J Intell Inf Syst (2011) 37:217-244
DOI 10.1007/s10844-010-0133-4

Using ontology databases for scalable query answering,
inconsistency detection, and data integration

Paea LePendu - Dejing Dou

Received: 8 October 2009 / Revised: 21 July 2010 / Accepted: 1 September 2010 /
Published online: 22 September 2010
© Springer Science+Business Media, LLC 2010

Abstract An ontology database is a basic relational database management system
that models an ontology plus its instances. To reason over the transitive closure of
instances in the subsumption hierarchy, for example, an ontology database can either
unfold views at query time or propagate assertions using triggers at load time. In
this paper, we use existing benchmarks to evaluate our method—using triggers—and
we demonstrate that by forward computing inferences, we not only improve query
time, but the improvement appears to cost only more space (not time). However,
we go on to show that the true penalties were simply opaque to the benchmark,
i.e., the benchmark inadequately captures load-time costs. We have applied our
methods to two case studies in biomedicine, using ontologies and data from genetics
and neuroscience to illustrate two important applications: first, ontology databases
answer ontology-based queries effectively; second, using triggers, ontology databases
detect instance-based inconsistencies—something not possible using views. Finally,
we demonstrate how to extend our methods to perform data integration across
multiple, distributed ontology databases.

Keywords Ontology - Database - Knowledge base - Scalability - Semantic Web

P. LePendu - D. Dou
Computer and Information Science Department,
University of Oregon, Eugene, OR 97403, USA

P. LePendu
e-mail: paca@cs.uoregon.edu

D. Dou
e-mail: dou@cs.uoregon.edu

Present Address:

P. LePendu (X))

National Center for Biomedical Ontology,

Stanford Center for Biomedical Informatics Research,
Stanford University, Stanford, CA, USA

e-mail: plependu@stanford.edu

@ Springer

218 J Intell Inf Syst (2011) 37:217-244

1 Introduction

Researchers are using Semantic Web ontologies extensively in intelligent information
systems to annotate their data, to drive decision-support systems, to integrate data,
and to perform natural language processing and information extraction. Ontologies
provide a means of formally specifying complex descriptions and relationships about
information in a way that is expressive yet amenable to automated processing and
reasoning. As such, they offer the promise of facilitated information sharing, data
fusion and exchange among many, distributed and possibly heterogeneous data
sources. However, the uninitiated often find that applying these technologies to
existing data can be challenging and expensive. In this paper, we present an easy
method for users to manage an ontology plus its instances using an off-the-shelf
database management system like MySQL. We call these sorts of databases ontology
databases.

We demonstrate that ontology databases using our trigger-based method scale
well. Most importantly, ontology databases are useful for handling ontology-based
queries. That is, users will get answers to queries that take the subsumption hierarchy
into account along with other features such as restrictions. Moreover, we can perform
instance-based inconsistency detection, which is not possible using view-based meth-
ods. Ontology engineers benefit from instance-based inconsistency detection because
such inconsistencies could indicate possible errors in the ontology, which are difficult
to detect otherwise. Finally, our method extends easily to perform integration across
distributed, heterogeneous ontology databases using an inference-based framework.

We evaluated our system to carefully characterize its performance benefits (and
limitations) so that users can decide how applicable it is for their domain. In
particular, knowledge base systems, like ontology databases, will commonly pay
an amortized penalty up-front by materializing inferences (e.g., forward chaining,
materializing views, computing transitive closures, etc.) such that queries run much
faster—so system architects need to understand the tradeoffs. Therefore, we used the
Lehigh University Benchmark (LUBM) (Guo et al. 2005) to measure the query-time
and load-time performance for our implementation, where triggers act to forward
compute inferences. The results on query performance show the expected gains,
but the load-time costs were surprising: we saw no apparent cost for pre-computing
the transitive closure of the instances using triggers. We hypothesized that the
benchmark was inadequately characterizing the space-time tradeoffs, so we designed
a new series of benchmark ontologies and re-tested the system to illuminate load-
time costs that account for the wide variability among ontologies. As a result, we are
able to carefully characterize for what kind of ontology and size of data our system
works well.

Like similar systems do, our system answers queries and takes the subsumption hi-
erarchy into account, as demonstrated in our case study on neuroscience data. What
distinguishes our work in large part is the use of active database technologies (i.e.,
triggers) in an off-the-shelf database system to maintain the knowledge model, which
only a few other systems have done. In addition to supporting integrity constraint
checking for domain and range restrictions, we also incorporate limited, instance-
based inconsistency checking by introducing explicit negations via not-gadgets into
the ontology database structure. In biomedical domains where data is gathered
empirically and annotated by ontologists, we can use this technology to support the

@ Springer

J Intell Inf Syst (2011) 37:217-244 219

ontology engineering process, i.e., we can use the biological evidence to refute claims
about the ontology definition. Doing so, we found 75 logical inconsistencies in the
Gene Ontology (GO) (Gene Ontology Consortium 2006).

This manuscript extends our previously published work (LePendu et al. 2008,
2009) in three ways. First, we explore in greater depth the scalability, performance
and expressiveness of a trigger-based approach via our case studies. We developed
a method for generating new benchmark ontologies which improves upon existing
benchmarks by taking the wide diversity among ontologies into consideration.
Second, we add proof reconstruction capability to our system in order to explain
logical inconsistencies. Finally, we extend the trigger-based method to perform data
integration: using inferential data integration theory, we can propagate inferences
through a network of ontology databases via triggers and message-passing.

We organized the rest of this paper as follows. Section 2 outlines the general
goal and main contributions of our work; it also presents the motivation we obtain
from other, related works. Section 3 summarizes the main idea behind and key
implementation details for our system. We end Section 3 with a short discussion on
what differentiates our system from other, similar systems. Sections 4-6 present case
studies on questions of scalability, ontology-based query answering, and inconsis-
tency detection. Section 7 describes how to extend our system to perform integration.
Finally, we conclude in Section 8.

2 Our goal and motivation

An ontology defines terms and specifies relationships among them, forming a logical
specification of the semantics of some domain. Most ontologies contain a hierarchy
of terms at minimum, but many have more complex relationships to consider.
Researchers in biomedicine use ontologies heavily to annotate their data and to drive
decision support systems that translate to applications in clinical practice (Shah et al.
2009). What makes this work challenging in part is to have systems that will handle
basic reasoning over the relationships in an ontology in a transparent manner and
that will scale to large data sets.

Our goal is not new, just our approach: We need the capabilities of an efficient,
large-scale knowledge base system (using Semantic Web ontologies), but we want
a solution as transparent as managing a regular relational database system, such
as MySQL. Luckily, we do not have to port legacy systems (like EKS-V1 (Vieille
et al. 1992)) to suite our needs because many of the descendant technologies have
made their way into everyday relational database management systems, like MySQL.
In other words, when used in the proper context, regular databases can behave
like efficient, deductive systems. While perhaps obvious to researchers of logic
and databases, it is not as obvious to many biomedical informaticians who require
intelligent information systems like these.

An ontology database takes a Semantic Web ontology as input and generates a
database schema based on it. When individuals in the ontology are asserted in the
input, the database tables are populated with corresponding records. Internally, the
database management systems processes the data and the ontology in a way that
maintains the knowledge model, much like a basic knowledge base would. As a

@ Springer

220 J Intell Inf Syst (2011) 37:217-244

result, after the database is bootstrapped in this way, users may pose SQL queries
to the system declaratively, based on terms from the ontology, and they get answers
in return that incorporate the term hierarchy or other logical features of the ontology.
Our system, which we call OntoDB, includes the following features:

Ease Users merely require an off-the-shelf database system like MySQL.
Scalability Users can input large data sets under medium-sized ontologies.
Subsumption Researchers can ask declarative, ontology-based queries.
Inconsistency Ontologists can detect logical errors arising from asserted data.
Integration Analysts can integrate heterogeneous data using our method.

2.1 Related work

2.1.1 Knowledge-based systems

Knowledge-based systems (KBs) use a knowledge representation framework, having
an underlying logical formalism (a language), together with inference engines to
deductively reason over a given set of knowledge. Users can tell statements to the KB
and ask it queries (Levesque and Lakemeyer 2001), expecting reasonable answers
in return. An ontology, different from but related to the philosophical discipline of
Ontology, is one such kind of knowledge representation framework (Guarino 1998).
In the Semantic Web (Berners-Lee et al. 2001), description logic (DL) (Baader et al.
2003) forms the underlying logic for ontologies encoded using the standard Web
Ontology Language! (OWL). One of the major problems with Semantic Web KBs is
they do not scale to very large data sets (Haarslev and Moller 2001).

2.1.2 Reasoning

Researchers in logic and databases have contributed to the rich theory of deductive
database systems (Gallaire et al. 1977; Gallaire and Nicolas 1990). For example,
Datalog (Ullman 1988) famously uses views for reasoning in Horn Logic. We already
mentioned EKS-V1 (Vieille et al. 1992). Reasoning over negations and integrity
constraints has also been studied in the past (Clark 1977; Kowalski et al. 1987).
Of particular note, one of the side-remarks in one of Reiter’s papers (Reiter 1977)
formed an early motivation for building our system: Reiter saw a need to balance
time and space in deductive systems by separating extensional from intensional
processing. However—33 years later—space has become expendable.

