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Abstract
In this paper, we propose a novel Heterogeneous
Gaussian Mechanism (HGM) to preserve differen-
tial privacy in deep neural networks, with provable
robustness against adversarial examples. We first
relax the constraint of the privacy budget in the tra-
ditional Gaussian Mechanism from (0, 1] to (0,∞),
with a new bound of the noise scale to preserve
differential privacy. The noise in our mechanism
can be arbitrarily redistributed, offering a distinc-
tive ability to address the trade-off between model
utility and privacy loss. To derive provable robust-
ness, our HGM is applied to inject Gaussian noise
into the first hidden layer. Then, a tighter robust-
ness bound is proposed. Theoretical analysis and
thorough evaluations show that our mechanism no-
tably improves the robustness of differentially pri-
vate deep neural networks, compared with baseline
approaches, under a variety of model attacks.

1 Introduction
Recent developments of machine learning (ML) significantly
enhance sharing and deploying of ML models in practical
applications more than ever before. This presents critical
privacy and security issues, when ML models are built on
personal data, e.g., clinical records, images, user profiles,
etc. In fact, adversaries can conduct: 1) privacy model at-
tacks, in which deployed ML models can be used to reveal
sensitive information in the private training data [Fredrik-
son et al., 2015; Wang et al., 2015; Shokri et al., 2017;
Papernot et al., 2016]; and 2) adversarial example attacks
[Goodfellow et al., 2014] to cause the models to misclassify.
Note that adversarial examples are maliciously perturbed in-
puts designed to mislead a model at test time [Liu et al., 2016;
Carlini and Wagner, 2017]. That poses serious risks to de-
ploy machine learning models in practice. Therefore, it is of
paramount significance to simultaneously preserve privacy in
the private training data and guarantee the robustness of the
model under adversarial examples.

To preserve privacy in the training set, recent efforts have
focused on applying Gaussian Mechanism (GM) [Dwork and
Roth, 2014] to preserve differential privacy (DP) in deep
∗Co-first authors.

learning [Abadi et al., 2016; Hamm et al., 2017; Yu et al.,
2019; Lee and Kifer, 2018]. The concept of DP is an ele-
gant formulation of privacy in probabilistic terms, and pro-
vides a rigorous protection for an algorithm to avoid leaking
personal information contained in its inputs. It is becoming
mainstream in many research communities and has been de-
ployed in practice in the private sector and government agen-
cies. DP ensures that the adversary cannot infer any infor-
mation with high confidence (controlled by a privacy budget
ε and a broken probability δ) about any specific tuple from
the released results. GM is also applied to derive provable ro-
bustness against adversarial examples [Lecuyer et al., 2018].
However, existing efforts only focus on either preserving DP
or deriving provable robustness [Kolter and Wong, 2017;
Raghunathan et al., 2018], but not both DP and robustness!

With the current form of GM [Dwork and Roth, 2014] ap-
plied in existing works [Abadi et al., 2016; Hamm et al.,
2017; Lecuyer et al., 2018], it is challenging to preserve
DP in order to protect the training data, with provable ro-
bustness. In GM, random noise scaled to N (0, σ2) is in-
jected into each of the components of an algorithm output,
where the noise scale σ is a function of ε, δ, and the mech-
anism sensitivity ∆. In fact, there are three major limita-
tions in these works when applying GM: (1) The privacy
budget ε in GM is restricted to (0, 1], resulting in a lim-
ited search space to optimize the model utility and robust-
ness bounds; (2) All the features (components) are treated
the same in terms of the amount of noise injected. That may
not be optimal in real-world scenarios [Bach et al., 2015;
Phan et al., 2017]; and (3) Existing works have not been
designed to defend against adversarial examples, while pre-
serving differential privacy in order to protect the training
data. These limitations do narrow the applicability of GM,
DP, deep learning, and provable robustness, by affecting the
model utility, flexibility, reliability, and resilience to model
attacks in practice.

Our Contributions. To address these issues, we first pro-
pose a novel Heterogeneous Gaussian Mechanism (HGM),
in which (1) the constraint of ε is extended from (0, 1] to
(0,∞); (2) a new lower bound of the noise scale σ will be
presented; and more importantly, (3) the magnitude of noise
can be heterogeneously injected into each of the features or
components. These significant extensions offer a distinctive
ability to address the trade-off among model utility, privacy



loss, and robustness by redistributing the noise and enlarging
the search space for better defensive solutions.

Second, we develop a novel approach, called Secure-SGD,
to achieve both DP and robustness in the general scenario,
i.e., any value of the privacy budget ε. In Secure-SGD, our
HGM is applied to inject Gaussian noise into the first hidden
layer of a deep neural network. This noise is used to derive a
tighter and provable robustness bound. Then, DP stochastic
gradient descent (DPSGD) algorithm [Abadi et al., 2016] is
applied to learn differentially private model parameters. The
training process of our mechanism preserves DP in deep neu-
ral networks to protect the training data with provable robust-
ness. To our knowledge, Secure-SGD is the first approach to
learn such a secure model with a high utility. Rigorous ex-
periments conducted on MNIST and CIFAR-10 datasets [Le-
cun et al., 1998; Krizhevsky and Hinton, 2009] show that our
approach significantly improves the robustness of DP deep
neural networks, compared with baseline approaches.

