similarity search in time-series (see
Fig. 1, right frame). This approach exploits prior knowledge of
the patterns that are commonly seen in ERP experiments of a
particular type (e.g., visual perception) while asserting no prior
knowledge about the measures.

Numeric-typed attributes can be represented by the segmen-
ted statistical characterization, in which data instances are first
partitioned into groups (e.g., through unsupervised clustering)
and then characterized by a vector of indicators, each denoting a
statistical characterization of the corresponding group. For exam-
ple, if values of an attribute A are clustered into n groups, then it
can be represented by a vector of segmented statistical character-
ization as follows:

VA ¼ ½m1,m2, . . . ,mn�,

where we choose the mean value mi for cluster i as the statistical
indicator. The indicators can be also defined as a combination of
several statistical quantities such as a weighted sum of mean and
standard deviation. In other words, an attribute can be repre-
sented as a¼ ½t1, . . . ,tn�, where ti ¼ aci1þbci2 , ci1 and ci2 are the
mean and standard deviation, respectively, a and b are the
weights, and n is the number of clusters.

Cluster comparison problem: The density profile is a method of
cluster representation that aims at capturing cluster structural
information. By representing clusterings as density profiles, a
novel clustering similarity measure, known as ADCO (Attribute
Distribution Clustering Orthogonality) [16], has been designed
which is able to take into account attribute distribution informa-
tion, as well as point membership information.

To induce density profiles, we first conduct EM clustering on
different datasets, and then label clusters with respect to the
simulated ERP patterns or ‘‘components’’. The attribute’s range in
each cluster is discretized into a number of bins, and the similarity
between two clusters corresponds to the number of points of each
cluster falling within these bins (details in Section 2.3).

2.1.3. Choice of distance function

With the data modeling approaches presented in the previous
section, we adopt two distance functions for the metric matching
and pattern matching problems, respectively, described as follows.

(1) Distance function in metric (schema) matching: Representing
attributes (metrics) using point-sequence curves enable us to
utilize a range of sequence similarity search techniques. Keogh
et al. [18] surveyed a wide range of sequence similarity measures
and subjected these measures to extensive performance tests.
They concluded that Euclidean distance outperformed other
measures. Therefore, we used Euclidean distance to quantify
degree of similarity among alternative metrics L in our study.
We applied sub-sequence reordering and post-processing steps
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(details in Section 2.2) prior to calculating the distance so that the
resulting sequences could be compared in a principled way.
Euclidean distance can also be used to calculate the similarity
between attributes under segmented statistical characterization
as well. In this case, the vector representations for two sets of
attributes that derive from two different datasets need to be
aligned, e.g., with reference to the cluster alignment. This align-
ment step corresponds to the sub-sequence reordering step in the
point sequence-based method.

To apply Eq. (1) for matching two sets of ERP metrics
(attributes) A and A0 characterized by respective sets of point-
sequence curves, we substitute the variables in Eq. (1) and derive
Eq. (2), and plugging in the Euclidean distance for function L
results in Eq. (3)

MðA,A0Þ ¼ arg min
r

XKmin

k ¼ 1

LðAk,A0rðkÞÞ

 !
, ð2Þ

MðA,A0Þ ¼ arg min
r

XKmin

k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i ¼ 1

ðAki�A0rðkÞiÞ
2

vuut
0
@

1
A: ð3Þ

(2) Distance function in pattern matching (cluster comparison):
After the density profile vectors of two clusterings C and C0 are
obtained, the degree of similarity between C and C0 can be
determined by calculating the dot product of the density profile
vectors:

simðC,C0Þ ¼ VC � VC0 :

To derive correspondences for two sets of clusterings C and C0

representing two sets of ERP patterns, we substitute the variables
in Eq. (1), resulting in Eq. (4). Since the similarity function is
inversely related to the distance function, in order to calculate
Eq. (4), it suffices to use the similarity function simðC,C0Þ and
change the operator to arg max. This is shown in Eq. (5). Details of
the process for this calculation are described in Section 2.3

MðC,C0Þ ¼ arg min
r

XKmin

k ¼ 1

LðCk,C0rðkÞÞ

 !
, ð4Þ
Fig. 3. Flowchart of the proposed approach (left—
MðC,C0Þ ¼ arg max
r

XKmin

k ¼ 1

VCk
� VC0rðkÞ

 !
: ð5Þ

2.2. Metric matching method

We propose to view the attribute value vector of each ERP
summary metric as forming a point-sequence curve. The similar-
ity between metrics can then be addressed by calculating the
Euclidean distance between the respective point-sequence curves.
Fig. 3 (left frame) illustrates the flowchart for the metric matching
process, which consists of the following steps:
1.
me
To identify structured subsequences in each attribute vector,
we use clustering and label discovered clusters with respect to
the simulated ERP patterns or ‘‘components’’, e.g., P100, N100,
N3, MFN, and P300, as defined in our NEMO ontology [4].
2.
 By labeling the attribute instances in this way, we can group
them in each dataset based on their pattern labels and then
align the instance groups across datasets accordingly. This step
can be viewed as a subsequence reordering process.
3.
 We then apply a sequence post-processing step to achieve
better performance in the similarity search, leveraging the rich
collection of sequence similarity search algorithms presently
available.
4.
 The final step is to evaluate the similarity of the structured
point-sequence curves that represent our two simulated ERP
datasets as quantified by their respective measures. Instead of
calculating the distance between all pairs of sequences from
the two datasets, this evaluation is achieved by transforming
the problem to an assignment problem that can be solved by
the Hungarian method [17].