Other works move beyond Datalog views to incorporate active rules for reasoning,
such as ConceptBase (Jarke et al. 1995). An active rule, like a trigger in a database,
is a powerful mechanism using an event-condition-action model to perform certain
actions whenever a detected event occurs within a system that satisfies the given
condition. Researchers in object-oriented and deductive database systems use active
technologies in carefully controlled ways to also manage integrity constraints and
other logical features (Buchmann et al. 1992; Ceri et al. 1992; Chakravarthy et al.
1992; Curé and Squelbut 2005; Dietrich et al. 1992; Vasilecas and Bugaite 2007).
Researchers are studying how to bring database theory into the Semantic Web
(Calvanese et al. 2005; Motik et al. 2007), but more work is needed in that regard.

http://www.w3.org/TR/owl-features/

@ Springer

http://www.w3.org/TR/owl-features/

J Intell Inf Syst (2011) 37:217-244 221

2.1.3 Scalability

Because reasoning in general poses scalability concerns, system designers use the
Lehigh University Benchmark to evaluate and compare KB systems. We would
characterize the Description Logic Database (DLDB) (Guo et al. 2004) as a kind of
ontology database, which is similar in many regards to our OntoDB implementation:
it uses a decomposed storage model (Abadi et al. 2009; Copeland and Khoshafian
1985; Horrocks et al. 2004) and mimics a KB using various features of a basic rela-
tional database system like MySQL. Other approaches build upon the very popular
(but the less expressive) Resource Description Framework Schema (RDF[S]) to
manage very large RDF triplestores (Broekstra et al. 2002; Christophides et al. 2004;
Neumann and Weikum 2009).> Some of these triplestores use relational database
backends, but they often treat the database as passive but efficient storage—query
agents, when databases can do much more. Not all triplestores support reasoning,
and, when they do, they are mostly limited to computing transitive closures precisely
because RDFS is not very expressive. Thus, researchers have argued that query
languages more robust than SPARQL are required (O’Connor and Das 2008).

2.1.4 Biomedical informatics

Many KB logics are probably more complex than users really require in biomedical
domains (Baader and Morawska 2009). This community actively uses ontologies in
numerous application areas ranging from phenotype and anatomy to neuroscience
and disease; they collaborate on and share hundreds of ontologies (Noy et al.
2009); they use ontologies to assist with decision support (O’Connor and Das 2008),
hypothesis evaluation (Racunas et al. 2004), information search and retrieval (Shah
et al. 2009) and other intelligent, KB-oriented tasks.

The National Center for Biomedical Ontologies maintains a repository of several
important resources and tools, including the BioPortal (Noy et al. 2009), which
biomedical informaticians use in their intelligent information systems. A large
community of researchers in the biomedical domain contribute and use these
tools and services. In particular, the Gene Ontology Consortium (Gene Ontology
Consortium 2000) has contributed the well-known Gene Ontology (GO), one of
the most actively used ontologies. This community uses the GO to annotate large,
manually curated repositories of gene and protein data based on published research
related to model organisms, such as the zebrafish (danio rerio), fruit fly (drosophilia)
and nematode (C. elegans). Each model organism database, such as for the mouse
(MGTI) or zebrafish (ZFIN) (Bult et al. 2008; Sprague et al. 2007), has its own web-
based search capability for the species and their associated data. Moreover, this
community shares large amounts of data using scripted import and export utilities—
they could use better information integration tools. As another example, the Neural
ElectroMagnetic Ontologies (NEMO) Consortium (Dou et al. 2007; Frishkoff et al.
2009) uses ontologies for integration and meta-analysis of brainwave data to better
understand human brain function.

Zhttp://esw.w3.org/LargeTripleStores

@ Springer

http://esw.w3.org/LargeTripleStores

222 J Intell Inf Syst (2011) 37:217-244

2.1.5 Information integration

Another important motivation for using ontologies is the promise they hold for
integrating information. Researchers in biomedical informatics have taken to this
idea with some fervor (Goble and Stevens 2008; Wache et al. 2001). One system in
particular, OntoGrate, offers an inferrential information integration framework using
ontologies which integrates data by translating queries across ontologies to get data
from target data sources using an inference engine (Dou and LePendu 2006; Dou
et al. 2006a, b). The same logical framework can be extended to move data across a
network of repositories.

3 Ontology databases

In the following sections, we use a simple running example, the Sisiters—Siblings
example, to illustrate how we implemented ontology databases. We begin with the
basic idea as a whole, then explain how we structure the database schema and
implement each kind of logical feature using triggers and integrity constraints.

3.1 The basic idea

We can perform rudimentary, rule-based reasoning using either views or triggers. For
example, suppose we assert the statement (a rule): “All sisters are siblings.” Then we
assert the fact: “Mary and Jane are sisters.” Logically, we may deduce using modus
ponens (MP) that Mary (M) and Jane (J) are siblings:?

Sisters(x, y) — Siblings(x,y) Sisters(M, J)
Siblings(M, J)

MP{x/M, y/J}

”

If sibling and sister facts are stored in two-column tables (prefixed with “a_” to

denote an asserted fact), then we can encode the rule as the following SQL view:

CREATE VIEW siblings(x,y) as
SELECT x,y FROM a_siblings
UNION

SELECT x,y FROM sisters

In the view-based method, every inferred set of data necessarily includes its
asserted data (e.g., siblings contains a_siblings and sisters contains a_sisters). Note:
when the view is executed, the subquery retrieving sisters will unfold to access all
asserted sisters data. Recursively, if sisters subsumes any other predicate, it too will
be unfolded. Database triggers can implement the same kind of thing:

CREATE TRIGGER subproperty sisters siblings
ON INSERT (x,y) INTO sisters
FIRST INSERT (x,y) INTO siblings

3The notation {x/M,y/J} denotes that the variable x gets substituted with M, y with J, and so on, as
part of the unification process.

@ Springer

J Intell Inf Syst (2011) 37:217-244 223

The deduction is reflected in the answer a query such as “Who are the siblings of
Jane?” Of course, the answer returned—in both cases—is Mary. We easily formulate
the SQL query:

SELECT x FROM siblings WHERE y=Jane

What differentiates these two methods is that views are goal-driven: the inference
is performed at query time by unfolding views. Whereas, triggers forward propagate
facts along rules as they are asserted, i.e., at load time. In the remainder of this
paper, we advocate a trigger-based approach as our preferred method of imple-
mentation and we provide some justification for this approach in our case studies.
Most importantly, recall Reiter’s space—time tradeoff: essentially, triggers use more
space to speed up query performance; the technique has some of the advantages of
materialized views but it differs in some important ways, cf., Section 3.3. Finally, aside
from rule-based reasoning, triggers support other logical features we find important
in biomedical domains, such as domain and range restrictions and inconsistency
detection—we describe the methods for handling each case in the following imple-
mentation details.

3.2 Implementation details

3.2.1 Decomposition storage model

We use the decomposition storage model (Abadi et al. 2009; Copeland and
Khoshafian 1985) because it scales well and makes expressing queries easy. Arbitrary
models result in expensive and complicated query rewriting, so we do not even
consider them. The two other suitable models in the literature are the horizontal
and vertical models. Designers rarely use the horizontal model because it contains
excessively many null values and is expensive to restructure: The administrator halts
the system to add new columns to service new predicates. The vertical model is quite
popular because it avoids those two drawbacks. Also, the vertical model affords
fast inserts because records are merely appended to the end of the file. In fact,
Sesame (Broekstra et al. 2002) and other RDF stores use the vertical storage model.

Unfortunately, the vertical storage model is prone to slow query performance
because queries require many joins against a single table, which gets expensive for
very tall tables. Furthermore, type-membership queries are somewhat awkward. As a
typical workaround, designers first partition the vertical table to better support type-
membership queries, then they partition it further along other, selected predicates
that will optimize certain joins based on some informed heuristic. However, this leads
back toward complicated query rewriting because the partitioning choices have to be
recorded and unwound somehow.

We view the decomposition storage model as a fully partitioned vertical storage
model, where the single table is completely partitioned along every type and every
predicate. That is, each type and each predicate gets its own table. When taken to this
extreme, query rewriting becomes straight forward again because each table corre-
sponds directly to a query predicate. Therefore, the decomposition storage model
keeps the advantages of the vertical model while improving query performance
(because of the partitions) without introducing difficult query rewriting. Figure 1
illustrates the three different models using the Sisters-Siblings example.

