
July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

International Journal of Semantic Computing
Vol. 4, No. 1 (2010) 123–151
c© World Scientific Publishing Company
DOI: 10.1142/S1793351X10000961

ONTOGRATE: TOWARDS AUTOMATIC INTEGRATION
FOR RELATIONAL DATABASES AND THE SEMANTIC

WEB THROUGH AN ONTOLOGY-BASED FRAMEWORK

DEJING DOU∗, HAN QIN† and PAEA LEPENDU‡

Advanced Integration and Mining Lab
Computer and Information Science

University of Oregon, Eugene, OR 97403, USA
∗dou@cs.uoregon.edu

†qinhan@cs.uoregon.edu
‡paea@cs.uoregon.edu

http://aimlab.cs.uoregon.edu

Integrating existing relational databases with ontology-based systems is among the
important research problems for the Semantic Web. We have designed a comprehen-
sive framework called OntoGrate which combines a highly automatic mapping system,
a logic inference engine, and several syntax wrappers that inter-operate with consistent
semantics to answer ontology-based queries using the data from heterogeneous databases.
There are several major contributions of our OntoGrate research: (i) we designed an
ontology-based framework that provides a unified semantics for mapping discovery and
query translation by transforming database schemas to Semantic Web ontologies; (ii) we
developed a highly automatic ontology mapping system which leverages object reconcil-
iation and multi-relational data mining techniques; (iii) we developed an inference-based
query translation algorithm and several syntax wrappers which can translate queries
and answers between relational databases and the Semantic Web. The testing results of
our implemented OntoGrate system in different domains show that the large amount of
data in relational databases can be directly utilized for answering Semantic Web queries
rather than first converting all relational data into RDF or OWL.

Keywords: Ontology-based information integration; ontology mapping; data mining;
relational database; semantic web.

1. Introduction

Many publicly available, structurally and semantically rich resources such as
databases, the World Wide Web, and the Semantic Web [11] provide a unique
and challenging opportunity to integrate information in new and meaningful ways.
From the standpoint of a user trying to integrate data from a variety of sources,
the problem of information integration is to provide a unified view that he or she
can understand, query, and process independently of the underlying source het-
erogeneities [28, 32, 33]. While standards such as SQL, XML, and OWL [2] cut
down on the syntactic diversity, it is unreasonable to expect schemas or ontologies

123

http://dx.doi.org/10.1142/S1793351X10000961

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

124 D. Dou, H. Qin & P. LePendu

that describe the structure and semantics of data to be few in number [14]. As
Haas has pointed out [28], information integration remains a challenging problem
because various tools and technologies out there currently lack a unified framework
that holistically tackles the entire task. The challenge is that these components
need to work together and the requirement for human involvement needs to be
reduced.

The Semantic Web is an evolving development of the World Wide Web in
which the semantics of information and services is formally defined [11]. The main
approach is to make the Web content annotated with formal languages and ontolo-
gies. Then software agents can take the annotated information for automatic pro-
cessing and integration. The core of the Semantic Web includes formal specifications
such as Resource Description Framework (RDF), RDF Schema (RDFS) and the
Web Ontology Language (OWL) [2], all of which are intended to provide a formal
description of concepts, terms, and relationships and to enable automatic reasoning
(inference) within a given domain.

While we have seen many achievements to realize the Semantic Web by develop-
ing ontology languages (e.g., OWL) and ontology-based systems (e.g., OWL reason-
ers and Semantic Web services [39]), how to apply ontologies and ontology-based
systems to integrate and utilize existing real life data resources, especially rela-
tional databases, is among the important research problems for the Semantic Web.
For example, a Semantic Web agent needs a piece of information (e.g., the middle
name of a citizen with some social security number) which is very possibly stored
in one or several existing relational databases but the agent is not sure which one.
It seems to be an easy problem if the Semantic Web agent is “smart” enough
to compose SQL queries to all candidate databases. However, it is more natural
that Semantic Web agents compose queries in ontology-based query languages, e.g.,
OWL-QL [27]. Another alternative is that we can transform all data in candidate
relational databases into RDF by annotating data with some ontologies on citi-
zens. Then we can use SPARQL [4] to issue a query based on the RDF model. But
it is obviously not efficient because it requires transforming all data into RDF in
advance and the information needed is only a very small portion or may not be in
any candidate database. It would clearly be better if ontology-based queries could
directly retrieve the specific data required via SQL rather than first transforming
potentially gigabytes of relational data into RDF unnecessarily.

On the other hand, one single query cannot directly retrieve data from mul-
tiple heterogeneous databases. In general, this is an integration problem between
relational databases and the Semantic Web but some specific challenges need to be
considered. In addition to syntax and structure, there are important semantic differ-
ences between Semantic Web ontologies and database schemas. Therefore, the prob-
lem is not only a syntax translation between Semantic Web queries and SQL queries.
For example, even when describing the same domains, ontologies include more for-
mal semantics than relational models and schemas. Furthermore, the Semantic Web

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 125

uses the open-world assumption (OWA) but traditional relational databases use the
closed-world assumption (CWA) which makes it difficult and perhaps unnatural to
guarantee logical completeness of a combined system.

To address the significant challenges mentioned above, we have designed and
implemented OntoGrate, an ontology-based framework towards automatic informa-
tion integration. This work mainly focuses on the integration of relational databases
and the Semantic Web in a highly automatic way which includes an ontology map-
ping system, an inference engine and several syntax wrappers. We emphasize that
the system will be ontology-based because ontologies are more expressive than
schemas in describing data semantics. The OntoGrate system can automatically
represent a schema as a DB ontology. With the generated DB ontology, a semantic
web query (e.g., in OWL-QL) can be directly translated into a SQL query and the
answers (relational data) can be translated back to semantic web languages (e.g.,
RDF and OWL). In the ontology matching and mapping process, we apply a variety
of state-of-the-art techniques (i.e., string similarity matching, object reconciliation
and multi-relational data mining) to get executable mapping rules with high preci-
sion and recall. Finally, we have extended an inference engine, OntoEngine [22], for
conjunctive query translations with the discovered mapping rules. Our conjunctive
query translation is proved to be sound.

The rest of this paper is organized as follows. We first introduce some related
work in Sec. 2, and then illustrate our OntoGrate framework and the major interac-
tions of its components in Sec. 3. We introduce the formal definition of DB ontology,
how to translate a database schema to a DB ontology, and how to accomplish query
answering in Sec. 4. In Sec. 5, we show how our mapping system discovers map-
ping rules between heterogeneous DB ontologies through string similarity matching,
object reconciliation and multi-relational data mining in a highly automatic way.
With discovered mappings, we introduce our inferential query translation process
for integrating heterogeneous databases in Sec. 6. Then we test the OntoGrate sys-
tem through experiments on synthetic and real data from three different domains
in Sec. 7. We discuss some interesting observations from the OntoGrate research
and future work in Sec. 8. We conclude the paper by summarizing our contributions
in Sec. 9.

2. Related Work

The primary goal of this paper is to show how the Semantic Web and relational
databases can be integrated in a highly automatic way by combining an ontol-
ogy mapping system, an inference engine and several syntax wrappers. This is an
extended version based on our previous conference and workshop papers [20, 21, 48],
each of which shows the progress of some components of OntoGrate. In this paper,
we show OntoGrate in a unified semantics by giving formal definitions, algo-
rithms and proofs for our DB ontologies, ontology mapping and query translation.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

126 D. Dou, H. Qin & P. LePendu

We also show our recent data experiments from three different domains in terms
of the accuracy of mappings and the scalability of query answering. Other related
approaches are found in several disciplines:

Database Reverse Engineering and Ontology Extraction: There are a few approaches
investigating the transformation of relational schemas to ontologies. One similar
approach to our DB ontology generation is to map a relational model to frame
logic which can then be represented in RDF [54]. Premerlani [47] proposed a seven-
step reverse engineering process and gave the guidelines to get mappings between
semantic models and original schemas. A recent research described in [34] provided
a description logic based ontology language which captures features from ER and
UML class diagrams. It is proven to preserve the semantics of the constraints in
the relational databases. Motik, Horrocks and Sattler [41] showed that integrity
constraints (ICs) can be disregarded while answering positive queries against an
OWL [2] ontology, if the constraints are satisfied by the database. This theoretical
research also helped justify that the semantics of databases, including integrity
constraints, can be fully preserved in OWL with proper extensions. The focus of
our paper is not just on semantic representation for schemas, but more importantly
to show how the semantic representations for database schemas (i.e., DB ontologies)
can help information integration.