Next, we describe details of the subsequence reordering and
sequence post-processing steps.

(1) Data partitioning and reordering: In the present study, we
perform clustering on the spatial and temporal values of the two
alternative sets of measures using the Expectation Maximization
(EM) algorithm. The resulting clusters represent candidate ERP
patterns, characterized by the central tendencies of their cluster
attributes (i.e., mean values for the spatial and temporal metrics).
tric matching, right—pattern matching).



Fig. 4. Two clusterings C ¼ fc1 ,c2g and C0 ¼ fc01 ,c02g. Two attributes X (attribute 1)

and Y (attribute 2) are discretized into two bins each. See [16] for details.
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We label the resulting clusters with pattern labels defined in the
NEMO ontologies (P100, N100, etc.) using rules specified by
domain experts.

Following clustering and labeling, the pattern labels are used
to align groups of instances across datasets, resulting in subse-
quence reordering. As illustrated on the right-hand graphs of
Fig. 6, for example, the point-sequence curves for metrics IN-O1
and IN-LOCC (plotted using their original orderings prior to
grouping/reordering on the left-hand side) are manifestly more
similar after reordering subsequences in the two curves by
aligning instances that belong to the same (or similar) patterns.

(2) Sequence post-processing: after alignment of the subse-
quences according to pattern labels defined in the NEMO ontol-
ogy, we carry out three post-processing steps: (1) normalization,
i.e., scaling all the sequence values to unit range; (2) smoothing,
using a moving average method to reduce within cluster variance;
and (3) interpolation of curves, if the number of points in two
point-sequence curves is different. Fig. 7 illustrates the results of
normalization, smoothing and interpolation to the point-
sequence curves of IN-O1 and IN-LOCC in Fig. 6.
2.3. Pattern matching methods

As explained in Section 1, the problem of pattern matching can
be framed as a cluster comparison task. Fig. 3 (right) illustrates
the flowchart of the proposed pattern matching method compris-
ing the following steps:
1.
 We first conduct EM clustering then label clusters with respect
to the simulated ERP patterns or ‘‘components’’ (e.g., P100,
N100, N3, MFN, and P300).
2.
 We then employ density profile to model clustering result and
derive a matching between two clusterings by finding the best
alignment of their respective density profiles that yields the
highest similarity measure.
3.
 In the final step, we generate a distance matrix (e.g., Table 1)
and then employ the Hungarian method to solve the align-
ment problem. The alignment induces matching between
clusters, with the confidence of the matching expressed
numerically by the ADCO score.

By representing clustering using a density profile, we are able
not only to compare clusters derived from non-overlapping
datasets, but also to take into account attribute distribution
information in the matching process. We describe below how to
represent clusters using density profiles and the calculation of the
ADCO score. More details and explanations can be found in [16].
(1) Density profile: To represent clusters using density profiles,
the attribute’s range in each cluster is first discretized into a number
of bins, and the similarity between two clusters corresponds to the
number of points of each cluster falling within these bins. The
formal definition for this number of points is the density of an
attribute-bin region for cluster ck in clustering C, denoted as
densCðk,i,jÞ. It refers to the number of points in the region (i, j) –
the j-th bin of the i-th attribute – that belongs to the cluster ck of
clustering C. For example, for clustering C in Fig. 4, densCð1;1,1Þ ¼ 8,
because there are eight data points in region (1, 1) – the first bin of
the first attribute x – that belongs to the first cluster c1.

The values of densCðk,i,jÞ for all possible k, i, j are then listed in
a certain ordering to form a clustering’s density profile vector

(defined below). This ordering is imposed on all attribute-bin
regions and must be applied to the two datasets in which the
clusterings were generated. It is necessary, then, that both
datasets must have the same attribute set. If this requirement
does not stand, the matching between the sets must be specified
in advance. Therefore, in order to apply the density profile
method in the ERP pattern matching problem, we must first carry
out measure matching. We further discuss the interdependence
between pattern matching and metric matching in Section 5.

The density profile vector VC for a clustering C is formally
defined as an ordered tuple

VC ¼ ðdensCð1;1,1Þ,densCð1;1,2Þ, . . . ,densCð1;1,Q Þ,densCð1;2,1Þ,

. . . ,densCð1,R,Q Þ,densCð2;1,1Þ, . . . ,densCðK ,R,Q ÞÞ,

where Q is the number of bins in each of the R attributes, and K is
the number of clusters in C.