@ Springer

224 J Intell Inf Syst (2011) 37:217-244

Predicate Subject Object
Object Type Sister-of Sibling-of Type janeDoe Female

Type maryDoe Female
maryDoe Female janeDoe janeDoe Sister-of maryDoe janeDoe
johnDoe Male null maryDoe Sibling-of maryDoe janeDoe

(a) (b)

Female
D SisterOf SiblingOf
Subject Object Subject Object
janeDoe
maryDoe maryDoe janeDoe maryDoe janeDoe

(©

Fig. 1 The Sisters-Siblings examples using the a horizontal, b vertical, and ¢ decomposition storage
model

3.2.2 Subsumption

Ontology engineers often specify subclass relationships in Semantic Web ontologies,
which form a subsumption hierarchy, constituting the majority of reasoning for
biomedical ontologies (Baader and Morawska 2009). As we mentioned previously
when describing the basic idea (cf. Section 3.1), subclass relationships are handled in
much the same way as views are used in Datalog, but we use triggers instead.

Although they are very similar, Datalog views differ from inclusion axioms in
description logic (Baader and Nutt 2003). In other words, the semantics of these two
logical formalisms differ epistemically:

Sisters — Siblings vs. Siblings T Sisters

The literature suggests that these differences are formally captured using modal
logic (Baader and Nutt 2003), but to us, the essence comes down to ensuring
that the contrapositive of the rule is enforced as an integrity constraint (Reiter
1992) (not a rule): “if Siblings(M,J) is not true, then Sisters(M,J) cannot possibly
be true (otherwise, raise an inconsistency error).” We therefore implement the
contrapositive as a foreign-key constraint as follows:

CREATE TABLE Siblings (
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-Sisters-Siblings FOREIGN KEY (subject,object)
REFERENCES Sisters (subject,object)
)

@ Springer

J Intell Inf Syst (2011) 37:217-244 225

Figure 2a illustrates the two parts of an inclusion axiom graphically. The trigger
rule event is indicated in the figure by the a star-like symbol, denoting that the
detected assertion causes a trigger to fire. In this example, rather than Sisters—
Siblings per se, we are enforcing another related rule so that we can build-up
the example a bit: “All females are person(s), i.e., Female — Person.” Therefore,
asserting Female(Mary) causes the trigger to actively assert Person(Mary). Finally,
the contrapositive is checked using the foreign key. Note: consistency requires
that forward-propagations occur before integrity checking, which explains using the
keywords “before” or “first” in our trigger definitions (see above).

3.2.3 Domain and range restrictions

Another important feature of Semantic Web ontologies are domain and range
restrictions. These restrict the possible set of instances that participate in property
assertions. For example, “Only person(s) may participate in the sisters relationship.”
Again, restrictions are formalized using modal logics and they correspond to integrity
constraints. Therefore, we implement them as foreign key constraints on the subject
or object (i.e., domain and range) of the property, similar to the contrapositive
example above:

CREATE TABLE Sisters (
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-Sisters-Subject-Person FOREIGN KEY (subject)
REFERENCES Person (id)
.)

As in the contrapositive example for subsumption, the check marks in Fig. 2b
denote that domain and range restrictions are an integrity check, implemented using
a foreign-key. Before the assertion Sisters(Lily,Zena) is loaded, the database first
verifies that Lily and Zena are already in the Person table, otherwise we raise an
error. Note: the restriction can be even more specific, if we wanted, e.g., “Only
females may participate in the sisters property.”

' v
' f-key
Female (id) Person (d)
(Lily) (Paul) Voo fhey vy
(Zena) wrigger (Lily) W Sisters (subj, obj) Person (id)
(Js?;‘.%) - (Zena) |¥/ (Lily, Zena) (Paul)
(Mary) —> -- > (Jane) [« (Lity) |«
(Mary) |« (Zena) |«

(a) (b)

Fig. 2 The star-like symbol denotes an event fires a trigger rule. The checkmark symbol denotes an
integrity check occurs. a Subsumption is implemented using a combination of triggers and integrity
constraints. b Domain and range restrictions are implemented using foreign-key (f-key) constraints

@ Springer

226 J Intell Inf Syst (2011) 37:217-244

3.2.4 Cardinality

Cardinality is another feature of moderate importance in biomedical domains. We
support only limited cardinality constraints on properties: zero or one, for minimal
or maximal participation. For example, the rule, “People have at most one social
security number (SSN),” is a maximal cardinality constraint of one on the property
hasSSN. Whereas, “Everyone has an SSN,” expresses minimal cardinality on has-
SSN.

In the first case, we use a uniqueness constraint (a key) to enforce at most one
object is possible for any given subject for some relationship:

CREATE TABLE hasSSN (
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
UNIQUE KEY maxcard-hasSSN (subject)
CONSTRAINT fk-hasSSN-Subject-Person FOREIGN KEY (subject)
REFERENCES Person (id)
L)

The latter case, minimal cardinality, is slighlty more interesting. The feature
suggests that an object value for some subject exists (at least one), but we may
not know what it is, only that it exists. As Reiter suggests (Reiter 1992), we use a
null value. V-tables (Imieliniski and Lipski 1984) offer an alternative, more powerful
approach that we did not choose because they are not widely adopted in database
management systems. (Generally speaking, the problem corresponds to existential
quantification and skolemization.) Therefore, we implement minimal cardinality
using a trigger and null value whenever the value is unkown:

CREATE TRIGGER mincard_hasSSN
ON INSERT (x) INTO Person
FIRST INSERT (x,null) INTO hasSSN IF NOT EXISTS

3.2.5 Negation

Finally, we incorporate negative assertions as explicit negations which increases the
kind of reasoning we can perform. To implement these, we introduce additional,
negative tables (e.g., —Female) into the database structure, one for every positive
table (e.g., Female).* For example, asserting that “Bob is not a Female” means
putting Bob into the —Female table. This method doubles the total number of tables,
but negative tables are usually much smaller than positive ones in our experience (cf.
Section 6). Users can easily disable this optional feature.

We assume the law of the excluded middle, so a fact cannot be true and false at the
same time, otherwise a contradiction occurs and we raise an exception. To enforce
this, for every corresponding pair of positive and negative tables, we include what we
call an exclusion dependency which we can implement universally on most systems

“We denote a negative table in the database such as —Female using an underscore prefix, e.g.,
_Female.

@ Springer

J Intell Inf Syst (2011) 37:217-244 227

using a set of triggers (some systems might support using special kinds of foreign
keys) as follows:

CREATE TRIGGER excl female

ON INSERT (x) INTO female,

IF EXISTS (SELECT id FROM _female WHERE id=x)
THEN RAISE ERROR

CREATE TRIGGER excl not female

ON INSERT (x) INTO _female,

IF EXISTS (SELECT id FROM female WHERE id=x)
THEN RAISE ERROR

Graphically, negative tables and exclusion dependencies create distinctive struc-
tures, which we call not-gadgets. For example, if we consider the Sisters—Siblings
subproperty graphically, it would look like the following diagram:

Sisters — Siblings

Adding the exclusion dependencies as undirected, dashed arrows, the concept graph
takes on the distinctive not-gadget structure, as in the following diagram:

Sisters — Siblings
| |
| |
| |
—Sisters —Siblings

Not-gadgets help to detect inconsistencies as well as to answer a limited form of
disjunctive query because they help to do basic refutation. The former is examined
as a case study in Section 6. Although we do not go into great detail on the latter,
suppose we have a simple ontology which states that, “All Persons are either Female
or Male,” and the facts (i.e., its extension), “Bob and Jane are Persons. Jane is a
Female. Bob is not a Female.”

We can model the disjunction using trigger rules and exclusion dependencies as
shown in Fig. 3. The key idea is to use the first-order axiom which transforms a

Fig. 3 The Male-Female
covering axiom as a not-gadget Male Female
' Bob E :_ Jane !
SEERL Lt
]]
~Male ~Female
' Bob

LI

@ Springer

228 J Intell Inf Syst (2011) 37:217-244

disjunction into a negative implication: (¢ V ¥) = (—¢ —). In SQL, if we add the
context that we are talking about Person instances, the implementation would be the
following triggers:

CREATE TRIGGER disj female male

ON INSERT (x) INTO _female,

FIRST INSERT (x) INTO male WHERE (x) IN
(SELECT y FROM person)

CREATE TRIGGER disj male female

ON INSERT (x) INTO male,

FIRST INSERT (x) INTO female WHERE (x) IN
(SELECT y FROM person)

Figure 3 also displays the data after the triggers have finished firing. Therefore,
if we ask the disjunctive query, “Is Bob either a Male or Female?” a simple union
of the Male and Female tables gives the correct answer: Yes! Of course, in theory,
a reasoner should not require the negative fact, “Bob is not female,” to reach that
conclusion. Therefore, our method is clearly not capable of complete reasoning with
disjunctions; it is limited.

Altogether, our running Sisters-Siblings example (merely eight predicates) con-
stitutes a richly interacting set of tables, triggers and foreign-key constraints as
illustrated in Fig. 4. One can imagine that for an ontology of 1,000 predicates (like
NEMO) or over 70,000 predicates (like GO) can get quite complex!