Ontology (schema) Matching and Mapping: We are careful to distinguish between
matching and mappings. What do we mean by this? A matching pairs (or groups)
related concepts together, whereas a mapping rule explicitly states how each ele-
ment in a pair (or a group) relates to the others in formal languages. The database
community was one of the first to invest considerable effort in developing systems
that match different database schemas (see [49] for a survey). Most schema match-
ing systems, such as LSD [17], CUPID [35], iMap [16] and COMA [23], focus on
retrieving correspondences between attributes using a variety of similarity or corre-
lation heuristics. Clio [29, 40] and Semap [8] are schema mapping systems that can
generate operational (i.e., executable) rules in formal languages. Similarly, research
in knowledge engineering and the Semantic Web has resulted in tools for ontology
matching and mapping. PROMT [43], GLUE [18], MAFRA [36] and BMO [31] are
some examples of such systems. BMO [31] can generate block matchings using a
hierarchical bipartition algorithm. This system builds a virtual document for each
ontology and compares each pair of concepts with the information in the virtual
document. GLUE [18] employs machine learning and exploits data instances to find
matchings between concepts. A good survey of ontology matching techniques can be
found in Euzenat and Shvaiko’s book [24]. Matchings can also be used for ontology
merging process, such as the approaches in Chimaera [38] and C-OWL [13]. Our
ontology mapping approach in OntoGrate is to combine ontology matching, object
reconciliation [19] and multi-relational data mining [42] to find executable ontology
mapping rules in a highly automatic manner by utilizing the overlapping of data.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 127

Data Integration and Ontology-Based Integration: General data integration models
such as federated databases [52], data warehouses [12] and peer-to-peer data man-
agement [30] exist. The integration process is normally implemented with a data
mediator and an integrated schema represented as view definitions. In data inte-
gration and data exchange research [25, 32, 33], the query based on one schema
can be answered by rewriting it as the query based on another schema. Most of
them are view-based query answering, e.g., Global-As-View (GAV) and Local-As-
View (LAV). In the GAV approach, the elements of the global schema are defined
as views (i.e., mappings) over the local schemas. In contrast, the elements of the
local schemas are defined as views (i.e., mappings) over an existing global schema
in the LAV approach. For example, the MiniCon algorithm [46] rewrites queries
expressed in a global view to a conjunction of queries over local ones so that a large
set of (materialized) views can lead to efficient query answering. The query rewrit-
ing is defined by query containment [33]. Ontology-based information integration
approaches based on a declarative model (as opposed to a procedural one) often
use a logical framework from the area of knowledge representation. The Carnot,
SIMS and Information Manifold systems are summarized and compared in [15].
Poggi et al. [45] presented how to design an effective system for ontology-based data
access. Pierre [44] discussed the difference between applying a conceptual model and
ontology to data integration and argued that ontology is more suitable. Our query
translation from an ontology to database schemas is defined by logic entailment and
implemented as a sound inference.

3. Framework

We have developed OntoGrate, a framework that, given different ontologies or
schemas and their associated data, will be able to mine a set of first-order mapping
rules that accurately describe how the input ontologies or schemas relate to each
other. These mapping rules will be used by an inference engine, OntoEngine, to
perform data integration (e.g., query translation). For example, in order to find the
middle name of a citizen with a specified social security number as a global query,
the Semantic Web agent needs to identify the sources,a translate that query to each
source using inference, retrieve the data with wrappers, and return the reconciled
answers. It hides several tasks that need to be taken care of: we need a model of
how the global query is related to each source (i.e., mapping discovery) and a way
to utilize those mappings to translate the query in the expected way. Finally we
need to execute each query against each local data resource using syntax wrappers.
To explain how OntoGrate can help integrate databases and the Semantic Web, we
show the architecture of OntoGrate in Fig. 1.

aSemantic search is an important research topic but not the focus of this paper. In this paper, we
assume that the Semantic Web agent has already identified the candidate databases or Semantic
Web documents to answer the query.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

128 D. Dou, H. Qin & P. LePendu

DB

Semantic
Web

Onto Engine
Inference Engine

Matching Rule Mining

SportsGenetics

Mapping Rules

Query Interface

e-Commerce

wrappers wrappers

Fig. 1. Architecture for OntoGrate. The system is mainly composed of five components:
the ontology matching, the rule miner, the inference engine, the query interface, and syntax
wrappers. The transformation from schema to ontology is implemented in the wrappers between
SQL and OWL. The inputs are relational databases and Semantic Web documents and queries
over heterogeneous schemas or ontologies from various domains.

Schemas to Ontologies Transformation: We have built an automatic translator
inside the wrappers between SQL and OWL to represent schemas as ontologies.
Some basic heuristics have been used for transforming schemas into ontologies which
we call DB ontologies.

Ontology Matching: Ontology matching takes the source and target ontologies
with their data instances as input. The output is 1-1 matching pairs between classes
and properties. OntoGrate also reconciles instances which refer to the same real-
world entities.

Mapping Rule Mining: OntoGrate first combines closely related 1-1 property
matching pairs, class matching pairs and their instances together as a group. Then
the matching groups and associated data are input to a FARMER-like system [42]
to mine frequent queries which help to generate the final mapping rules.

Inference Engine: The inference engine is in charge of using mapping rules to
answer queries and exchange (i.e., translate) data among available data sources.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 129

OntoEngine [22] has been extended for conjunctive query translation. We will pro-
vide the theory and proof in Sec. 6.

Query Interface: In this paper, we assume users (i.e., human or semantic web
agents) issue queries in semantic web query languages (e.g., OWL-QL or SPARQL).
The final query answering results can be represented in the query interface.

Syntax Translation (Wrappers): In between OntoGrate and the data resources
exist syntax translators (wrappers) among OWL, SQL, OWL-QL and our language
Web-PDDL [37]. The query wrapper should take a fully-translated ontology-based
query and efficiently generate the corresponding data-access SQL query without
additional translation or rewriting cost. Until the proposed standards for seman-
tic mappings (open question [55]) are finalized, Web-PDDL is used internally
to describe both the structure and semantics of data resources, their mappings
and queries.

4. Transforming Relational Schemas to DB Ontologies

4.1. Problem definition

The structure and integrity constraints of relational tables are defined by relational
models and database schemas (e.g., definitions with SQL). When Semantic Web
agents (which use ontologies) want to interact with relational databases, we need
to deal with both the semantic differences between ontologies and schemas and
the syntax differences (e.g., OWL vs. SQL). A relational schema is a finite set
R = 〈R1,R2, . . . , Rn〉 of relations, each of which may have different arities. On
the other hand, Semantic Web ontologies (i.e., OWL ontologies) use description
logic (i.e., a decidable fragment of first-order logic) as their logic foundation. OWL
ontologies mainly have classes, binary predicates (properties) and some axioms (such
as cardinality constraints). Our idea is to automatically create a Semantic Web
ontology which can describe the semantics and structure defined by a database
schema, then Semantic Web agents can query the corresponding database based on
that Semantic Web ontology.

To do so, we first borrow the ideas from both Datalog representation and Reiter’s
first-order database [50] to redefine relational databases in more general first-order
logic (FOL) theory. More detailed discussion between database and logic can be
found in Atzeni and De Antonellis’s book [9].

Definition 1. Relational Database: A relational database DB is a finite set of
relations R1,R2, . . . , Rn, each of which can be defined as a predicate (literal) Ri(x1,
x2, . . . , xmi), where 1 ≤ i ≤ n, mi ≥ 1 and mi is the number of attributes in Ri.
Variable xj (1 ≤ j ≤ mi) corresponds to an attribute with the data type of Dj in
the relation Ri. The data type Dj can also be defined as a unary predicate Dj(xj).
If c1, c2, . . . , cmi are constants, then (c1, c2, . . . , cmi) is an instance of Ri if and
only if DB � Ri(c1, c2, . . . , cmi), where � means the instance of Ri can be logically
inferred from DB.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

130 D. Dou, H. Qin & P. LePendu

Most integrity constraints of a relational database can be expressed by first-order
logic formulas (axioms) [10]. A conjunctive database query is basically a conjunction
of predicates defined from data types and relations and comparison operators:

q(�X)← ∃ �Y conj (�X, �Y , �Z)

where �X represents distinguished variables which need to be bound to answers in
the DB, �Y represents non-distinguished variables as existential variables and �Z

can be constants. And conj(�X, �Y , �Z) is a conjunction of atoms of the form D(x),
R(x1, . . . , xn), or C(t1, t2), where D, R, C are data types, predicates and comparison
operators respectively. x, x1, . . . , xn, t1 and t2 are variables in X and Y or constants
in Z. An n-tuple of constants c = (c1, . . . , cn) is an answer to q(�X) (with respect
to a database DB) if and only if DB � D1(c1) ∧ · · · ∧Dn(cn) ∧ θ(q(�X/c)) where �X

has n variables and θ(q(�X/c) is the ground formula achieved by substituting the
variables in �X with the corresponding constants in c. An answer sequence is a list
of answers to the query.