(2) The ADCO measure: After the density profile vectors of two
clusterings C and C 0 are obtained, the degree of similarity between
C and C0 can be determined by calculating the dot product of the
density profile vectors:

simðC,C0Þ ¼ VC � VC0 :

Given a permutation function r under which the similarity
function simðC,rðC 0ÞÞ is maximized, an ADCO measure is calcu-
lated using a normalization factor (NF) corresponding to the
maximum achievable similarity of the clusterings: NFðC,C0Þ ¼
max½simðC,CÞ, simðC0,C0Þ�. The ADCOðC,C0Þ measure is defined as
follows:

ADCOðC,C0Þ ¼
simðC,C0Þ

NFðC,C 0Þ
:

The ADCO measure can be transformed to a distance function
(we refer interested readers to [16]). However, since the similarity
function is inversely related to the distance function, in order to
calculate matching in Eq. (1), it suffices to plug in the similarity
function simðC,C0Þ and change the operator to arg max. This is
shown in Eq. (7)

MðC,C0Þ ¼ arg min
r

XKmin

k ¼ 1

LðCk,C0rðkÞÞ

 !
, ð6Þ

MðC,C0Þ ¼ arg max
r

XKmin

k ¼ 1

XR

i ¼ 1

XQ

j ¼ 1

densðk,i,jÞ � densðrðkÞ,i,jÞ

0
@

1
A: ð7Þ

3. Experiment

In the present section, we describe an application of our
theoretic framework, described in Section 2, to the ERP metric
matching and pattern matching problems. For this application, we
used a set of simulated ERP datasets, which were designed to
support evaluation of ERP analysis methods [7]. As previously
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noted, real ERP data arise from superposition of latent scalp-
surface electrophysiological patterns, each reflecting the activity
of a distinct cortical network that cannot be reconstructed from
the scalp-measured data with any certainty. Thus, real ERP data
are not appropriate for evaluation of ERP pattern matching. By
contrast, simulated ERP data are derived from known source
patterns and therefore provide the necessary gold standard for
evaluation of our proposed methods.

The datasets for the present study were specifically designed
to simulate heterogeneous data from different groups of subjects
under different conditions (via distinct simulated brain activity
profiles), as well as distinct measurement methods (spatial and
temporal metrics) and distinct patterns (reflecting two different
pattern decomposition techniques).

3.1. Simulated ERP datasets

The raw data for this study consist of 80 simulated event-
related potentials (ERPs), in which each ERP comprises simulated
measurement data at 150 time samples and 129 electrode
channels for a particular subject (n¼40) and experiment condi-
tion (n¼2). The 40 simulated subjects are randomly divided into
two 20-subject groups, SG1 and SG2, each containing 40 ERPs (20
subjects in 2 experimental conditions). Each ERP consists of a
superposition of five latent varying spatiotemporal patterns that
represent the scalp projections of distinct neuronal groups
(dipoles). The varying spatiotemporal patterns modeled inter-
subject and inter-conditional differences amongst the ERPs, and
consisted of changes to the latency and standard deviation of
Fig. 5. Top (A)–(C), base model for generation of simulated ERP data. Bottom (D), repr

latency given in parentheses.
their dipole activation curves (described below). This ensured
that the simulated ERPs would be complex, realistic and yet
tractable to the PCA and ICA decompositions.

To create a set of scalp-referenced patterns of neural activity, nine
dipoles were located and oriented within a three-shell spherical head
model (Fig. 5A–C). The dipole locations and orientations were
designed to simulate the topographies of five ERP components (Fig.
5D) commonly seen in studies of visual word recognition. Each dipole
was assigned a 600 ms activation consistent with the temporal
characteristics of its corresponding ERP. Simulated ‘‘scalp-surface’’
electrode locations were then specified with a 129-channel montage,
and a complex matrix of simulated noise was added to mimic known
properties of human EEG. Because of volume conduction (overlap in
spatial or scalp-topographic activity), as well as overlap in temporal
activity, the dipole activations combine to yield a complex spatial and
temporal superposition of the five modeled ERP patterns.

Spatiotemporal patterns were extracted from the two datasets,
SG1 and SG2, using two techniques: temporal Principal Components
Analysis (tPCA) and spatial Independent Components Analysis
(sICA), two data decomposition techniques widely used in the ERP
research [19]. tPCA decomposes each ERP into a sequence of
spatiotemporal patterns, based upon the distribution of the ERP’s
temporal variance. The superposition of these patterns, in which
each captures a topography with a distinct temporal evolution,
reconstruct the original ERP. sICA is an analogous ERP decomposi-
tion, but is based upon the statistical independence of the ERP’s
spatiotemporal patterns in the decomposition sequence [20,21]. To
quantify the spatiotemporal characteristics of the extracted patterns,
two alternative metric sets, m1 and m2, were applied to the two
esentation of the scalp distribution of the five latent patterns. Approximate peak



Table 3
Sample similarity table for two clusterings from dataset SG01_tPCA_m1 and

SG02_sICA_m1. Bold cells represent maximum similarity assignment found by

the Hungarian method.