Sisters (subj, obj)' " Fkey Siblings (subj, obj)
(Lily, Zena) o (Paul, Mary)
(Mary, Jane) ——b% o trigger g (Lily, Zena) v
" (Mary, Jane) v
,-.-.'.;.f.lsey..-.*
~Male (id) Female (id) 1". . Person (id) hasSSN (subj, obj)
(Lily) —pp| (Paul) (Paul, 111-22-3456)
(Zena) (Zena) | trigger (Lily)) (Lily, null)
>> (Mary) | (Zena) tngge:r »| (Zena, 555-22-3456)
W trigger | (Jane) | (Mary) |+ (Mary, null)
T H (Jane) [V (Jane, null)
Malé (id) ~Female (id)
V| (Paul) trigger (Paul)

Fig. 4 The Sisters-Siblings example depicting restrictions, subsumption, cardinality constraints and
not-gadgets all together

@ Springer

J Intell Inf Syst (2011) 37:217-244 229

3.2.6 Proof reconstruction

To assist with analyzing the errors generated by integrity constraints and not-gadgets,
we developed a method for logging and reconstructing the proof trees that result in
raised exceptions. Users can use these proofs to determine the source of the error
and decide what knowledge needs to be corrected. Users can also easily disable this
optional feature.

In our implementation of this feature, each tuple in the database is accompanied
by a boolean (1-bit) flag that represents whenever a fact is explicitly asserted
versus inferred by deduction. Furthermore, every trigger rule logs the three main
components of the inference being performed: premise, instance and conclusion.
Using this log and the asserted data, we can reconstruct the steps that the database
took to infer data.

To do this, we implemented a goal-oriented, backward-chaining algorithm (see
Algorithm 1) such as those described for Horn Logic using modus ponens. The goal
of the algorithm is to prove some statement, ¥ (@), is true by providing the assertions
that lead to making it true. Since we are assuming reasoning using modus ponens,
we can easily reconstruct the proof tree from those assertions.

Algorithm 1 Proof Reconstruction for ¥ («).
GOAL: prove v («) is true [?]
C < ¢ {conclusion}
I < « {instance}
if is_asserted v («) then
¥ (a) is asserted to be true [done!]
else
P < SELECT premise FROM log WHERE conclusion = C AND instance = [
for all p(B8) in P do
GOAL: prove ¢(B) is true [?]
end for
end if

3.3 Discussion: triggers are different than views

Inevitably, we encounter the need to update or delete data from a database. Dele-
tions make maintaining the knowledge model more difficult, but they also elicit the
key difference between view-based methods and trigger-based methods. Donini et
al. formalize what is going on (Donini et al. 2002), and similar issues are discussed
by Kowalski et al. (1987). We state the essence of the difference between views and
triggers in ontology databases as a simple claim:

Claim A trigger-based ontology database has a distinctly different operational se-
mantics from a view-based implementation with respect to deletions.

@ Springer

230 J Intell Inf Syst (2011) 37:217-244

Proof By counterexample, assert the following in the given order: A—B, insert
A(a), delete A(a). Now ask the query B(?x). A trigger-based implementation returns
“{x/a}.” A view-based implementation returns “null.”]

Therefore, with respect to ontology databases, we can say definitively that a
trigger-based approach is distinctly different from a materialized view-based ap-
proach. Indeed, as the literature attests, triggers are highly expressive. For example,
views cannot reach the correct deduction in the following:

assert A—B

insert A(a)

negate B(a)

now ask the query B(?x)

A view-based approach returns “{x/a}” whereas a trigger-based approach (using
not-gadgets) raises a contradiction as expected. The explanation is, simply, that views
cannot differentiate negation from deletion, but triggers give us that power.

Scientists need to distinguish between deletion and negation since they often
separate what they assume is the case from what they know is the case—as in
hypotheses testing (Racunas et al. 2004). Our case study in Section 6 explores this
in more detail.

4 Evaluating scalability using LUBM

Knowledge-based systems often pay an amortized penalty up-front my materializing
inferences (e.g., forward chaining, materializing views, computing transitive closures,
etc.) so that queries will run much faster—but at what cost? An ontology database
using triggers is such a system. To better understand its capabilities, we compared
our system, OntoDB, against the Description Logic Database (DLDB).

DLDB is a knowledge base system developed at Lehigh University that uses
database features to assist with query answering on large sets of data. Much like
OntoDB, it takes an ontology and a set of data as input; it creates and loads a
relational database schema using the decomposition storage model; it stores the
data in tables; and it uses database features to maintain the knowledge model and
answer queries. DLDB differs from OntoDB in one major regard: it unfolds views
at query time rather than materializes inferences at load time like OntoDB does.
Clearly, forward-propagating knowledge will result in faster query response time.
We confirmed this hypothesis by testing both systems using the LUBM, but we were
surprised to find that our trigger-based approach paid no apparent penalty for the
speed up. Further analysis reveals that the benchmark does not account well for
larger or deeper ontologies, where the penalties become more apparent.

4.1 Lehigh University benchmark results

LUBM comprises of the univ-bench ontology, a data generator, and a set of 14
queries for evaluating the load time and query time of knowledge bases. The
ontology is fixed: it has 43 classes and depth 6, and it describes a typical university
environment (e.g., courses, students, faculty, departments). Although the ontology

@ Springer

J Intell Inf Syst (2011) 37:217-244 231

25 14|
OntoDB (10/2007) ------- i r OntoDB (10/2007) ===
DLDB (10/2007) - - / 10+ DLDB (10/2007) ===
o n
15t = Lo »-g
g 2 s
L2 P 68
) rd | v
E S [E
5r* [+ | |
e 2| ?
P facts (x1000) 1 Aeenrrmeer §
200 600 1000 1400 2 6 10 14
(a) Load time. (b) Query time.

Fig. 5 LUBM(10,20) benchmark results for a load time and b query answering

does not change, the data generator creates a variable number of individuals based
on two inputs: the number of universities (U) and the number of departments (D).
The generated assertions, i.e., data instances, can be saved as a set of OWL files
and loaded into a KB for evaluation. Therefore, the main idea is to vary the size
of the data instances to quantify the scalability of a Semantic Web KB. Therefore,
measuring both load time and query time with respect to the input parameters
provides a picture of the total performance for LUBM(U,D).

We replicated the DLDB system and then experimentally confirmed® via the
LUBM(10,20) our hypothesis that, by using triggers to materialize inferences, query
performance clearly benefits by several orders of magnitude (cf. Fig. 5b) (LePendu
et al. 2008). However—surprisingly—the gains come at no apparent costs as shown
in Fig. 5a. The slope of the overlapping lines indicates the same constant cost per
assertion for both systems.®

OntoDB requires roughly three times the disk space of DLDB, which makes sense
considering the univ-bench ontology has, on average, a depth of three (maximum of
six). Therefore, OntoDB makes roughly three copies of data as it propagates copies
up the hierarchy. Based on the fact that the univ-bench ontology is so small and
shallow, we designed a set of new benchmark ontologies that would expose the true
load-time cost for precomputing inferences. That is, larger and deeper ontologies
should demonstrate a non-constant cost per assertion.

4.2 Exposing load-time costs

Researchers have indicated before that the LUBM benchmark can be improved
by reflecting real-world workloads based on various dimensions such as reasoning
complexity (Ma et al. 2006), data distribution (Wang et al. 2005), and even ontology

SExperiment performed on a 1.8 GHz Centrino laptop with 1GB RAM in 10/2007.

“We confirmed by looking at system logs that the short divergence at about 1.2 million facts in Fig. 5a
was due to virus scanning, a background interference. The constant cost per assertion clearly resumes
after virus scanning terminates.

@ Springer

232 J Intell Inf Syst (2011) 37:217-244

variation (Tempich and Volz 2003). However, to our knowledge, no other bench-
mark takes the diversity of ontologies into account to adequately characterize and
expose previously opaque materialization costs like we do in this case study.

To test our hypothesis that the univ-bench ontology is too small and shallow, we
need ontologies that vary in size and depth. Therefore, we created OntoGenerator,
a tool that synthesizes ontologies that vary in size and depth. Based on our own
experience studying biomedical ontologies, ontologies vary considerably: many are
small like univ-bench, having hundreds of terms or less; a significant number have
around a couple thousand terms; some are large like GO, having 25,000 terms or
more; and very few are extraordinarily large like SNOMED-CT (Bodenreider et al.
2007), having 250,000 terms or more. Hence, we synthesized nine different ontologies
that vary categorically by size (small-medium-large) and depth (shallow—-mid—deep)
(cf. Table 1).

OntoGenerator creates a synthetic ontology given the following parameters: a
seed, the maximum number of classes, maximum number of siblings (i.e., span),
density, and number of individuals. The density parameter introduces a degree of
randomization in the fullness of the tree structure. It denotes the probability that
the maximum number of siblings or the maximum depth will be reached along any
path to a leaf node. We use the seed value to prime the randomizing function which
allows us to reproduce the same ontology given the same parameters, or, conversely,
to construct a new ontology (of the same kind) by using a different seed. Finally,
the tool creates the given number of individuals as instances of randomly chosen
classes in the ontology, thus distributing the data uniformly at various depths in the
hierarchy.