We then use a similar way defining relational databases to define a Semantic
Web ontology for relational databases. To be consistent with OWL ontologies which
contain mainly classes (unary predicates) and properties (binary predicates), we give
the following definition for a DB ontology:

Definition 2. DB Ontology: A DB ontology can be defined as a finite set of
classes (i.e., types or unary predicates) and binary predicates. If R1,R2, . . . , Rn are
the relations in a database DB, we define them as classes in the corresponding DB
ontology. Each attribute aj with data type of Dj in an original relation Ri (1 ≤
j ≤ mi, mi is the number of attributes in Ri) can be defined as a binary predicate
aj(ri, dj), where ri and dj are variables with types (classes) of Ri and Dj . If c1,
c2, . . . , cmi are constants, then there exists an r0 and a1 (r0, c1) ∧ a2 (r0, c2) ∧ · · · ∧
ami(r0, cmi) is an instance of a1 ∧ a2 ∧ · · · ∧ ami if and only if DB � a1 (r0, c1) ∧
a2 (r0, c2) ∧ · · · ∧ ami(r0, cmi), where r0 is a Skolem term (with type of Ri) based
on c1, c2, . . . , cmi and � means the instances of a1, . . . , ami can be logically inferred
from DB.

However, the definitions of unary or binary predicates in DB ontologies can-
not catch all semantics of databases. For example, from the data modeling point
of view (e.g., ER model), it is very possible some relation is designed based on
one relationship between two entities in the original ER model. We may not need
to define this kind of relation again as classes (unary predicate), instead we can
define it as a binary predicate between two classes (i.e., objectProperty in OWL).
The primary key constraints can be represented as functional property axioms and
other integrity constraints (e.g., foreign keys and other available functional depen-
dencies) of a relational database can also be expressed by formulas (axioms) in
first-order logic (more detail examples in Sec. 4.2). Since the classes can be viewed
as unary predicates, a query over DB ontology is also a form of conjunction of pred-
icates (which includes unary and binary predicates and comparison operators) with

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 131

variables and constants. Therefore, a query over DB ontology is still in the form of

q(�X)← ∃ �Y conj(�X, �Y , �Z)

where �X represents distinguished variables which need to be bound to answers
in the DB, �Y represents non-distinguished variables as existential variables and
�Z can be constants. And conj(�X, �Y , �Z) is a conjunction of atoms of the form
D(d), R(r), a(r, d) or C(t1, t2), where D, R, a, C are respectively data types, rela-
tion types, properties (binary predicates) and comparison operators. Also, r, d,
t1 and t2 are variables in X and Y or constants in Z. An n-tuple constant c =
(c1, . . . , cn) is an answer to q(�X) only if there exist Skolem terms r1, . . . , rm based on
(c1, . . . , cn) that

DB � D1(c1) ∧ · · · ∧Dn(cn) ∧R1(r1) ∧ · · · ∧Rm(rm) ∧ θ(q(�X/c))

where �X has n variables and θ(q(�X/c) is the ground formula (e.g., a1(r1, c1))
achieved by substituting the variables in �X with the corresponding constants in c.
An answer sequence is a list of answers to the query.

4.2. Transforming a DB schema to a DB ontology

After we define both the relational database (schema) and DB ontology in first-
order logic theories, we list some general correspondences (i.e., heuristics) between
a relational database and its DB ontology:

Relation � Class (Type)

Attribute � Property

Integrity Constraint � Axiom (Rule)

Primary Key � Functional Property

We have developed an automatic translator which utilizes the above heuristics
and includes syntax wrappers to generate a DB ontology from a database schema.
The translation is between the SQL data-definition language (DDL) and our inter-
nal first-order Web ontology language, Web-PDDL [37], to express ontologies, data
instances (facts), queries, and mapping rules between different ontologies. The syn-
tax wrapper between SQL queries and Web-PDDL queries is called PDDSQL [21].
Web-PDDL can be translated to and from RDF easily [37]. Another syntax wrapper
called PDDOWL [21] can translate OWL and OWL-QL to and from Web-PDDL
as well. Therefore, DB ontologies can be represented in OWL and a query over a
DB ontology also can be represented as an OWL-QL query. To make the syntax
as consistent as possible, in this paper we use general first-order logic formulas to
represent our internal Web-PDDL representations instead of Lisp syntax.

To illustrate our approach, we consider an IBM Informixb database schema,
Stores7, from the online sales domain, which we installed and populated data for

bhttp://www.ibm.com/software/data/informix/.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

132 D. Dou, H. Qin & P. LePendu

the experiments. The database schema of Stores7 defines the relations, such as
Customer, Order and Item, and associated attributes.

Our automatic tool can translate this relational schema (in SQL DDL) into a DB
ontology. For example, there is a Customer table in Stores7, where customernumber
is the primary key of the table and customerstatecode is the foreign key that refers
to the State table. Our tool generates the first-order logic formulas:

Classes : Customer(x), State(y) . . .
Subclasses : ∀ x Customer(x) → Relation(x),∀ y State(y) → Relation(y) . . .
P redicates : customernumber(x, v), statecode(y, v), customercity(x, v) . . .
Axioms : ∀ c, o Customer(c) ∧ varchar(o) ∧ customerstatecode(c, o)

→ ∃s State(s)∧ statecode(s, o)

∀ c1, c2, n Customer(c1) ∧ Customer(c2) ∧ String(n) ∧ customernumber(c1, n)
∧ customernumber(c2, n) → (c1 = c2)

. . .

The above representation is part of the DB ontology of the Stores7 database, which
specifies the Customer and State classes and their related predicates (properties)
and axioms based on foreign keys and primary keys (e.g., customerstatecode and
customernumber). For example, the Customer relation (table) can be represented
as a Customer class (unary predicate) and also a subclass of Relation which is
a super class for all classes transformed from relation tables. Nine attributes of
Customer table can be represented as nine binary predicates (e.g., customercity).

To make the DB ontology “understandable” by the Semantic Web agents, we
use OWL to represent classes (types) and binary predicates, and as many axioms
(integrity constraints) as OWL can. For example, the primary key information can
be represented as functional property, e.g., customernumber can be represented as
a functional property related to Customer class (i.e., domain) and a string (i.e.,
range). We may use the current SWRL [5] or RIF [3] rule language to represent
other more general axioms (e.g., foreign key constraints) but we generally use first-
order logic syntax to represent rules in this paper. After we get the Stores7 DB
ontology in Web-PDDL, we call our syntax wrapper PDDOWL to transform it into
OWL syntax like:

<owl:Class rdf:ID="Customer">

<rdfs:subClassOf rdf:resource="&sql;Relation"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="customernumber">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

<rdfs:domain rdf:resource="#Customer" />

<rdfs:range rdf:resource="&xsd;String"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="customercity">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:range rdf:resource="&xsd;String"/>

</owl:DatatypeProperty>

...

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 133

Suppose Semantic Web agents or services may want to use OWL-QL (or
SPARQL) to query databases with the DB OWL ontology. PDDOWL first trans-
lates OWL-QL queries into Web-PDDL queries. Then we call the PDDSQL trans-
lator to translate Web-PDDL queries into SQL queries by using the general
correspondences between a relational schema and a DB ontology. Finally we can
get answers (i.e., data tuples) directly from the relational database. The answers
can be filled in to provide answer bundles in OWL-QL by PDDOWL. We will give
the detailed examples in Sec. 7.

5. Ontology Mapping with Data Mining

Although we represent the semantics of relational databases as DB ontologies, dif-
ferent databases may result in different DB ontologies even in the same domain
if their schemas are heterogeneous. One advantage of OntoGrate is to be able to
discover semantic mappings of heterogeneous databases as an ontology mapping
process in a highly automatic way.

Definition 3. Ontology Mapping: Let �S and �T be the source and target ontol-
ogy respectively. The ontology mapping between �S and �T is a tripleM = (�S, �T , Σ)
such that Σ is a set of mapping rules as formulas of some logic L (e.g., FOL).