MFN N1 N3 P1 P3

MFN 23892 17 874 14 419 19 338 17 008

N1 9228 10581 4590 8050 6945

N3 7642 5796 6531 6336 5530

P1 13 644 10 808 7835 13120 10 379

P3 12 961 9200 7012 11 088 14196

ADCO: 0.8751232883731058.
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tPCA and the two sICA derived datasets. For a complete explanation
of these alternative metrics, see Appendix in [7].

In summary, the simulated ERP data generation process
yielded a total of eight test datasets, reflecting a 2 (subject
groups) �2 (metric sets) �2 (decomposition methods) factorial
design. The reason for including these three factors (simulated
subjects, alternative metrics, and alternative decomposition
methods) was to test the robustness of our matching method to
different sources of heterogeneity across the different datasets.

3.2. Metric matching experiments

The experiment is conducted on the simulated datasets
described in Section 3.1. The test cases for the metric matching
discovery experiment are derived as follows: each test case
contains a source and target dataset. The source dataset is derived
from one subject group (SG1 or SG2) characterized with one
metric set (m1 or m2) and formulated under one decomposition
method (sICA or tPCA). The target dataset is derived from the
other subject group, using the alternative metric set and decom-
position method. This yields 2 (subject groups) �2 (metric sets)
�2 (decomposition method)¼8 test cases, each of which
includes two different datasets, two alternative metric sets and
two decomposition methods. In order to test the robustness of the
proposed methods, we replicate the datasets for each test case
into five copies with different random ordering of the instances,
resulting in a total of 40 enriched test cases.

We test our method on each of these test cases. The overall result
is presented in Section 4.1. Table 2, for example, shows the detail of
one individual result calculated from tPCA-derived data SG1-m1 and
SG2-m2. Cell values indicate the Euclidean distance between two
point-sequence curves representing two ERP metrics (row header
and column header that meet at the cell). Bold cells are the
minimum distance assignments found by the Hungarian method.
The assignments indicate matchings discovered by our methods. For
example, from this table we can derive the following matchings:
IN-O12IN-LOCC, IN-O22IN-ROCC, IN-C32IN-LPAR, etc. Note
that the orders of the row and column header labels are such that
the golden standard matching falls along the diagonal cells. There-
fore, we can easily conclude that the precision of matching in this
test case is 9/13¼69.2% since 4 out of 13 cells are shifted off from
the diagonal.

3.3. Pattern matching experiments

We design three test cases for pattern matching using different
cluster analysis schemes to extract patterns from ERP data. The
goal is to simulate different ERP analysis scenarios that leverage
Table 2
Sample distance table for two metric sets derived from dataset SG1_tPCA_m1 and S

Hungarian method.

IN-O1 IN-O2 IN-C3 IN-C4 IN-T7 IN-T8

IN-LOCC 2.76 2.76 8.59 8.52 9.68 10.44

IN-ROCC 2.75 2.75 8.58 8.47 9.69 10.47

IN-LPAR 8.57 8.58 4.13 5.12 9.29 8.91

IN-RPAR 7.97 7.97 3.55 4.38 8.97 8.66

IN-LPTEM 9.32 9.34 8.54 9.23 5.00 4.26
IN-RPTEM 7.81 7.81 7.66 8.05 4.18 3.84

IN-LATEM 11.00 11.00 8.40 8.96 3.20 2.74

IN-RATEM 11.19 11.19 8.53 9.03 3.33 2.45

IN-LORB 9.58 9.58 6.00 6.48 4.23 4.50

IN-RORB 11.19 11.20 8.36 8.93 3.44 3.33

IN-LFRON 6.72 6.71 4.05 4.01 6.30 7.10

IN-RFRON 6.36 6.33 4.58 4.03 7.09 7.94

TI-max1 11.72 11.71 7.18 7.74 12.12 11.74
varying amounts of domain knowledge. The three cases are as
follows:
1.
G2_

IN-

11.

11.

9.

9.

5.

5.

2.
2.

3.

2.

6.

8.

12.
Constrained EM clustering (clustering with known number of
clusters).
2.
 Unconstrained clustering with postprocessing (clustering
without a priori specification of the number of clusters, but
with expert post-processing).
3.
 Unconstrained clustering (clustering without specifying num-
ber of clusters).

In the first case, the EM algorithm is performed and number of
clusters is set to 5, conforming to the number of latent patterns
that we modeled when generating the simulated dataset. The
cluster labels are conveniently labeled according to the corre-
sponding pattern labels determined by the EM algorithm.

In the second case, our domain expert examines the EM
clustering results and collapsed similar clusters or drop outliers
based on the distribution of spatial and temporal metrics. Note
that this process could be partly or fully automated in principle,
but was carried out by manual inspection of the clustering results
in this case.