Finally, we tested our hypothesis that size and depth have a significant effect by
populating OntoDB (the KB that performs materialization) with the nine ontologies
and data instances that we generated. We measured load time in two phases: (1) the
time to transform the ontology into a schema and load it into the database (averaged
per class), and (2) the average time for loading a single instance assertion (taken
1,000 at a time). Table 1 notes the resulting load times.

As a result, our new hypothesis was confirmed: the results demonstrate that cost
is not constant per assertion, but it depends on the size and depth of an ontology.
The positive, crooked slope of the lines displayed in Fig. 6 show a clear, super-linear

Table 1 The nine different ontology parameters together with the corresponding schema load time
and the data instance load time for each

Ontology parameters Schema load time Instance load time
Size Depth Mean (ms) Mean (ms)
Small 78 5 6.95 ms 7.57 3.65 ms 4.78
81 10 7.12 ms 4.99 ms
72 20 8.64 ms 5.69 ms
Medium 1,623 5 8.21 ms 8.61 6.51 ms 10.55
1,555 10 8.93 ms 9.45 ms
1,827 20 8.68 ms 15.69 ms
Large 19,992 5 9.57 ms 9.82 11.84 ms 2493
22,588 10 9.59 ms 22.80 ms
19,578 20 10.28 ms 40.14 ms

Times are measured in seconds

@ Springer

J Intell Inf Syst (2011) 37:217-244 233

04014
100082
o 0.00651 0.00945
OBRE T 0.00409 U.00569
small medium large shallow mid deep
(a) Schema load-time. (b) Instance load-time.

Fig. 6 a The average time (in seconds) that it takes to load a single term for small (=100 terms),
medium (22,000 terms) and large (220,000 terms) ontologies. b The average time (in seconds) that
it takes to load a single data instance for small, medium and large sized ontologies of shallow (5), mid
(10) and deep (20) depth

cost dependency. Furthermore, size and depth have a cumulative effect: the larger
the ontology, the larger the role of depth.

In conclusion, although performance will gradually degrade for larger and deeper
ontologies, ontology databases using triggers will scale well to handle data for
most biomedical ontologies, including larger ones like GO. For the extraordinarily
large ontologies, such as SNOMED-CT, the decomposition storage model will pose
problems for the MySQL storage engine because of the sheer size of the schema,
i.e., the number of tables, that will be created. For these exceptional ontologies,
customized solutions are required.

5 Answering questions deductively in NEMO

Our first case study using Neural ElectroMagnetic Ontologies (NEMO)’ (Dou et al.
2007; Frishkoff et al. 2009) demonstrates that ontology databases are useful for
answering queries that take subsumption into account. NEMO is a medium-sized
ontology having a higher degree of complexity than most biomedical ontologies.
It comprises roughly of 1,000 classes and 70 properties arranged in a hierarchy
having a depth of 16. At the time of the case study, NEMO recorded experimental
measurements from brainwave studies on human-subjects and represented that data
using object and datatype properties with domain and range restrictions, which
comprise the majority of data instances.

5.1 NEMO data

NEMO focuses on brainwave studies which decompose, classify, label, and an-
notate event related potentials (ERP) data using ontological terms across many
laboratories and experiments. ERPs are measures of brain electrical activity—
electro-encephalographic (EEG) or “brainwave” activity—that are time-locked to

http://bioportal.bioontology.org/ontologies/virtual/1321

@ Springer

http://bioportal.bioontology.org/ontologies/virtual/1321

234 J Intell Inf Syst (2011) 37:217-244

functional, experimental events (e.g., the appearance of a word). These measures
provide a powerful technique for studying brain function, because they are acquired
non-invasively and can therefore be used in a variety of populations (e.g., children
and patients, as well as healthy adults).

In addition, ERPs provide detailed information about the time dynamics, as
well as the scalp spatial distribution, of neural activity during various cognitive and
behavioral tasks. The NEMO ontology aims to capture these spatial, temporal and
functional aspects of ERP studies so that results can be integrated across data sets
for large-scale meta-analyses to better understand basic, human brain function.

Figure 7 displays a partial, graphical representation of classes, properties and
relationships in an early version of the NEMO ontology used in this case study.
In Fig. 7a is a representation of concepts from the NEMO ERP ontology used for
this preliminary case study with P100 pattern and medial-frontocentral (MFRON)
channel groups highlighted; (b) is a 128-channel EEG waveplot with positive voltage
plotted up showing responses to words versus non-words; (c) is a time course of
P100 pattern factor for same dataset, extracted using Principal Components Analysis;
(d) is a topography of the P100 factor with negative on top and positive at bottom
(cf. details in Frishkoff 2007); (e) is an international 10-10 layout with electrode

measurementValue

-EtC...

¥., facmrMndarity g ’ 3
“" 'jTlme Instancel
},a‘ SP_min rn'i"-m,_. o, i
Topography

R o |||Jn|l5

nccurs!n 4 SP_max_roi "

" IN_mean_roi mll’MﬂtE

.-‘[I max mmvalue
,..‘TT max_maxvalue

", patternModality

auemEvent A
Legend:

5" = Property(P) = Class(A)
@ = Datatype(D) A—B= subClassOf(AB)

- PEA Pactor Course:
T o e - A -

<«—P100
\‘-

-V —— Y

b) '.,,'(é)'j.._'._i-,[. 2 ' (-é') .

Fig. 7 Neural ElectroMagnetic Ontologies (NEMO)

@ Springer

J Intell Inf Syst (2011) 37:217-244 235

location Fz highlighted, which is placed on the medial-frontocentral scalp region
(top—down view); and (f) shows an EEG net applied to the scalp surface of a person
(lateral view) with Fz location indicated.

5.2 Answering ontology-based queries

The ontology-database component stores the resulting data for large numbers
of ERP data sets collected from multiple research sites. The database supports
ontology-based querying and reasoning for queries such as the following, which
require taking the subsumption hierarchy into account:

Return all data instances that belong to ERP pattern classes which have a
surface positivity over frontal regions of interest and are earlier than the N400.

In this query, “frontal region” can be unfolded into constituent parts (e.g., right
frontal, left frontal; see Fig. 7). At an even more abstract level, the “N400” is a pattern
class that is also associated with spatial, temporal, and functional properties. The
pattern class labels can be inferred by applying a set of conjunctive rules. We used
our internal rule language (Web-PDDL (Dou et al. 2005)) in this preliminary study,
but the idea can also be implemented using the Semantic Web Rule Language, which
we are currently exploring.

Preliminary results on the application of ontology databases for NEMO, using
over 100,000 data instances, have been very promising. In particular, the neuro-
scientists were attracted by the ability to pose queries at the conceptual level,
without having to formulate SQL queries that take the complex logical interactions
and reasoning aspects into consideration. Those high-level, logical interactions are
modeled only once by specifying the ontology. We tested several other queries
similar to the one above—examining ease of formulation, aggregation, subsumption,
and total number of instances—against data that was annotated using an ontology
similar to the one in Fig. 7. For example, we measured the time it takes to answer the
following queries:

Which patterns have a region of interest that is left-occipital and manifests
between 220 and 300 ms?

What is the range of intensity mean for the region of interest for N100?

In conclusion, in every case, we found it easy to formulate the neuroscientist’s
queries using terms from the ontology, not having to worry about the subsumed
terminology. Furthermore, the system achieved 100% precision and recall, providing
exactly the answers expected by our domain experts. This result was not surprising,
given that, although the NEMO ontology used OWL features other than subclassing,
only Horn Logic was required for reasoning. Finally, the performance for every
query was extremely fast, on the order of only five to ten milliseconds, even for
aggregations. Newer iterations of the NEMO ontology (cf. Frishkoff et al. 2009) will
include disjoint subclasses, which will increase the complexity of the logic—we plan
to approach this using not-gadgets, as we examine in the following study.

@ Springer

236 J Intell Inf Syst (2011) 37:217-244

6 Detecting inconsistencies in GO

The Gene Ontology provides a unique scenario: we can use ontology databases
with not-gadgets to detect inconsistencies that arise from negatively annotated data
instances. As of March 2009, GO has over 25,000 classes arranged in a hierarchy
having an average depth of 8 (maximum of 14). There are over 27 million known GO
annotations—and growing—spanning the dozen or so model organisms. Hill et al.
(2008) defined this problem as a generalization of what we call the serotonin example,
which goes as follows:

[GO annotations sometimes] point to errors in the type-type relationships
described in the ontology. An example is the recent removal of the type
serotonin secretion as an is_a child of neurotransmitter secretion from the
GO Biological Process ontology. This modification was made as a result of an
annotation from a paper showing that serotonin can be secreted by cells of the
immune system where it does not act as a neurotransmitter.