We mentioned the difference between matchings and mapping rules in Sec. 2.
In general, given a source ontology and a target ontology which model the same
domain, ontology matching finds the correspondences of concepts (e.g., classes
and properties in OWL ontologies). Object reconciliation can find that some data
instances from both ontologies represent the same real-world entities. The goal of
ontology mapping is to generate mapping rules which can be represented in some
formal logic. Especially, mapping rules discovered by our system can be represented
as implications with conjunctions:

∀x1 . . . xk, P1 ∧ · · · ∧ Pi · · · ∧ Pn → ∃ z1 . . . zl, Q1 ∧ · · · ∧Qj · · · ∧Qm

where the x’s are universally quantified variables and z’s are existentially quantified
variables. P1, . . . , Pn are unary or binary predicates from the source ontology and
Q1, . . . , Qm are unary or binary predicates from the target ontology.

There are mainly four steps to do ontology mapping in OntoGrate:

(1) Matching Generation: It takes the source and target ontologies with their data
instances as input. The output is 1-1 matchings between classes and properties.

(2) Object Reconciliation: This step reconciles instances which refer to the same
real-world entities. It iteratively takes matchings as input and outputs rec-
onciled data instances to the matching generator as feedback. When no new
matching is generated, it passes the 1-1 matchings and the reconciled data to
the Group Generation.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

134 D. Dou, H. Qin & P. LePendu

(3) Group Generation: The matchings are not always 1-1 matchings. This step
combines closely related 1-1 property matchings, class matchings and their
instances together as a group which may be m-n matchings.

(4) Multi-Relation Data Mining and Rule Refining: We extend some ideas from
the FARMER system [42] to mine frequent queries which can help generate
executable mapping rules. The thresholds of support and confidence for rule
selection can be different for different cases.

In the following, we illustrate our ontology mapping approach based on two
sales DB ontologies: the Stores7 Ontology we mentioned in previous sections and
the Northwind Ontology which is transformed from the Northwind sales database
from Microsoft. We use “@stores7” and “@nwind” to denote their namespaces.

5.1. Matching generation and object reconciliation

We begin from finding class and property matching pairs based on their names.
We make use of “Iterative SubString Matching Algorithm” [53] to calculate the
similarity of names of each pair. We basically examine every pair of classes and
properties from both DB ontologies. For each pair we can get a similarity score
and we set a threshold for similarity to get class or property matching pairs. Other
existing matching approaches (e.g., synonym-based approaches by using WordNet
[26]) can also be used in this step to help find more matchings.

5.1.1. Class and property matching

There are some property matching pairs which can strengthen our confidence about
potential class matching pairs. Given the datatype property pair p(X, Y) and
q(U, V), where X and U are classes and Y and V are data types, if there is a
class matching pair X � U and Y being the same data type as V , we consider
p(X, Y)� q(U, V) as one potential datatype property matching related to the
class matching pair X � U . Not only is the name similarity of p and q needed to
make more confidence of X � U , but also the data value similarity of p and q. The
potential datatype property matching will be verified by data value similarity which
will be further discussed in Sec. 5.1.2. The higher the similarity of a datatype prop-
erty matching pair is, the more confidence this class matching pair has. Support of
a class matching pair is calculated according to the following equation:

Support(X � U) = ΣDatatypePropertyPairSimilarity (1)

Datatype property pair similarity is the sum of name similarity and data similarity.
Another problem we should cope with is that two classes may have totally unrelated
names, but they represent the same concept. One clue to handle this case is actually
from datatype property matchings. If several property matching pairs indicate that
class X and class U should be paired, we can assume X � U is one class matching
pair and add those property matching pairs as its datatype property matchings.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 135

5.1.2. Data similarity of datatype property pairs

Having a similar name does not necessarily mean that two properties definitely
represent the similar concept. Calculating data similarity of property matching
pairs is necessary. Note that data similarity is based on the assumption that
the data instances of two ontologies overlap at a relatively high level, otherwise
we cannot benefit from making use of the data. For a property matching pair
p(X, Y)� q(U, V), we can calculate the data similarity of p and q with the follow-
ing formula:

DataSimilarity (p(X, Y)� q(U, V)) =
2 ∗ |same pairs(Y, V)|
|p(X, Y)|+ |q(U, V)| (2)

where |same pairs(Y, V)| is the number of instance pairs which have the same
numeric value or very similar string value, and |p(X, Y)| and |q(U, V)| stand for the
numbers of instances of property p(X, Y) and property q(U, V). We give a weight
0.75 to data similarity and 0.25 to name similarity and then set a threshold 0.5
for the overall similarity. If overall similarity of one property matching is less than
the threshold, we consider it incorrect and remove it from the list of matching
pairs.

5.1.3. Object reconciliation

With selected class matching pairs, we adopt an object reconciliation algorithm
developed by Dong, Halevy and Madhavan in [19] to reconcile the instances of
classes from two ontologies. The original algorithm considers the relationship of
matching pairs and determines whether two data objects from databases represent
the same real-world entity. We successfully use the idea in our mapping research.

We skip repeating the algorithm in detail since it can be found in the paper [19].
In summary, for all the possible instance pairs, we can draw a similarity graph and
calculate the similarity between them. The formula we use is a simple aggregation
of the similarity of datatype matching pairs. For example, Fig. 2 shows one pos-
itive example and one negative example for object reconciliation for Stores7 and
Nothwind. Node (customer1, cust001) has a high similarity and is considered as
reconciled. Node (customer2, cust003) has a comparably low similarity and is con-
sidered as not reconciled.

5.1.4. Object property matching

Similar to datatype property matching pairs, the object property matching pairs
may have similar property names. However, it is harder to find object property
matchings because their instances cannot help before object reconciliation process
is performed. Therefore, only after we reconcile some data instances we then can cal-
culate the data similarity of object property matching pairs. Note that this kind of
matching pairs have two ways to match: given p(X, Y)� q(U, V), the first match-
ing is X � U, Y � V while the other is X � V, Y � U . When we calculate the

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

136 D. Dou, H. Qin & P. LePendu

customer 1

Eugene

97405Han

cust 001

Han Qin

customer 2

Eugene

97402Dejing

cust 003

97213

Portland

PAEA
LePendu

97405

EUGENE

Fig. 2. Positive and negative object reconciliation examples.

data similarity of object property matchings, whether it is cross matched or not
should be recorded. Similar to data property matching pairs, we give the following
formula:

DataSimilarity (p(X, Y)� q(U, V)) =
|same pairs(X, U)|+ |same pairs(Y, V)|

|p(X, Y)|+ |q(U, V)|
(3)

After performing object reconciliation in each iteration, our system tries to cre-
ate new object property matching pairs based on the object reconciliation results.
The process will terminate if no new object property matchings can be found.

5.2. Matching groups

In this step, we tackle the problem of grouping related 1-1 matchings. For one prop-
erty matching pair @source:p(X,Y)� @target:q(U,V), we should find connections
between both @source:X � @target:U and @source:Y � @target:V. Figure 3
shows a complete group.

The dashed line refers to zero or several predicates, super-sub class relationships
or class matching pairs. Based on this, we can draw the general group rule: For one
property matching pair, such as @source: p(X,Y) � @target:q(U,V), if we do not
have class matching pair @source:X � @target:U (or @source:Y � @target:V),
we can search among the properties and class matching pairs to find a connec-
tion path from @source:X to @target:U (or from @source:Y to @target:V). In the

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 137

p (X , Y)

q (U , V)

Source Ontology

Target Ontology

Matching Group

Fig. 3. Matching group based on one property matching pair.

path there must exist one class matching pair that connects the source and target
ontologies.

Discovering the path is the key step for finding group matchings. The class
matching pair that connects the source and target ontologies is the key class match-
ing pair. We search the class matching pair that could connect the source ontology
class and the target ontology class. The properties and superclass-subclass relation-
ships are added into class sets by breadth-first search. Once we find a class (e.g., A)
in the source ontology and a class (e.g., B) in the target, which are included in a
class matching pair, this A � B is considered as a key class matching pair and
added to the key matching pair set. Then the concepts included in paths will be
considered together as a matching group.

5.3. Generating mapping rules with MRDM

Once we have all matching groups, the mapping rules can be generated by multi-
relational data mining (MRDM). We first introduce some notions for the rule gen-
eration with MRDM. Most MRDM systems leverage inductive logic programming
(ILP) techniques. In ILP systems, an atom is a unary or binary predicate and a
query is a logical expression that contains a set of ordered atoms. In each query
there is one atom called atom key, which is used for counting. For one query, if the
number of answers of the atom key exceeds the threshold, we refer to this query
as frequent query. The algorithm should take a set of predicates and data instances
as input, build the search space and finally output a set of queries with high sup-
port. We consider classes and properties of ontologies as unary or binary predicates.
FARMER [42] system can be used for this goal but it requires users to specify the
input/output type of each argument of the predicates. To make the whole process
as automatic as possible we create a new method based on FARMER. The method

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

138 D. Dou, H. Qin & P. LePendu

will generate two queries. How many answers those queries have are based on the
given data set. We set the number of answers as the support of each query. The
first query contains the predicates of the source ontology in the matching group.
The second query contains all the predicates of the matching group. The motiva-
tion of generating these two queries is that the first query is the condition part of
the potential mapping rules and the second query contains both the condition and
conclusion parts. The support number will be used for calculating the confidence of
the final mapping rules.