In the third case, we perform the EM algorithm without setting
the number of clusters. The clustering result is then aligned to a
priori pattern class labels and outliers are dropped.

Experiment results for the three test cases are shown in
Section 4.2. We also keep a record of all detailed individual
matching results. Table 3, for example, shows an individual
matching result calculated from two clusterings derived from
datasets SG01_tPCA_m1 and SG02_sICA_m1 in case study 1. Each
cell value represents the density profile-based similarity measure.
The column and row header elements in the table are cluster
labels (aligned to pattern class labels). They are listed in the same
order so that the golden standard matching falls along the
diagonal cell. The bold cells represent the maximum similarity
tPCA_m2. Bold cells represent minimum distance assignment found by the

F7 IN-F8 IN-Fp1 IN-Fp2 IN-F3 IN-F4 TI-max2

52 11.61 11.56 11.56 7.92 7.90 12.93

55 11.64 11.60 11.60 7.91 7.86 12.95

24 9.07 8.98 8.97 5.58 6.07 9.39

10 8.93 8.88 8.85 4.99 5.39 9.43

62 5.34 5.73 5.72 7.37 7.88 11.42

61 5.39 5.85 5.78 6.24 6.56 11.28

30 2.09 2.52 2.43 6.89 7.35 10.95

51 2.08 2.80 2.64 6.99 7.41 11.30

58 3.63 3.35 3.26 4.36 4.83 10.31

15 2.12 2.21 2.16 6.85 7.33 10.83

91 7.06 6.76 6.71 2.74 2.20 9.99

01 8.15 7.96 7.88 3.42 3.06 10.67

02 11.88 11.89 11.87 9.36 9.61 8.58
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assignment. The accuracy of matching induced from this assign-
ment is 100% since all highlighted cells fall along the diagonal. We
also calculate the ADCO measure (Section 2.3 for this assignment),
which can be viewed as a measure that quantifies the degree of
confidence of the matching result.

By inspecting the matching results, domain experts can get a
sense of the quantitative relationship between two clusters in
terms of density profile-based similarity measure. For example, in
Table 3, although the assignment selected by the Hungarian
method suggests a correct matching between two clusters labeled
P1, one can also find that the P1 pattern in one dataset is close to
the MFN pattern in another dataset. Such information can be very
valuable to domain experts as it provides clues to the nature of
the relationships between different ERP patterns.
4. Results

4.1. Metric matching results

Figs. 6 and 7 illustrate the effect of subsequence reordering and
post-processing on point-sequence curves IN-LOCC and IN-O1,
which are derived from two tPCA-derived datasets SG1_tPCA_m1
and SG2_tPCA_m2 with a random ordering of data points. IN-LOCC
and IN-O1 are a matching according to the gold standard. As shown
in the figure, the two point-sequence curves are manifestly more
similar after subsequence reordering and post-processing.
Fig. 6. (Left) IN-LOCC and IN-O1 point-sequence curves prior to grouping and reorderin
The robustness of the methods is assessed by evaluating the
overall performance over the 40 test cases (described in Section 3.2).
Table 4 summarizes the result in terms of precision for each test
case. The table consists of eight divisions, each of which illustrates
the precision measures for the datasets generated by five samples of
replication to one of the original eight test schemes with random
instance ordering. Since the fact that the precision of matching by
making a random guess is almost zero and that the results
demonstrate consistent performance on randomly ordered data,
the precision of our method appears markedly robust. Combining
the matching results in the 40 test cases into an ensemble model by
a majority vote of each individual matching, we obtain the ensemble
matching result. The overall precision is 11/13¼84.6. We also carry
out experiments to test the performance of attribute matching
based on the segmented statistical representation. The experiment
is conducted on the same eight test cases together with a baseline
method based on the SemInt [12].

In the segmented statistical representation, an attribute can be
represented as a :¼ /t1, . . . ,tnÞ, where ti ¼ a � ci1þb � ci2, ci1 and ci2

are the mean and standard deviation, respectively, a and b are
weights, and n is the number of clusters. In the experiment, a and
b are empirically set to 0.5. In the SemInt method, we configure
the algorithm it to extract from each feature value vector two
discriminators, i.e., mean and standard deviation. The feature
value vector is then projected to a match signature characterized
by these discriminators. A neural network is trained based on
datasets from the eight test cases with one metric set and tested
g. (Right) Labeled curves for metrics IN-O1 and IN-LOCC after grouping/reordering.



Fig. 7. After normalization, smoothing, and interpolation of point-sequence curves in Fig. 6.

Table 4
Precision results for 40 test cases.