6.1 GO annotations

In the serotonin example, two conflicting data instances, called “annotations,” for
genes influencing the biological process of serotonin secretion alluded to a problem
in the ontology, which led to a correction in the GO hierarchy. For example,
Fig. 8a illustrates a small portion the GO term hierarchy for nucleus (GO:0005634);
whereas, Fig. 8b illustrates the inconsistency arising from the serotonin example. In

owl:Thing
is_a A is.a is_a
biological process cellular component molecular function
G0:0008150 G0:0005575 GO0:0003674
f is_a
is_g s_a
(etf.) organelle (etc.)
G0:0043226
/i'ia is_a R .
neurotransmitter secretion
intracellular organelle membrane-bounded organelle G0:0007269
GO0:0043229 GO0:0043227 ‘ T
A 1 NOT gene-X
N . - -
Is_a Is_a
is_a
intracellular membrane-bounded organelle
G0:0043231
is_a &s,a is_a serotonin secretion
N - G0:0001820
(etc) mitochondrion nucleus endoplasmic reticulum (etc) -
: G0:0005739 GO0:0005634 GO0:0005783 ’ H gene-%
.........
(a) The GO concept graph for nucleus. (b) The serotonin example.

Fig. 8 a A sample of the GO hierarchy highlighting the term nucleus. b An illustration of the
serotonin secretion inconsistency

@ Springer

J Intell Inf Syst (2011) 37:217-244 237

the serotonin example, some gene (for simplicity, call it “gene-x”) was annotated
as both being an instance of serotonin secretion while not being an instance of
neurotransmitter secretion, causing the logical inconsistency based on the type-type
(i.e., is_a) hierarchy. In these cases, an annotation means the gene influences a
biological process in some way. Hill et al. explain how difficult it is in general for
gene scientists to detect such data-driven inconsistencies in the GO, leaving it as
an open problem to find ways to identify inconsistencies in the ontology based on
annotations from the model organism databases such as ZFIN (Sprague et al. 2007)
and MGI (Bult et al. 2008).

Of particular note, a logical inconsistency of this sort does not necessarily entail
a type-type inconsistency. In fact, there are three possible explanations: (1) the
positive annotation is incorrect, (2) the negative annotation is incorrect, or (3) the
subsumption relationship is incorrect. We may even allow a fourth possibility: (4)
the inconsistency is admissible, i.e., there is an exception or anomaly occurring in the
biology of an organism for which we cannot account. Therefore, each inconsistency
raises new hypotheses that should be investigated further by biologists—some may
lead to new biological insights, refined models, or improved automated techniques.

We applied ontology databases with not-gadgets to this problem, using ZFIN and
MGTI annotations, and within two hours discovered 75 logical inconsistencies for the
entire dataset. Furthermore, to the best of our ability, in conjunction with a domain
expert using the GOOSE?® database, we manually confirmed that each of these 75
results appear to maintain 100% precision and 100% recall (LePendu et al. 2009).
There is no gold standard that we know of for this kind of data.

6.2 Detecting inconsistent annotations

Using ontology database to detect inconsistent annotations involves the following
steps: (1) run the GO ontology through our tool to create the ontology database,
with the not-gadgets option enabled; (2) load the generated relational schema into
the MySQL database; (3) pre-process the ZFIN and MGI gene—term annotations
to form instance-of assertions; (4) load the asserted instances into the database;
and finally, (5) check the error log for the detected inconsistencies. It took about
30 min to load the schema and 80 min to load all the ZFIN and MGI annotations.
ZFIN contained 91,000 annotations, 40 of which were negative ones. Whereas, MGI
contained 154,000 positive and 292 negative facts.

OntoDB logged the inconsistencies, which fell into three categories. We provide
the following examples of each case of inconsistency:

1. Intra-species logic inconsistencies between experimentally supported manual
annotations: The zebrafish p2rx2 ° gene is annotated as both having (inferred
from a genetic interaction) and not having (inferred from a direct assay) ATP-
gated cation channel activity (GO:0004931).

2. Inter-species logic inconsistencies between experimentally supported manual
annotations: The zebrafish bad '° gene is annotated (inferred from a direct assay)

8http://www.berkeleybop.org/goose
http://zfin.org/cgi-bin/webdriver?MIval=aa-markergoview.apg& OID=ZDB-GENE-030319-2
Ohttp://zfin.org/cgi-bin/webdriver?MIval=aa-markergoview.apg&OID=ZDB-GENE-000616-1

@ Springer

http://www.berkeleybop.org/goose
http://zfin.org/cgi-bin/webdriver?MIval=aa-markergoview.apg&OID=ZDB-GENE-030319-2
http://zfin.org/cgi-bin/webdriver?MIval=aa-markergoview.apg&OID=ZDB-GENE-000616-1

238 J Intell Inf Syst (2011) 37:217-244

as not being involved in the positive regulation of apoptosis (GO:0043065) in
the zebrafish. Meanwhile, annotation of the corresponding mouse gene, Bad,'!
indicates it is involved in this biological process for the mouse (inferred from a
mutant phenotype).

3. Logic inconsistencies between experimentally supported manual annotations
and automated electronic annotations (between or within species): The zebrafish
Izic'? gene has been electronically annotated (inferred by electronic annotation)
as having the function beta catenin binding (GO:0008013) and also not having
the function beta catenin binding (inferred from physical interaction).

In conclusion, one of the most significant outcomes of this case study was the
discovery of numerous intra-species inconsistencies arising from direct evidence
versus automated electronic annotations (case 3). What this means is that ontology
databases provide a method for validating millions of annotations that are automati-
cally generated from human-defined transfer rules which may be incorrect. Another
interesting case (case 2) illustrates possibly interesting evolutionary differences based
on inconsistencies among species, e.g., between mice and zebrafish. Our discoveries
were so relevant that our collaborator, an expert on GO annotations from ZFIN,
submitted a tracking request to report of these kinds errors to other GO curators on
an ongoing basis.'?

7 Integrating information among OntoDBs

We extended our event-driven architecture for ontology databases so that it will
also integrate two KBs. The key idea is to map ontology terms together, then to
reason over them as a whole, i.e., as a merged ontology. We first use namespaces to
distinguish terms from each KB; then, we map the ontologies together using bridging
axioms; and finally, we reason over the entire, merged ontology to achieve integra-
tion. We have adapted the theory of inferential information integration developed by
Dou et al. (Dou and LePendu 2006; Dou et al. 2005, 2006a, b) to define inferential
ontology database exchange, a special kind of information integration in which data
is exchanged, actively, among ontology databases.

7.1 Inferential information integration

In inferential information integration, query translation and data translation are
formally defined as logical entailments with respect to a merged ontology having
bridging axioms. By performing sound inference over the merged ontology’s bridging
axioms, the entailments under a target ontology can be inferred automatically
(because KB F ¢ implies KB F ¢).!* This method works well for our purposes
because we only require sound (not complete) inference to achieve our desired
results.

Uhttp://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerGO&key=33374
http://zfin.org/cgi-bin/webdriver?MIval=aa-markergoview.apg& OID=ZDB-GENE-040718-342
Bhttp://sourceforge.net/tracker/?func=detail &aid=2686444& group_id=36855&atid=469833

14please read the symbol - as infers and the symbol F as entails.

@ Springer

http://www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerGO&key=33374
http://zfin.org/cgi-bin/webdriver?MIval=aa-markergoview.apg&OID=ZDB-GENE-040718-342
http://sourceforge.net/tracker/?func=detail&aid=2686444&group_id=36855&atid=469833

J Intell Inf Syst (2011) 37:217-244 239

A merged ontology is similar to the notion of a global view over local schemas
(global-as-view) (Lenzerini 20002) for data integration. It consists of the union of
elements from a source and target ontology but also defines the semantic mappings
between them as bridging axioms. A merged ontology allows all the relevant symbols
in a domain to interact so that facts can be translated from one ontology to another
using inference over the bridging axioms. Discovering bridging axioms is difficult
and many claim that it cannot be fully automated. However, there are some semi-
automatic systems, including ours (Qin et al. 2007).

Query translation is one way to integrate data. It applies mostly to scenarios in
which one system mediates queries among various sources. A typical example would
be a federated database (Sheth and Larson 1990). On the other hand, data translation
is more common to data migration or exchange scenarios, where information is
exported from one location to another (Kolaitis 2005). A typical example would
be a data warehouse (Bernstein and Rahm 2000). We extend this idea to ontology
databases by defining the following:

Definition 1 (Inferential Ontology Database Exchange) Let S be an ontology data-
base source and 7 be an ontology database target specified by ontologies Og and
Or, respectively. Let M = (Og, O, ¥) be a merged ontology containing bridging
axioms X, such that X is a set of Horn rules relating terms from O and Or qualified
with namespaces. Let dg be a set of tuples in S. The inferential ontology database
exchange of dg is the largest set of assertions dy entailed by ds with respect to M.

By simply extending ontology databases with the corresponding namespace
prefixes (supported by most DBMS platforms), we can translate and exchange any
data asserted under a source ontology database S into data under 7 using active
trigger rules for each bridging axiom expressed in Horn form. As data is inserted
into a table in S, the relevant event is detected, fires the appropriate triggers, and
inserts the corresponding data into 7. The result is a network of ontology databases
exchanging data via triggers.