Then we can generate mapping rules based on frequent queries and class match-
ing pairs. A query is represented as the logic form ? − P1, P2, . . . , PN , which con-
tains an atom key used for counting. For example, the related frequent queries of the
matching group “@stores7:zip (Customer, String)�@nwind:postalcode (Customer,
String), @stores7:Customer � @nwind: Customer” are:

? - Customer(V0N0),zip(V0N0,V1N0) support: 100

? - Customer(V0N0),zip(V0N0,V1N0),postalcode(V0N0,V1N0) support: 95

where support 100 or 95 means the number of answers for the query from a given
dataset. With class matching pair @stores7:Customer � @nwind:Customer, a
rule can be generated like:

∀x, y @stores7:Customer(x) ∧ @stores7:zip(x, y) →
@nwind:Customer(x) ∧ @nwind:postalcode(x, y)

The confidence of the mapping rule can be calculated by dividing the support of
second query by the support of the first query. In the above example, the confidence
of the mapping rule is 95

100 = 95%. We consider rules with extremely low support
and confidence as distinctly incorrect.

6. Integrating Relational Databases with DB Ontologies

In this section, we introduce how to integrate multiple relational databases with
discovered mappings and a merged ontology.

6.1. GAV-like ontology-based integration

Similar to the creation of a global schema in the GAV data integration, we create
a merged ontology based on discovered mappings. Following the ontology merging
methodology we used in [22], we put the union of concepts of two DB ontologies
into one merged ontology (e.g., Stores7-Northwind) and add the discovered mappings
between them as bridging axioms. When two DB ontologies have the classes or
properties for the same or similar concepts, we choose the concepts from one of
(local) DB ontologies and use mappings to specify the relationships between those
concepts in the merged ontology and (local) DB ontologies. The process is automatic
based on the discovered mapping rules.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 139

We can also represent classes and predicates of the merged DB ontology (e.g.,
Stores7-Northwind) in OWL. If a query is issued based on the merged DB ontology,
the query can be translated into queries in the local DB ontologies by inferential
query translation (more detail later). Then the translated SQL queries by PDDSQL
can be answered by the local databases.

We solve the query answering problem by translating the query from a target
ontology (i.e., the merged one) to a source (local) ontology. It may be confusing
to think of the merged (global) ontology, the one against which the user’s query
is posed, as the “target” ontology. Because translation happens using the rules
mapped from the source DB ontology to the target merged ontology (more on this
in Sec. 6.2) we like to refer to the merged ontology as the “target” for the sake
of consistency. Therefore, our approach is to translate (or rewrite) the query qt

over the target ontology �T (i.e., the merged one) to a query qs over the source DB
ontology. We call the process query translation and formally define it below:

Definition 4. Query Translation: LetM= (�S, �T , Σ) be an ontology mapping
and let qt be a query over the target ontology �T . If there is a query qs over the
source DB ontology �S and the answers to qs from the DB can be used to answer qt,
we call qs the query translation of qt with respect to M.

The advantage here is that we do not need to know which instances are good for
answering the query, before we run the query translation. It makes the complexity
of query translation controllable independently of the instance-size.

6.2. Inferential query translation

If the discovered mapping rules are in first-order logic (e.g., Web-PDDL) and let
M = (�S, �T , Σ) be an ontology mapping related to the source DB ontology �S and the
target ontology �T , then Σ is the set of mapping rules (first-order axioms). Let the
symbol�Q indicate query translation. If qt is a query in ontology �T , its translation
is a query qs in DB ontology �S, such that any answer (set of bindings) to qs is also
an answer to qt. In other words:

(Σ; qt)�Q qs only if (Σ; θ(qs)) � θ(qt)

for any substitution θ, where θ(qs) is the answer(s) from the source database by
substituting the variables in qs with the corresponding constants in θ. It means we
use entailment (�) to define the query translation: if all the mapping rules in Σ
and all the answers in θ(qs) are true, then all the answers in θ(qt) should be true.
Alternatively, we say that θ(qt) is a logical (or semantic) consequence of Σ and
θ(qs). It is easy to get in first-order logic theory, for any substitution θ,

(Σ; qt)�Q qs ⇔ (Σ; θ(qs)) � θ(qt)

⇒ (Σ; θ(qs)) � θ(qt)

where an (sound) inference (�) can implement and guarantee the entailment (�).

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

140 D. Dou, H. Qin & P. LePendu

Definition 5. Soundness of Query Translation: Let �T and �S be the target
ontology and the source ontology respectively. Let qt be a query over �T , and qs a
translation (rewriting) of qt over �S. The translation (rewriting) process is sound if
any answer to qs is also an answer to qt.

In the literature this is also known as query containment in data integration [33]
and weak representation in incomplete databases [7].

On the other hand, considering that the Semantic Web adopts the OWA assump-
tion, the answers from one or even all existing databases is not a complete spec-
ification of all data. Finding all the (complete) answers for a target query is not
always possible or necessary. Therefore, we claim that the answers from the source
database may not be complete but are correct (sound) with respect to the source
query and the ontology mappingM as long as the inference is sound (a proof later).

In order to use ontology mappings for inferential query translation, the special
purpose inference engine OntoEngine [22] was used. OntoEngine has both forward-
chaining and backward-chaining reasoners using generalized modus ponens [51],
which is well known as a sound but not complete inference algorithm.

The recursive algorithm for conjunctive query translation with backward-
chaining inference is shown in Algorithm 1. Basically this IQT algorithm takes a
conjunctive query QT in the target ontology and the mapping rules Σ between the
source and target as input. For each single subquery Qt, the algorithm translates it
to a query Qs in the target ontology by backward-chaining with modus ponens. Qs

can be a single query or a conjunctive query. We combine the Qss generated from
different subqueries (Qts) with conjunctions.

In the following, we give a proof sketch that the conjunctive query translation
with backward-chaining can guarantee the soundness of query translation.

Theorem. Any query translation by Algorithm 1 (IQT) is sound: any answer of
translated query is also the answer to the original query.

Proof. Let qt be the query over the target ontology �T and qs be qt’s translation as a
query over the source ontology �S. Based on the Algorithm IQT, there exists a chain
(i.e., inference proof) in the form: 〈q0, a0, q1〉, 〈q1, a1, q2〉, . . . , 〈qn−2, an−1, qn−1〉,
〈qn−1, an−1, qn〉, where n is the number of steps to run the modus ponens
procedure in the algorithm. To be consistent, we use q0 to represent qt, and
use qn to represent qs. Therefore, for the ith (0 ≤ i ≤ n − 1) step, ai is
the set of axioms that are used to translate qi to qi+1 by the modus ponens
procedure.

Let θone be an answer to qs as one substitution (bindings) for the variables of
qs. If we substitute all variables of qs (i.e., qn), we must get a conjunction of facts
(grounded logic formulas) since qs is a conjunctive query. We name the conjunction
of facts as fs. Using modes ponens in a forward-chaining way [51], we get (fs,an−1)
� fn−1, where fn−1 is a conjunction of facts by substituting the variables in qn−1

with θone. Similarly, we can run the forward-chaining from fn−1 to fn−2, . . . until

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 141

Algorithm 1 Inferential Query Translation (IQT)
Input: Conjunctive query QT in the target ontology. The mapping rules Σ between

the source and target.
Output: Conjunctive query in the source ontology QS

QS = True
while ∃ next subquery QT do

Query Qt = next subquery in QT

Query Qs = BackwardChaining (Qt)
QS = QS ∧ Qs

end while
Return QS

Function BackwardChaining (Query Q)
Query Qr = Q

if Q’s predicate is in the target ontology then
Qr = Q

else
while ∃ m (∀x1 . . . xk, P1∧· · ·∧Pi · · ·∧Pn → ∃z1 . . . zl, Q1∧· · ·∧Qj · · ·∧Qm)
in Σ, Q’s predicate is same as Qj in m do

New Query QN = ModusPonens(Q, m)
Qr = IQT with the input of QN and Σ

end while
end if
Return Qr

Function ModusPonens (Query Q, Mapping m)
Query Qr = Q

Substitutions = { }
if Q = Qj(?xj , ?yj) and one predicate in the conclusion of m is Qj(xj , yj) then

Substitutions = Substitutions + {xj/?xj , yj/?yj}
end if
if Substitutions is not empty then

Qr = Substitute the variables in the condition (i.e., P1 ∧ · · · ∧ Pi · · · ∧ Pn) of
m according to Substitutions.

end if
Return Qr

f0 which is a conjunction of facts by substituting the variables in qt (i.e., q0) with
θone. The forward-chaining with modus ponens guarantees that fn−1, fn−2, . . . , f0

are all true facts as long as fs is true (i.e., θone is an answer to qs). Therefore, θone

is also an answer of qt.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

142 D. Dou, H. Qin & P. LePendu

7. Experiments

To test the performance of OntoGrate we have conducted three case studies in
different domains. We have tested the scalability of query answering only for the
first case because the scalability should be domain independent and the latter two
cases have small data sets. For all three cases we also have tested the accuracy of
the mapping discovering.