(SG1, sICA, m1) vs. (SG2, sICA, m2) (SG1, tPCA, m1) vs. (SG2, tPCA, m2) (SG1, sICA, m1) vs. (SG2, tPCA, m2) (SG1, tPCA, m1) vs. (SG2, sICA, m2)

Input Precision Input Precision Input Precision Input Precision

Sample 1 13/13 Sample 1 9/13 Sample 1 13/13 Sample 1 5/13

Sample 2 13/13 Sample 1 9/13 Sample 2 13/13 Sample 1 5/13

Sample 3 13/13 Sample 1 9/13 Sample 3 13/13 Sample 1 5/13

Sample 4 13/13 Sample 1 9/13 Sample 4 13/13 Sample 1 5/13

Sample 5 13/13 Sample 1 9/13 Sample 5 13/13 Sample 1 5/13

(SG2, sICA, m1) vs. (SG1, sICA, m2) (SG2, tPCA, m1) vs. (SG1, tPCA, m2) (SG2, sICA, m1) vs. (SG1, tPCA, m2) (SG2, tPCA, m1) vs. (SG1, sICA, m2)

Input Precision Input Precision Input Precision Input Precision

Sample 1 9/13 Sample 1 9/13 Sample 1 5/13 Sample 1 7/13

Sample 2 9/13 Sample 1 9/13 Sample 2 8/13 Sample 1 7/13

Sample 3 9/13 Sample 1 9/13 Sample 3 5/13 Sample 1 7/13

Sample 4 9/13 Sample 1 9/13 Sample 4 5/13 Sample 1 7/13

Sample 5 9/13 Sample 1 9/13 Sample 5 5/13 Sample 1 7/13
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on the rest datasets with the alternative metric set to determine
the match.

The result for the comparative study is shown in Fig 8. Both
the segmented statistical characterization-based method (cen-
com) and SemInt are run on the eight test cases. Since they are
not sensitive to data ordering, they are not tested on randomly
ordered samples. The performance of the sequence similarity-
based method (seq-sim) in each test case is shown as the average
of five randomly ordered replicate data. The result shows
that both seq-sim and cen-com significantly outperform SemInt.
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The reason is that both methods take into consideration sub-
structures (i.e., patterns) within the data, allowing for finer-
grained comparison of attributes.

The advantage of cen-com to SemInt can be illustrated by a
simple conceptual example: Suppose given four attributes, A1, A2
Fig. 8. Comparative study on the performance of three metric matching methods.

Seq-sim stands for the proposed sequence-similarity-based method; cen-com

stands for the segmented central tendency based method; and SemInt is an

existing method that uses statistical aggregations to represent numeric attributes.

Table 5
Matrix of ADCO scores between all pair of test datasets in case study 1. Average ADCO

SG01_ sICA_m1 SG01_ sICA_m2 SG01_ tPCA_m1 SG01_ tPC

SG01_ sICA_m1 1 0.907 0.826 0.871

SG01_ sICA_m2 0.907 1 0.834 0.827

SG01_ tPCA_m1 0.826 0.834 1 0.803

SG01_ tPCA_m2 0.871 0.827 0.803 1

SG02_ sICA_m1 0.855 0.866 0.881 0.813

SG02_ sICA_m2 0.912 0.972 0.811 0.823

SG02_ tPCA_m1 0.755 0.733 0.77 0.851

SG02_ tPCA_m2 0.886 0.901 0.855 0.835

Table 6
Matrix of ADCO scores between all pair of test datasets in case study 2. Average ADCO

SG01_ sICA_m1 SG01_ sICA_m2 SG01_ tPCA_m1 SG01_ tPC

SG01_ sICA_m1 1 0.909 0.834 0.873

SG01_ sICA_m2 0.909 1 0.836 0.831

SG01_ tPCA_m1 0.834 0.836 1 0.817

SG01_ tPCA_m2 0.873 0.831 0.817 1

SG02_ sICA_m1 0.855 0.866 0.875 0.817

SG02_ sICA_m2 0.911 0.976 0.819 0.822

SG02_ tPCA_m1 0.756 0.741 0.797 0.846

SG02_ tPCA_m2 0.883 0.898 0.854 0.835

Table 7
Matrix of ADCO scores between all pair of test datasets in case study 3. 4 out of 28 m

SG01_ sICA_m1 SG01_ sICA_m2 SG01_ tPCA_m1 SG01_ tPC

SG01_ sICA_m1 1 0.576 0.669 0.592

SG01_ sICA_m2 0.576 1 0.486 0.528

SG01_ tPCA_m1 0.669 0.486 1 0.824

SG01_ tPCA_m2 0.592 0.528 0.824 1

SG02_ sICA_m1 0.627 0.648 0.472 0.613

SG02_ sICA_m2 0.754 0.656 0.63 0.708

SG02_ tPCA_m1 0.694 0.655 0.642 0.588
SG02_ tPCA_m2 0.462 0.4 0.598 0.665
from one dataset and A01, A02 from another, all centered around
zero (mean¼0), and each dataset can be split into two equal-size
clusters, the mean values of each cluster in different attributes are
as follows: A1 ¼ ½10,�10�, A2 ¼ ½100,�100�, A01 ¼ ½10,�10�,
A02 ¼ ½100,�100�, where the numbers in the brackets denote the
mean values of corresponding clusters in an attribute. SemInt
would use the top attribute-level distribution to represent attri-
butes, in which case, since all attribute-level means are zero,
SemInt would not be able to find a matching. On the other hand,
using our approach to examine the distributions broken down to
the pattern level, it is obvious to see A1 matches to A01, and A2

matches to A02. This argument applies to all statistical indicators
other than mean as well. Our hypothesis is that similar attributes
should exhibit similar per-cluster distributions.