7.2 Example implementation

We implemented two fabricated ontologies in the Teacher—Student domain and
defined a merged ontology using bridging axioms as depicted in Fig. 9. In the figure,
the ontology on the right (considered the source ontology) uses the Faculty term,
whereas the target ontology on the left uses the Teacher term. For example, there
is an axiom relating first and last name in the source ontology to full name in the
target ontology. That axiom can be expressed as a rule using the built-in string
concatenation function:

Vx, v, z. S:firstname(x, y) A S:lastname(x, z)
= T: fullname(x, concat(y, ‘’, z))
Because the rule is a conjunction, we implement it as a set of triggers, one for each

conjunct. The reason we need two triggers is that satisfying either predicate in the
conjunct could potentially fire the rule, so we need to set a listener on each predicate

@ Springer

240 J Intell Inf Syst (2011) 37:217-244

String
______ Li======= firstname/
String - fullname4====== lastname
Person Person
i : g
is_a isLa | S s
- = — T
Teacher | taaches| PUPlil Facu_ltyf advises - Student
Q. A"‘-. : N — “,‘
.'} . ——— -
*‘:.\‘ ———————— —— i
e Professor| Instructor
- = o __-...-‘

Fig. 9 Dashed arrows indicate mappings for merged Teacher-Student ontologies

(i.e., table) which checks to see if the other predicate is also satisfied. We generated
the triggers as part of the source ontology schema as follows:

CREATE TRIGGER trg fn AFTER INSERT AFTER INSERT ON firstname
FOR EACH ROW
trig:BEGIN
-- enforce bridging axiom: (mysource)fn + ln -> (mytarget)n
INSERT INTO mytarget.fullname (subject, object)
SELECT fn.subject, concat (fn.object, ' ’, 1ln.object)
FROM mysource.f\/irstname fn, mysource.lastname 1ln
WHERE fn.subject = 1ln.subject
AND fn.subject = NEW.subject;
END trig

CREATE TRIGGER trg 1ln AFTER INSERT AFTER INSERT ON lastname
FOR EACH ROW
trig:BEGIN
-- enforce bridging axiom: (mysource)fn + 1ln -> (mytarget)n
INSERT INTO mytarget.fullname (subject,object)
SELECT fn.subject, concat(fn.object, ’ ', ln.object)
FROM mysource.firstname fn, mysource.lastname 1ln
WHERE fn.subject = 1ln.subject
AND 1n.subject = NEW.subject;
END trig

7.3 Evaluation

Similar to what we did when testing scalability, we wrote a program which generated
some uniformly distributed data instances for the source ontology. Both ontologies
are small enough to have a negligible schema load time (cf. Section 4.2), taking under
100 milliseconds on average to load their respective ontology database schemas.
We generated four sets of data instances under the source ontology semantics, each

@ Springer

J Intell Inf Syst (2011) 37:217-244 241

Fig. 10 Integration
performance for ontology 12884
databases time in seconds (log-scale)

10

number of instances in thousands
2.5 25 250 2500

dataset greater than the last by a factor of ten. Then, we measured the total time it
takes to load the dataset into the source ontology database.

Because the source ontology database contains the regular ontology rules together
with the bridging axioms rules, the total time measured includes three major parts:
(1) the time it takes to forward propagate data within the source ontology database,
(2) the time it takes to forward propagate data across to the target ontology database
(via the bridging axioms), and (3) the time it takes to forward propagate data within
the target ontology database. Figure 10 summaries the performance results, which
shows the near-linear performance we expect from small ontologies (based on our
prior load-time observations, cf. Section 4.2).

In conclusion, ontology databases using triggers works naturally for integrating
distributed, heterogenous data. We can build a network of ontology databases which
logically exchange data with each other using simple technologies such as message
passing with persistent queues (Ceri and Widom 1993) and triggers. Furthermore,
because it uses disk-based methods for forward-reasoning, OntoDB scales to much
larger data sets than other (memory-based) ontology-based integration systems, such
as OntoEngine (Dou and LePendu 2006), which crashes when trying to load more
than 250,000 data instances (even with 8GB of RAM).

8 Conclusion

We presented ontology databases, a tool for modeling ontologies plus large numbers
of instances using off-the-shelf database management systems such as MySQL.
Ontology databases are useful for answering ontology-based, scientific queries that
require taking the subsumption hierarchy and other constraints into account, as
demonstrated by our NEMO case study. Furthermore, using our specific method—
triggers—scales extremely well for small ontologies and it does well-enough for
most other biomedical ontologies, including larger ones like GO. Our method pre-
computes inferences for the subsumption hierarchy, so larger and deeper ontologies
will incur more costly up-front penalties.

Because triggers are highly expressive, our method also works well for detecting
inconsistencies that arise from instance-based data. We used not-gadgets, which rea-
son over explicit negations, to help solve this problem. Our methods have detected

@ Springer

242 J Intell Inf Syst (2011) 37:217-244

75 inconsistencies in the Gene Ontology based on GO annotation data, resulting in
a regular reports to biological curators.

Finally, we extended the asynchronous, event-driven framework that we used to
perform inferential data exchange. The main idea is that mapping rules between
ontologies also can be implemented as trigger-rules, giving us a new, efficient
and scalable way to exchange data among a network of ontology databases using
inferential data integration theory.

Our next steps include studying ontology evolution and concept drift to propagate
changes within an ontology database. Changes in the ontology affect the structure,
rules and data for an ontology database, which makes efficiently managing the
knowledge model extremely difficult. In the worst case, an ontology database is
discarded and re-loaded using the new ontology—but that can take significant time
for large data sets. The alternative is to surgically update the ontology database to
reflect the incremental changes in the ontology. In the integration scenario, we will
require retracting information across the network.

Acknowledgements This work was supported in part by grant RO1 EB007684 from the National
Institutes of Health. We thank Doug Howe and Jiawei Rong for their contributions on our GO and
NEMO case studies. We also thank the ZFIN group, Zena M. Ariola and Gwen A. Frishkoff for
their feedback on and contributions.

References

Abadi, D.J., Marcus, A., Madden, S. R., & Hollenbach, K. (2009). SW-Store: A vertically partitioned
DBMS for Semantic Web data management. VLDB Journal, 18(2), 385-406.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2003). The
description logic handbook: Theory, implementation, and applications. Cambridge University
Press.

Baader, F., & Morawska, B. (2009). Unification in the description logic EL. In Rewriting techniques
and applications.

Baader, F., & Nutt, W. (2003). Basic description logics. In Description logic handbook (pp. 43-95).

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American.

Bernstein, P. A., & Rahm, E. (2000). Data warehouse scenarios for model management. In ER (pp.
1-15).

Bodenreider, O., Smith, B., Kumar, A., & Burgun, A. (2007). Investigating subsumption in snomed
ct: An exploration into large description logic-based biomedical terminologies. Artificial Intelli-
gence in Medicine, 39(3), 183-195.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic architecture for storing
and querying RDF and RDF schema. In International Semantic Web conference (pp. 54-68).
Buchmann, A. P., Branding, H., Kudrass, T., & Zimmermann, J. (1992). Reach: A real-time, active

and heterogeneous mediator system. /[EEE Data Engineering Bulletin, 15(1-4), 44-47.

Bult, C.J., Eppig, J. T., Kadin, J. A., Richardson, J. E., & Blake, J. A. A. (2008). The Mouse Genome
Database (MGD): Mouse biology and model systems. Nucleic Acids Research, 36 (Database
issue), D724-D728.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2005). DL-Lite: Tractable
description logics for ontologies. In AAAI °05: Proceedings of the 20th national conference on
artificial intelligence (pp. 602-607).

Ceri, S., Fraternali, P., Paraboschi, S., & Tanca, L. (1992). Constraint enforcement through produc-
tion rules: Putting active databases at work. IEEE Data Engineering Bulletin, 15(1-4), 10-14.
Ceri, S., & Widom, J. (1993). Managing semantic heterogeneity with production rules and persistent

queues. In VLDB (pp. 108-119).

Chakravarthy, S., Hanson, E. N., & Su, S. Y. W. (1992). Active data/knowledge bases research at

the University of Florida. IEEE Data Engineering Bulletin, 15(1-4), 35-39.

@ Springer

J Intell Inf Syst (2011) 37:217-244 243

Christophides, V., Karvounarakis, G., Plexousakis, D., Scholl, M., & Tourtounis, S. (2004).
Optimizing taxonomic Semantic Web queries using labeling schemes. Journal of Web Sematics,
1,207-228 (Elsevier).

Clark, K. L. (1977). Negation as failure. In Logic and data bases (pp. 293-322).

Copeland, G. P., & Khoshafian, S. N. (1985). A decomposition storage model. In SIGMOD
'85: Proceedings of the ACM SIGMOD international conference on management of data
(pp. 268-279). New York: ACM.

Curé, O., & Squelbut, R. (2005). A database trigger strategy to maintain knowledge bases developed
via data migration. In EPIA 05: Proceedings of the 12th Portuguese conference on artificial
intelligence (pp. 206-217).

Dietrich, S. W., Urban, S. D., Harrison, J. V., & Karadimce, A. P. (1992). A dood ranch at ASU:
Integrating active, deductive and object-oriented databases. I[EEE Data Engineering Bulletin,
15(1-4), 40-43.