7.1. Sales databases

7.1.1. Querying stores7 with DB ontologies

To test the scalability of OntoGrate for query answering, we populated the Stores7

database (running on a local PC) with 1,000,000 synthetic data records.c Then we
tested queries that returned result sets of varying sizes. The time that our system
took to process the queries is shown in Fig. 4.

The queries we used for testing have different complexities in terms of different
number of table joins and subgoals (i.e., the number of related attributes). As Fig. 4
shows, when the queries are translated to SQL, they need different numbers of table
joins (i.e., from one to three) and subgoals. Some queries are only related to one
table, such as a simple query one might pose to the system: “What are the names of
customers in the Stores7 database living in the city of Eugene?” Suppose the query
is using the Stores7 DB ontology and in OWL-QL abstract syntax:

premise: Customer(!C),

(customercity !C "Eugene")

queryPattern: {(customerfname !C ?x)

(customerlname !C ?y)}

answerKBPattern: {http://...stores7.owl}

Fig. 4. The runtime of different size of answers.

cAll experiments were performed on a 1.8Ghz Centrino processor with 1Gb of RAM and a MySQL
database engine with a Java/JDBC implementation.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 143

It means: given the Stores7 DB, the above query asks for the first and last
names (i.e., ?x, ?y which are called must-bind variables in OWL-QL that require
the answers to be returned) of customers living in Eugene. Note, the identifi-
cation information (e.g., ID) of each customer is not required to be returned
because !C is a non-bind variable in OWL-QL. The same query in SPARQL syntax
would be:

SELECT ?x ?y

WHERE

{ ?c customerfname ?x .

?c customerlname ?y .

?c customercity "Eugene".}

With our syntax wrapper, it can be translated to SQL:

SELECT Customer.customerlname, Customer.customerfname

FROM stores7.Customer

WHERE Customer.customercity="Eugene"

The above query only needs the Customer table in Stores7 and it has 2 subgoals (i.e.,
customerfname and customerlname). But answering the following query (“What
are the item numbers of the items sold with the quantity as 1?”) needs more tables.
In OWL-QL abstract syntax, the query looks like:

queryPattern: {

(ordercustomernumber !Order !number)

(customernumber !Customer !number)

(ordernumber !Order !onumber)

(itemordernumber !Item !onumber)

(Itemnumber !Item ?x)

(itemquantity !Item "1")}

answerKBPattern: {http://...stores7.owl}

Be translated to SQL, it is:

SELECT Item.itemnumber

FROM Order, Customer, Item

WHERE Order.ordercustomernumber = Customer.customernumber and

Order.ordernumber = Item.itemordernumber and Item.itemquantity = "1"

Therefore it needs to join Customer, Order and Item tables in Stores7 and it
has 5 subgoals. To get 25,000 answers from 1,000,000 records needs about 3000 mil-
liseconds. This result is consistent with the general query answering performance of
commercial databases and it should be scalable in even larger-sized data. The syntax
translation of the different queries from OWL-QL to Web-PDDL using PDDOWL
is less than 500 milliseconds (including loading the ontologies) and the syntax
translation from Web-PDDL to SQL using PDDSQL is less than 10 milliseconds.
The figure basically shows that the syntax translation roughly gives 0.5 second
overhead to the whole query answering process which is acceptable to a general

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

144 D. Dou, H. Qin & P. LePendu

commercial database engine (e.g., MySQL) and potential users (e.g., Semantic
Web agents). As we expected, the running time is linear to the size of the
answer.

7.1.2. Integrating stores7 and northwind with the merged ontology

To test the data integration function of OntoGrate for this test case, we also popu-
lated about 30,000 tuples into the Norhwind database. The data can be thought of
as the subset of Stores7 and they are basically the same but in different schemas.
Taking partial data and DB ontologies as input, our mapping system discovers 17
mappings. Two examples are:

(1) ∀ c, s @stores7:Customer(c)↔ @nwind:Customer(c)
(2) ∀ c, s @stores7:Customer(c) ∧ String(s) ∧ @stores7:customernumber(c, s) →

@nwind:customerid(c, s)

Among 17 discovered rules, two are incorrect according to the gold standard (i.e.,
18 rules) specified by humans. To measure the accuracy of the methods, we used
typical measures precision and recall. Given source and target schemas, a mapping
system will generate a mappings set P and domain experts will specify the gold
standard mappings set R. The two measures are computed as: precision = |P T

R|
|P |

and recall = |P T

R|
|R| . The precision of the result is 88% and recall is 83%.

Based on these mappings we generated a merged ontology Stores7-Northwind

with the Stores7 and Northwind ontologies. The mappings between the merged
ontology and Stores7 or Northwind will be generated. For example, rule (2) from
the generated mappings will be converted to:

(2a) ∀ c, s @stores7-nwind:Customer(c) ∧ String(s)∧
@stores7-nwind:customernumber(c, s)→ @stores7:customernumber(c, s)

(2b) ∀ c, s @stores7-nwind:Customer(c) ∧ String(s)∧
@stores7-nwind:customernumber(c, s)→ @nwind:customerid(c, s)

The queries we used for integration have different complexities. Similar to the
tests reported above, when the queries are finally translated to SQL, they need
different numbers of table joins and subgoals. Compared with the tests for querying
databases with DB ontologies, the overhead is the inferential query translation
from Stores7-Northwind to Stores7 and Northwind. However, the tests show that
the inferential query translation of queries with various complexities in terms of
different numbers of table joins and subgoals always takes less than 10 milliseconds.
It shows that the time of query translation is not related to the size of the answers
and it is fast enough with respect to the whole query answering process. Therefore
the performance with respect to number of answers basically depends on the speed
of the database itself.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 145

7.2. Two NBA databases — highly overlapping data

In this case, we retrieved data from two online data repositories: NBA Official Sited

and Yahoo Sports NBA Sitee and create two databases accordingly. Note that the
data acquisition itself is a non-trivial task. We extracted data from websites and fill
in the databases. The two databases describe almost the same real-world entities,
such as NBA teams, players and matches and their data are highly overlapping.
There are about 6000 data instances in each database which describe information
of 343 players, 100 games, 30 teams and 30 arenas.

To test OntoGrate in this real-world scenario, we first transformed the schemas
to DB ontologies and applied our ontology mapping system to discover mappings.
Our mapping system generated 38 matching groups and finally discovered 19 rules.
There are two rules considered as wrong according to 17 gold standard rules. There-
fore, recall is 100% and precision is 89%. Compared with 17 user-specified gold
standard rules, the result is satisfactory. Some interesting rules are

(1) ∀x, y @NBA:Team(x) ∧ String(y) ∧@NBA:city(x, y)→
@YAHOO:Team(x) ∧ String(y) ∧@YAHOO:location(x, y)

(2) ∀x, y @NBA:Scores(x) ∧@NBA:Team(y) ∧@NBA:visteam(x, y)→
@YAHOO:Scores(x) ∧@YAHOO:Team(y) ∧@YAHOO:team1(x, y)

(3) ∀x, y @NBA:Scores(x) ∧@NBA:Team(y) ∧@NBA:hometeam(x, y)→
@YAHOO:Scores(x) ∧@YAHOO:Team(y) ∧@YAHOO:team2(x, y)

The property names @NBA:city and @YAHOO:location in rule (1) do not have
high similarity in their names but our system discovered it with the help of the
incorporation of data mining techniques. Rule (2) and rule (3) are also interesting
since even experts cannot quite tell whether visteam should be matched to team1
or team2 without going through the instances.

Then we put those mapping rules as bridging axioms into the merged NBA-

YAHOO ontology and we could test the query answering with different queries.
Finally we put the answers from two databases together. Since two databases
share large portions of data, we needed to run the object reconciliation function
in OntoGrate to remove the redundant data instances (e.g., NBA site and YAHOO
site both have a Laker player called “Kobe Bryant”).