Note that seq-sim and cen-com yielded similar results. These
two methods can be viewed as conceptually similar as they both
utilize clustering structure in the data. It is worth noting that cen-
com can be further improved by automatic weight assignment
through learning. In this regard, it may prove to be more power-
ful, and more generalizable, than the simple comparison of means
and standard deviations.

4.2. Pattern matching results

Tables 5–7 show the pattern matching results for the three test
cases described in Section 3.3. The column and header elements
is 0.842.

A_m2 SG02_ sICA_m1 SG02_ sICA_m2 SG02_ tPCA_m1 SG02_ tPCA_m2

0.855 0.912 0.755 0.886

0.866 0.972 0.733 0.901

0.881 0.811 0.77 0.855

0.813 0.823 0.851 0.835

1 0.855 0.75 0.919

0.855 1 0.743 0.889

0.75 0.743 1 0.752

0.919 0.889 0.752 1

is 0.839.

A_m2 SG02_ sICA_m1 SG02_ sICA_m2 SG02_ tPCA_m1 SG02_ tPCA_m2

0.855 0.911 0.756 0.883

0.866 0.976 0.741 0.898

0.875 0.819 0.797 0.854

0.817 0.822 0.846 0.835

1 0.856 0.753 0.924

0.856 1 0.75 0.884

0.753 0.75 1 0.76

0.924 0.884 0.76 1

atchings are incorrect (bold cells). Average ADCO is 0.605.

A_m2 SG02_ sICA_m1 SG02_ sICA_m2 SG02_ tPCA_m1 SG02_ tPCA_m2

0.627 0.754 0.694 0.462

0.648 0.656 0.655 0.4

0.472 0.63 0.642 0.598

0.613 0.708 0.588 0.665

1 0.719 0.653 0.425

0.719 1 0.661 0.558

0.653 0.661 1 0.423

0.425 0.558 0.423 1
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in each table represent the eight test ERP data files. Every cell
element represents the ADCO score for cluster matching between
the two data files represented by the corresponding header and
column elements. In all the three test cases, pattern matching was
conducted on all 64 pairs of the test data files. Among the 64
pairs, 8 were trivial (self matching). Further, due to the symmetric
property of matching, only a half of the remaining 56 need to be
computed, leaving a total of 28 nontrivial cases for examination.
In other words, Tables 5–7 are symmetric matrices, with values
on diagonal cells being 1.

We achieve 100% correct matching in all tests for cases 1
and 2. It is worth noting, however, that the average ADCO score
for case 1 is slightly higher than case 2. This conforms to our
intuition that the more domain knowledge we leverage during
the cluster analysis process, the more accurate the resulted
clusters are.

The third test case is the only one where the proposed
matching method outputs incorrect result (bold cells in
Table 7). This is due to the fact that we employ the least amount
of domain knowledge in case 3. Unconstrained EM clustering
without specifying the number of clusters causes the splitting of
observations of a single pattern into two or more clusters. This
phenomenon leads to a many-to-many matching between clus-
ters, which cannot be effectively handled by the density profile-
based matching method. Therefore, the matching result is the
worst among the three cases (however it can still be considered a
good result in terms of error rate: 4 out of 28 matchings are
incorrect). Note that the assignment of observations to clusters
and the corresponding splitting of observation is a function of the
metrics used to generate the dimensions and axis orientations of
the multidimensional attribute space. Observations that are close
in L2 norm along one dimension of a spatiotemporal attribute
space may be farther away in L2 norm on a separate dimension of
an alternate attribute space instantiated by an alternate metric
set. This is consistent with mathematical topology, in which
mathematical objects that are close in one topology, or one
generalized measure of distance, can be far apart in another
topology, or an alternate measure of distance.
5. Discussion

In this section we describe how our proposed methods
compare with existing methods. We then summarize the con-
tributions, as well as the assumptions and limitations, of the
current study and outline some directions for future work.

Metric and pattern matching: As noted in Section 1.3, the
problem of finding correspondences among alternative metrics
can be viewed as a schema matching problem. We have proposed
a method that relies on alignment of point-sequence similarity
curves and examines the grouping structure of metric values
through cluster analysis. Consistent with our hypotheses, we
found that our method outperformed a well-known attribute
matching method, SemInt. We further showed that our method
performed as well as a method based on segmented central
tendency. In addition, the proposed method does not require
overlapping instances in different ERP datasets. Matching
systems such as the iMAP [22] method that builds joint paths
between two tables through which data instances can be cross-
referenced perform poorly on ERP datasets because overlapping
data instances from different ERP datasets are simply non-
existent.