Donini, F. M., Nardi, D., & Rosati, R. (2002). Description logics of minimal knowledge and negation
as failure. ACM Transactions on Computational Logic, 3(2), 177-225.

Dou, D., Frishkoff, G., Rong, J., Frank, R., Malony, A., & Tucker, D. (2007). Development of
NeuroElectroMagnetic Ontologies (NEMO): A framework for mining brainwave ontologies. In
Proceedings of the 13th ACM international conference on knowledge discovery and data mining
(KDD) (pp. 270-279).

Dou, D., & LePendu, P. (2006). Ontology-based integration for relational databases. In ACM
symposium on applied computing (SAC) (pp. 461-466).

Dou, D., LePendu, P., Kim, S., & Qi, P. (2006a). Integrating databases into the Semantic Web
through an ontology-based framework. In International workshop on Semantic Web and
databases (SWDB) (p. 54). Co-located with ICDE 2006.

Dou, D., McDermott, D. V., & Qi, P. (2005). Ontology translation on the Semantic Web. Journal of
Data Semantics, 2, 35-57.

Dou, D., Pan, J. Z., Qin, H., & LePendu, P. (2006b). Towards populating and querying the Semantic
Web. In International workshop on scalable Semantic Web knowledge base systems (SSWS)
(pp- 129-142). Co-located with ISWC 2006.

Frishkoff, G., LePendu, P., Frank, R., Liu, H., & Dou, D. (2009). Development of Neural
Electromagnetic Ontologies (NEMO): Ontology-based tools for representation and integration
of event-related brain potentials. In ICBO °09: Proceedings of the international conference on
biomedical ontology (pp. 31-34).

Frishkoff, G. A. (2007). Hemispheric differences in strong versus weak semantic priming: Evidence
from event-related brain potentials. Brain and Language, 100(1), 23-43.

Gallaire, H., Minker, J., & Nicolas, J.-M. (1977). Logic and data bases. New York, NY, USA:
Association for Computing Machinery.

Gallaire, H., & Nicolas, J.-M. (1990). Logic and databases: An assessment. In /ICDT (pp. 177-186).

Gene Ontology Consortium (2000). Gene Ontology: Tool for the unification of biology. Nature
Genetics, 25,25-29.

Gene Ontology Consortium (2006). The Gene Ontology (GO) project in 2006. Nucleic Acids
Research, 34 (Database issue), D322-D326.

Goble, C., & Stevens, R. (2008). State of the nation in data integration for bioinformatics. Journal
of Biomedical Informatics, 41(5), 687-693.

Guarino, N. (1998). Formal ontology in information systems. In International conference on formal
ontology in information systems.

Guo, Y., Pan, Z., & Heflin, J. (2004). An evaluation of knowledge base systems for large OWL
datasets. In ISWC *04: Proceedings of the international Semantic Web conference (pp. 274-288).

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base systems.
Journal of Web Semantics, 3(2-3), 158-182.

Haarslev, V., & Moller, R. (2001). High performance reasoning with very large knowledge bases: A
practical case study. In IJCAI '01: Proceedings of the international joint conferences on artificial
intelligence (pp. 161-168).

Hill, D. P., Smith, B., McAndrews-Hill, M. S., & Blake, J. A. (2008). Gene Ontology annotations:
What they mean and where they come from. BMC Bioinformatics, 9(5), S2.

Horrocks, I., Li, L., Turi, D., & Bechhofer, S. (2004). The instance store: DL reasoning with large
numbers of individuals. In Description logics.

Imielinski, T., & Lipski, W. Jr. (1984). Incomplete information in relational databases. Journal of
the ACM, 31(4), 761-791.

@ Springer

244 J Intell Inf Syst (2011) 37:217-244

Jarke, M., Gallersdorfer, R., Jeusfeld, M. A., & Staudt, M. (1995). ConceptBase—A deductive object
base for meta data management. Journal of Intelligence and Information Systems, 4(2), 167-192.

Kolaitis, P. G. (2005). Schema mappings, data exchange, and metadata management. In PODS 05
(pp. 61-75). New York: ACM.

Kowalski, R. A., Sadri, F., & Soper, P. (1987). Integrity checking in deductive databases. In VLDB
(pp. 61-69).

Lenzerini, M. (2002). Data integration: A theoretical perspective. In PODS ’02 (pp. 233-246). New
York: ACM.

LePendu, P., Dou, D., Frishkoff, G. A., & Rong, J. (2008). Ontology database: A new method for
semantic modeling and an application to brainwave data. In SSDBM °08: Proceedings of the
international conference on statistical and scientific database management (pp. 313-330).

LePendu, P., Dou, D., & Howe, D. (2009). Detecting inconsistencies in the gene ontology using
ontology databases with not-gadgets. In ODBASE ’09: Proceedings of the international
conference on ontologies, databases and application of semantics (pp. 948-965).

Levesque, H. J., & Lakemeyer, G. (2001). The logic of knowledge bases. Boston, MA, USA: MIT
Press.

Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., & Liu, S. (2006). Towards a complete OWL ontology
benchmark. In European sem. web conf. (ESWC) (pp. 125-139).

Motik, B., Horrocks, I., & Sattler, U. (2007). Bridging the gap between OWL and relational
databases. In WWW 07°: Proceedings of the 16th international conference on World Wide Web
(pp. 807-816).

Neumann, T., & Weikum, G. (2009). Scalable join processing on very large RDF graphs. In
SIGMOD °09: Proceedings of the ACM SIGMOD international conference on management of
data (pp. 627-640).

Noy, N., Shah, N., Whetzel, P., Dai, B., Dorf, M., Griffith, N., et al. (2009). BioPortal: Ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research, 1(37), W372-W376.

O’Connor, M. J., & Das, A. K. (2008). SOWRL: A query language for OWL. In OWLED
(Vol. 529). CEUR-WS.org.

Qin, H., Dou, D., & LePendu, P. (2007). Discovering executable semantic mappings between
ontologies. In Proceedings of the international conference on ontologies, databases and
application of semantics (pp. 832-849).

Racunas, S. A., Shah, N. H., Albert, I, & Fedoroff, N. V. (2004). Hybrow: A prototype system
for computer-aided hypothesis evaluation. In ISMB/ECCB (supplement of bioinformatics)
(pp. 257-264).

Reiter, R. (1977). Deductive question-answering on relational data bases. In Logic and data bases
(pp. 149-177).

Reiter, R. (1992). What should a database know? Journal of Logic Programming, 14(1&2),127-153.

Shah, N., Jonquet, C., Chiang, A., Butte, A., Chen, R., & Musen, M. (2009). Ontology-driven
indexing of public datasets for translational bioinformatics. BMC Bioinformatics, 10, S1.

Sheth, A. P., & Larson, J. A. (1990). Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3), 183-236.

Sprague, J., Westerfield, M., et al. (2007). The zebrafish information network: The zebrafish model
organism database provides expanded support for genotypes and phenotypes. Nucleic Acids
Research, 36, D768-D772.

Tempich, C., & Volz, R. (2003). Towards a benchmark for Semantic Web reasoners—An analysis of
the DAML ontology library. In Evaluation of ontology-based tools wkshp. (ISWC).

Ullman, J. D. (1988). Principles of database and knowledge-base systems (Vol. I). New York, NY,
USA: Computer Science Press.

Vasilecas, O., & Bugaite, D. (2007). An algorithm for the automatic transformation of ontology
axioms into a rule model. In CompSysTech *07: Proceedings of the international conference on
computer systems and technologies (pp. 1-6). New York: ACM.

Vieille, L., Bayer, P., Kiichenhoff, V., Lefebvre, A., & Manthey, R. (1992). The EKS-V1 system.
In LPAR 92: Proceedings of the international conference on logic programming and automated
reasoning (pp. 504-506). London: Springer.

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., et al.
(2001). Ontology-based integration of information—A survey of existing approaches. In
H. Stuckenschmidt (Ed.), IJCAI °01: Workshop on ontologies and information sharing
(pp. 108-117).

Wang, S., Guo, Y., Qasem, A., & Heflin, J. (2005). Rapid benchmarking for Semantic Web
knowledge base systems. In Int’l sem. web conf. (ISWC) (pp. 758-772).

@ Springer

	Using ontology databases for scalable query answering, inconsistency detection, and data integration
	Abstract
	Introduction
	Our goal and motivation
	Related work
	Knowledge-based systems
	Reasoning
	Scalability
	Biomedical informatics
	Information integration

	Ontology databases
	The basic idea
	Implementation details
	Decomposition storage model
	Subsumption
	Domain and range restrictions
	Cardinality
	Negation
	Proof reconstruction

	Discussion: triggers are different than views

	Evaluating scalability using LUBM
	Lehigh University benchmark results
	Exposing load-time costs

	Answering questions deductively in NEMO
	NEMO data
	Answering ontology-based queries

	Detecting inconsistencies in GO
	GO annotations
	Detecting inconsistent annotations

	Integrating information among OntoDBs
	Inferential information integration
	Example implementation
	Evaluation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