7.3. Mouse and zebrafish gene databases — partial

overlapping data

In this test case, we obtained the data from MGI [1], a research group on mice
genes, and ZFIN [6], a research group on zebrafish genes. Gene domain researchers

dhttp://www.nba.com.
ehttp://sports.yahoo.com/nba.

http://www.nba.com
http://sports.yahoo.com/nba

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

146 D. Dou, H. Qin & P. LePendu

normally gather data from several different species and analysis of the related gene
expressions and phenotypes is a common task. However, different groups usually
provide their own interface and database to access data. Therefore understanding
how data from different data sources are related is very important for the domain
experts. The number of tables of these two databases are very large: ZFIN has 140
and MGI has 191 tables, and some tables have at least 1 million data instances.
However, based on the domain knowledge of human experts, only a small number
of tables are potential to be mapped to each other. Therefore, we created smaller
databases by selecting only the relations related to marker and gene expressions
following suggestions from domain experts. We used about 400 data instances from
ZFIN and 550 data instances from MGI.

To test OntoGrate in this interesting biomedical data scenario, we transformed
the partial schemas to DB ontologies and applied our ontology mapping system to
discover mappings. Our mapping system generated 2 rules. There is no rule con-
sidered as wrong and no missing rule compared to the rules provided by domain
experts. Therefore, both recall and precision are 100%. The importance of this
case study is not how many rules we could discover but whether these rules
are meaningful and interesting to domain experts. For example, one interesting
rule is

∀x, y @MGI:MRK Marker(x) ∧ String(y) ∧@MGI:symbol(x, y)→
@ZFIN:marker(x)∧String(y)∧@ZFIN:mrk abbrev(x, y)

This rule shows that the marker symbol in the MGI database is matched to
mrk abbrev in the ZFIN database, where “markers” are generally referred to as
DNA sequences including genes.

Then we put those mapping rules as bridging axioms into the merged ZFIN-

MGI ontology and we could test the query answering with different queries. The
returned answers can be put together by distinguishing them with namespaces.
Genetic scientists want to see which database (i.e., model organism) the answers
come from. They do not want a system to reconcile the gene sequences, expressions
or functions for them.

8. Discussions and Future Work

In this section, we discuss some interesting observations and future work.

8.1. Querying databases with existing OWL ontologies

In a slightly different use-case scenario, we might envision a Semantic Web agent
using an existing OWL ontology to access existing databases. For example, it was
easy to find an existing Order ontologyf written in OWL and published on the Web.

fhttp://www.dayf.de/2004/owl/order.owl.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 147

This ontology is similar to the Stores7 DB ontology and with the proper mapping
rules, it can be used by the Semantic Web agent to query the Stores7 database
directly. In this scenario, the OWL-QL query described by the Order ontology needs
to be translated to a query in the Stores7 DB ontology first. If the mappings between
the Order ontology and the Stores7 DB ontology are not available, the ontology
mapping process described in Sec. 5 is first conducted. Given the mappings, the
remaining task reduces to the same inferential query translation process as described
in Sec. 6.

However, the caveat in this situation is that our mapping rule discovery com-
ponent requires that data instances from each source share some overlap. But the
Order ontology has no data, making the mapping rule discovery process more dif-
ficult. There are approaches that do not have this limitation. For example, the
Semap research by An et al. [8] provides methods to construct complex mapping
rules between database schemas and their semantic models given an initial set of
correspondences or matchings.

8.2. Uncertainty of mappings

Our mapping system or any automatic mapping system cannot generate complete
and 100% accurate mappings. Without human involvement for mapping correction,
if we directly input the generated mappings to our inference engine, there will be
some uncertainty. It is a major future work in our data integration and data mining
study. The general idea is that we will use both fuzzy logic and probabilistic theory
to represent mappings with uncertainty. Then fuzzy and probabilistic reasoning will
be used for data integration.

For example, the mappings from the ontology mapping system have some accu-
racy (confidence) based on the data mining process. We can treat the mapping
rules as predictions with a probabilistic interpretation. For example, customername
is related to customerfname and customerlame because there is a large percentage of
data about the reconciled individuals suggesting that name, firstname and lastname
satisfy the relationship name = concatenation(firstname, lastname). One way to
represent this mapping is to assign a probability value to this functional relationship
(mapping), which shows the accuracy of the rule verified by data mining.

We also observe that our ontology mapping system assumes overlapping data
among ontologies exists. If there is no overlapping data supplied by the databases
under consideration, it will be very hard for mining algorithms to produce helpful
results. For example, if we say the concept location from one ontology is mapped
(related) to the concept city in another ontology, the mapping may only be con-
sidered as a subjective perception (belief) without the support of overlapping data
instances. One way to represent this uncertain mapping (heterogeneity) is to use
fuzzy logic [56] to indicate the degree of belief in how much they are related or
mapped. We propose the fuzzy mapping to model the degree of belief in how
two concepts are mapped to each other. We view the potential mappings as a

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

148 D. Dou, H. Qin & P. LePendu

fuzzy set. A fuzzy value f ∈ [0, 1] models the grade of membership of each single
mapping.

9. Conclusions

In this paper. We describe our ontology-based information integration framework,
OntoGrate, which systematically combines an ontology mapping system, an infer-
ence engine and several syntax wrappers to answer ontology-based queries using
the data from heterogeneous databases in a highly automatic way. We have made
several major contributions:

(1) We designed an ontology-based framework that provides a unified seman-
tics between ontology mapping and information integration by transforming
database schemas to Semantic Web ontologies.

(2) We developed a highly automatic ontology mapping system which leverages
object reconciliation and multi-relational data mining.

(3) We completed the conjunctive query translation algorithm which uses inference
to translate conjunctive queries between ontologies. This allowed our system to
scale to large numbers of instances, especially for query answering over relational
databases via DB ontologies.

(4) We performed several experiments as a proof of concept for OntoGrate on
both synthetic and real-world data. The results demonstrate the usefulness of a
unified framework for integrating both Semantic Web and database information.

The advantages of our framework will be investigated in large-size relational
databases of several scientific domains, such as neuroscience and genetics. Besides
considering the uncertainty in the integration process, we will focus on how to use
our framework and OntoGrate to help domain experts answer scientific questions
with ontology-based inferences, data mining and their databases.

Acknowledgments

We thank Shiwoong Kim, Haishan Liu and Daya Wimalasuriya for their contribu-
tions for OntoGrate. We thank Jeff Z. Pan at the University of Aberdeen for helpful
discussion on OWL-QL and query answering. We also thank the ZFIN and MGI
groups for providing us the genetic data and domain knowledge for the experiments.

References

[1] MGI: Mouse Genome Informatics, http://www.informatics.jax.org/.
[2] OWL Web Ontology Language, http://www.w3.org/TR/owl-ref/.
[3] Rule Interchange Format (RIF), http://www.w3.org/2005/rules/.
[4] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/.
[5] SWRL: A Semantic Web Rule Language Combining OWL and RuleML,

http://www.w3.org/Submission/SWRL/.
[6] ZFIN: The Zebrafish Information Network, http://www.zfin.org.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/2005/rules/
http://www.w3.org/Submission/SWRL/

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 149

[7] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases (Addison-Wesley,
1995).

[8] Y. An, A. Borgida, R. J. Miller and J. Mylopoulos, A semantic approach to discovering
schema mapping expressions, in Proceedings of the 23rd International Conference on
Data Engineering, 2007, pp. 206–215.

[9] P. Atzeni and V. DeAntonellis, Relational Database Theory: A Comprehensive Intro-
duction (Bejamin Cummings, 1993).

[10] C. Beeri and M. Y. Vardi, Formal systems for tuple and equality generating depen-
dencies, SIAM Journal on Computing 13(1) (1984) 76–98.

[11] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific American
284(5) (2001).

[12] P. A. Bernstein and E. Rahm, Data warehouse scenarios for model management, in
Proceedings of International Conference on Conceptual Modeling, 2000, pp. 1–15.

[13] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini and H. Stuckenschmidt,
Contextualizing ontologies, J. Web Sem. 1(4) (2004) 325–343.

[14] J. D. Bruijn and A. Polleres, Towards an ontology mapping specification language
for the semantic web, Technical report, Digital Enterprise Research Institute, June
2004.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Knowledge rep-
resentation approach to information integration, in Proceedings of AAAI Workshop
on AI and Information Integration, 1998, pp. 58–65.

[16] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy and P. Domingos, iMAP: Discovering
complex mappings between database schemas. in Proceedings of the ACM Conference
on Management of Data, 2004, pp. 383–394.