It is important to note the role of a priori knowledge (i.e., top-
down methods) in our metric mapping approach: subsequences
(clusters) were labeled by domain experts, prior to subsequence
ordering. This was a necessary step, to ensure that metric values
were compared across datasets for like patterns. As a result, we
were able to calculate distance between point-sequence curves in
a principled way. In future work, this labeling will be done
completely automatically, through application of our ontology-
based classification and labeling workflow [4–7].

In addition to the metric matching problem, our method
handles a more profound challenge for ERP data sharing and
integration: ERP pattern matching. This challenge requires that
we discover correspondences among ERP patterns from datasets
with non-overlapping observations (i.e., different study partici-
pants). For this reason, we used cluster comparison methods,
which do not assume overlap in cluster membership across
datasets. By contrast, most previous methods have relied on
evaluation of cluster membership [13–15]. A further advantage
of our method is that it takes into account the multidimensional
nature of ERP data: ERP patterns are characterized by several
attributes, such as time course (e.g., early or late), polarity
(positive or negative), and scalp topography. We therefore chose
a clustering similarity index known as ADCO (Attribute Distribu-
tion Clustering Orthogonality [16]) to represent clusters as
density profiles. The ADCO measure can determine the similarity
between clusters based on the distribution of data points along
each attribute.

Future work: The present study has provided important
evidence on the use of matching methods to address heterogene-
ities in ERP datasets from different studies of human brain
function. An important next step is to extend our methods beyond
the current study, where we have made several simplifying
assumptions.

First, in formulating the metric and pattern matching pro-
blems, we have assumed one-to-one correspondences between
alternative sets of metrics and between sets of patterns from
different datasets. These assumptions may not be met in real-
world applications. To address this limitation, we propose to use
unconstrained EM clustering in future studies. In unconstrained
EM, several clusters in one dataset may correspond to a single
latent pattern in another dataset [7]. This can result in many-to-
many correspondences, and thus requires that we relax the one-
to-one matching constraint.

Second, the density profile (pattern matching) method
requires that two datasets contain the same or similar underlying
clusters (i.e., the same latent patterns). The method allows that
these patterns might be characterized by distinct spatial and
temporal metrics. At the same time, it assumes that these
metrics are, or can be, aligned. Thus, our method presupposes
that the metric matching problem has – in one way or another –
already been solved. Conversely, alignment of sub-sequences
(metric matching) requires that the target and source datasets
contain the same subsequences (i.e., patterns). In other
words, metric and pattern matching are interdependent pro-
blems. In future work, we will address variability across ERP
metrics and ERP patterns simultaneously. That is, we will address
the three-dimensional assignment problem. If we succeed, this
could lead to a fully automatic, data-driven procedure for ERP
integration.

Finally, the simulated ERP data used in the present study were
carefully designed to mimic many, but not all, features of real ERP
data. In particular, we minimized variability in latency and spatial
distribution of patterns across the datasets so that the data
decomposition and clustering of patterns would be tractable
and relatively straightforward to interpret. In future work, we
will carry out additional tests on simulated datasets that are
progressively more complex along these dimensions. This will
allow us to test the robustness of our proposed matching methods
in a systematic way. After we have evaluated our methods across
a wider range of simulated data, we will apply these methods to
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real ERP datasets, such as those that have been collected,
analyzed, and stored in our NEMO ERP ontology database
[5,6,8]. Again, however, it is important to note that ERP data are
extremely complex and – most importantly – that they contain
unknown mixtures of patterns. Therefore, it is only with the use
of simulated data that we can test the robustness and validity of
our methods with any confidence.
6. Conclusion

In this paper, we have described a data-driven solution for two
key challenges in the sharing and integration of electrophysiolo-
gical (brainwave) data. The first challenge, ERP metric matching,
involves discovery of correspondences among distinct summary
features (‘‘metrics’’) that are used to characterize datasets that
have been collected and analyzed in different research labs. The
second challenge, ERP pattern matching, involves discovery of
matchings between spatiotemporal patterns or ‘‘components’’
of ERPs.

We have treated both problems within a unified framework
that comprises multiple methods for assignment (matching). The
utility of this framework has been demonstrated in a series of
experiments using ERP datasets that were designed to simulate
heterogeneities arising from three sources: (a) different groups of
subjects, (b) different measurement methods, and (c) different
spatiotemporal patterns (reflecting different pattern analysis
techniques). Unlike real ERP data, the simulated data were
derived from known source patterns, providing a gold standard
for evaluation. We have shown that our method outperforms
well-known existing methods, such as SemInt, because it utilizes
cluster-based structure and thus achieves finer-grained represen-
tation of ERP attributes. We have further discussed the impor-
tance of this work in the broader context of ERP data sharing,
analysis, and integration: While top-down (ontological) methods
have played a key role in our project, extensions of the present
work could lead a fully automatic, data-driven framework for ERP
meta-analysis, enabling major breakthroughs in the science of
human brain function.
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