[17] A. Doan, P. Domingos and A. Y. Halevy, Reconciling schemas of disparate data
sources: A machine-learning approach, in Proceedings of the ACM Conference on
Management of Data, 2001, pp. 509–520.

[18] A. Doan, J. Madhavan, P. Domingos and A. Y. Halevy, Learning to map between
ontologies on the semantic web, in Proceedings of the International World Wide Web
Conferences, 2002, pp. 662–673.

[19] X. Dong, A. Y. Halevy and J. Madhavan, Reference reconciliation in complex infor-
mation spaces, in Proceedings of the ACM Conference on Management of Data, 2005,
pp. 85–96.

[20] D. Dou and P. LePendu, Ontology-based integration for relational databases, in Pro-
ceedings of the 2006 ACM Symposium on Applied Computing, 2006, pp. 461–466.

[21] D. Dou, P. LePendu, S. Kim and P. Qi, Integrating databases into the semantic
web through an ontology-based framework, in Proceedings of the Third International
Workshop on Semantic Web and Databases (SWDB’06), pp. 54, 2006, co-located with
ICDE 2006.

[22] D. Dou, D. V. McDermott and P. Qi, Ontology translation on the semantic web,
Journal on Data Semantics 2 (2005) 35–57.

[23] E. Dragut and R. Lawrence, Composing mappings between schemas using a reference
ontology, in Proceedings of International Conference on Ontologies, Databases and
Application of Semantics (ODBASE), 2004, pp. 783–800.

[24] J. Euzenat and P. Shvaiko, Ontology Matching (Springer-Verlag New York, 2007).
[25] R. Fagin, P. G. Kolaitis, R. J. Miller and L. Popa, Data Exchange: Semantics and

Query Answering, in Proceedings of International Conference on Database Theory,
2003, pp. 207–224.

[26] C. Fellbaum, editor, WordNet: An Electronic Lexical Database (MIT Press, 1998).

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

150 D. Dou, H. Qin & P. LePendu

[27] R. Fikes, P. J. Hayes and I. Horrocks, OWL-QL — a language for deductive query
answering on the semantic web, J. Web Sem. 2(1) (2004) 19–29.

[28] L. M. Haas, Beauty and the beast: The theory and practice of information integration,
in Proceedings of the International Conference of Database Theory, 2007, pp. 28–43.

[29] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa and M. Roth, Clio grows up: From
research prototype to industrial tool, in Proceedings of the ACM Conference on Man-
agement of Data, 2005, pp. 805–810.

[30] A. Y. Halevy, Z. G. Ives, D. Suciu and I. Tatarinov, Schema mediation in peer data
management systems, in Proceedings of International Conference on Data Engineer-
ing, 2003, pp. 505–516.

[31] W. Hu and Y. Qu, Block matching for ontologies, in Proceedings of the International
Semantic Web Conference, 2006, pp. 300–313.

[32] P. G. Kolaitis, Schema mappings, data exchange, and metadata management, in
Proceedings of Principles of Database Systems, 2005, pp. 61–75.

[33] M. Lenzerini, Data Integration: A Theoretical Perspective, in Proceedings of Sympo-
sium on Principles of Database Systems, 2002, pp. 233–246.

[34] L. Lubyte and S. Tessaris, Extracting ontologies from relational databases, in
Proceedings of Description Logics, 2007, pp. 122–126.

[35] J. Madhavan, P. A. Bernstein and E. Rahm, Generic schema matching with cupid,
in Proceedings of Very Large Data Bases Conference, 2001, pp. 49–58.

[36] A. Maedche, B. Motik, N. Silva and R. Volz, MAFRA — A mapping framework
for distributed ontologies, in Proceedings of International Conference on Knowledge
Engineering and Knowledge Management, 2002, pp. 235–250.

[37] D. V. McDermott and D. Dou, Representing disjunction and quantifiers in RDF, in
Proceedings of International Semantic Web Conference, 2002, pp. 250–263.

[38] D. L. McGuinness, R. Fikes, J. Rice and S. Wilder, The chimaera ontology envi-
ronment, in Proceedings of the National Conference on Artificial Intelligence, 2000,
pp. 1123–1124.

[39] S. A. McIlraith and D. L. Martin, Bringing semantics to web services, IEEE Intelligent
Systems 18(1) (2003) 90–93.

[40] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan, C. T. H. Ho, R. Fagin and
L. Popa, The CLIO project: Managing heterogeneity, SIGMOD Record 30(1) (2001)
78–83.

[41] B. Motik, I. Horrocks and U. Sattler, Bridging the gap between owl and relational
databases, in Proceedings of the International World Wide Web Conference, 2007,
pp. 807–816.

[42] S. Nijssen and J. N. Kok, Efficient frequent query discovery in farmer, in Proceed-
ings of European Conference on Principles and Practice of Knowledge Discovery in
Databases, 2003, pp. 350–362.

[43] N. F. Noy and M. A. Musen, PROMPT: Algorithm and tool for automated ontol-
ogy merging and alignment, in Proceedings of the National Conference on Artificial
Intelligence, 2000, pp. 450–455.

[44] G. Pierre, Context representation in domain ontologies and its use for semantic
integration of data, Journal Data Semantics 10 (2008) 174–211.

[45] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini and R. Rosati,
Linking data to ontologies, Journal Data Semantics 10 (2008) 133–173.

[46] R. Pottinger and A. Levy, A scalable algorithm for answering queries using views, in
Proceedings of the Very Large Data Bases Conference, 2000, pp. 484–495.

[47] W. J. Premerlani and M. R. Blaha, An approach for reverse engineering of relational
databases, Commun. ACM Journal 37(5) (1994) 42–49, 134.

July 21, 2010 13:57 WSPC/S1793-351X 214-IJSC - SPI-J091
S1793351X10000961

OntoGrate: Towards Automatic Integration for Relational Databases and Semantic Web 151

[48] H. Qin, D. Dou and P. LePendu, Discovering executable semantic mappings between
ontologies, in Proceedings of the International Conference on Ontologies, Databases
and Application of Semantics (ODBASE), 2007, pp. 832–849.

[49] E. Rahm and P. A. Bernstein, A survey of approaches to automatic schema matching,
Very Large Data Bases Journal 10(4) (2001) 334–350.

[50] R. Reiter, Towards a logical reconstruction of relational database theory, in M. L.
Brodie, J. Mylopoulos and J. W. Schmidt, (eds.), On Conceptual Modelling, Perspec-
tives from Artificial Intelligence, Databases, and Programming Languages, Topics in
Information Systems, Springer, 1984, pp. 191–233.

[51] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Prentice-Hall,
1995).

[52] A. P. Sheth and J. A. Larson, Federated database systems for managing distributed,
heterogeneous, and autonomous databases, ACM Computing Surveys 22(3) (1990)
183–236.

[53] G. Stoilos, G. B. Stamou and S. D. Kollias, A string metric for ontology alignment,
in Proceedings of the International Semantic Web Conference, 2005, pp. 624–637.

[54] L. Stojanovic, N. Stojanovic and R. Volz, Migrating data-intensive web sites into
the semantic web, in Proceedings of ACM Symposium on Applied Computing (ACM
Press, 2002), pp. 1100–1107.

[55] H. Stuckenschmidt and M. Uschold, Representation of semantic mappings, in
Proceedings of the Semantic Interoperability and Integration, 2005, pp. 111–117.

[56] L. A. Zadeh, Fuzzy logic, Computer 21(4) (1988) 83–93.

	1 Introduction
	2 Related Work
	3 Framework
	4 Transforming Relational Schemas to DB Ontologies
	4.1 Problem definition
	4.2 Transforming a DB schema to a DB ontology

	5 Ontology Mapping with Data Mining
	5.1 Matching generation and object reconciliation
	5.1.1 Class and property matching
	5.1.2 Data similarity of datatype property pairs
	5.1.3 Object reconciliation
	5.1.4 Object property matching

	5.2 Matching groups
	5.3 Generating mapping rules with MRDM

	6 Integrating Relational Databases with DB Ontologies
	6.1 GAV-like ontology-based integration
	6.2 Inferential query translation

	7 Experiments
	7.1 Sales databases
	7.1.1 Querying stores7 with DB ontologies
	7.1.2 Integrating stores7 and northwind with the merged ontology

	7.2 Two NBA databases --- highly overlapping data
	7.3 Mouse and zebrafish gene databases --- partial overlapping data

	8 Discussions and Future Work
	8.1 Querying databases with existing OWL ontologies
	8.2 Uncertainty of mappings

	9 Conclusions