2 Preliminaries and Related Work
In this section, we revisit differential privacy, PixelDP
[Lecuyer et al., 2018], and introduce our problem definition.
Let D be a database that contains n tuples, each of which
contains data x ∈ [−1, 1]d and a ground-truth label y ∈ ZK .
Let us consider a classification task with K possible cate-
gorical outcomes; i.e., the data label y given x ∈ D is as-
signed to only one of theK categories. Each y can be consid-
ered as a one-hot vector of K categories y = {y1, . . . , yK}.
On input x and parameters θ, a model outputs class scores
f : Rd → RK that maps d-dimentional inputs x to a vector
of scores f(x) = {f1(x), . . . , fK(x)} s.t. ∀k : fk(x) ∈ [0, 1]

and
∑K
k=1 fk(x) = 1. The class with the highest score

value is selected as the predicted label for the data tuple, de-
noted as y(x) = maxk∈K fk(x). We specify a loss function
L(f(x), y) that represents the penalty for mismatching be-
tween the predicted values f(x) and original values y.

Differential Privacy. The definitions of differential pri-
vacy and Gaussian Mechanism are as follows:
Definition 1 (ε, δ)-Differential Privacy [Dwork et al., 2006].
A randomized algorithm A fulfills (ε, δ)-differential privacy,
if for any two databasesD andD′ differing at most one tuple,
and for all o ⊆ Range(A), we have:

Pr[A(D) = o] ≤ eεPr[A(D′) = o] + δ (1)

Smaller ε and δ enforce a stronger privacy guarantee.
Here, ε controls the amount by which the distributions in-

duced by D and D′ may differ, and δ is a broken probability.
DP also applies to general metrics ρ(D,D′) ≤ 1, includ-
ing Hamming metric as in Definition 1 and lp∈{1,2,∞}-norms
[Chatzikokolakis et al., 2013]. Gaussian Mechanism is ap-
plied to achieve DP given a random algorithm A as follows:
Theorem 1 Gaussian Mechanism [Dwork and Roth, 2014].
Let A : Rd → RK be an arbitrary K-dimensional function,
and define its l2 sensitivity to be ∆A = maxD,D′‖A(D) −
A(D′)‖2. The Gaussian Mechanism with parameter σ adds
noise scaled to N (0, σ2) to each of the K components of the
output. Given ε ∈ (0, 1], the Gaussian Mechanism with σ ≥√

2 ln(1.25/δ)∆A/ε is (ε, δ)-DP.

Adversarial Examples. For some target model f and in-
puts (x, ytrue), i.e., ytrue is the true label of x, one of the ad-
versary’s goals is to find an adversarial example xadv = x+α,
where α is the perturbation introduced by the attacker, such
that: (1) xadv and x are close, and (2) the model misclassifies
xadv, i.e., y(xadv) 6= y(x). In this paper, we consider well-
known classes of lp∈{1,2,∞}-norm bounded attacks [Good-
fellow et al., 2014]. Let lp(µ) = {α ∈ Rd : ‖α‖p ≤ µ} be
the lp-norm ball of radius µ. One of the goals in adversarial
learning is to minimize the risk over adversarial examples:

θ∗ = arg min
θ

E(x,ytrue)∼D

[
max
‖α‖p≤µ

L
(
f(x+ α, θ), ytrue

)]
where a specific attack is used to approximate solutions to
the inner maximization problem, and the outer minimization
problem corresponds to training the model f with parameters
θ over these adversarial examples xadv = x+ α.

We revisit two basic attacks in this paper. The first one
is a single-step algorithm, in which only a single gradi-
ent computation is required. For instance, Fast Gradient
Sign Method (FGSM) algorithm [Goodfellow et al., 2014]
finds an adversarial example by maximizing the loss function
L(f(xadv, θ), ytrue). The second one is an iterative algorithm,
in which multiple gradients are computed and updated. For
instance, in [Kurakin et al., 2016], FGSM is applied multi-
ple times with small steps, each of which has a size of µ/Tµ,
where Tµ is the number of steps.

Provable Robustness and PixelDP. In this paper, we con-
sider the following robustness definition. Given a benign ex-
ample x, we focus on achieving a robustness condition to at-
tacks of lp(µ)-norm, as follows:

∀α ∈ lp(µ) : fk(x+ α) > max
i:i 6=k

fi(x+ α) (2)

where k = y(x), indicating that a small perturbation α in the
input does not change the predicted label y(x).

To achieve the robustness condition in Eq. 2, [Lecuyer et
al., 2018] introduce an algorithm, called PixelDP. By con-
sidering an input x (e.g., images) as databases in DP par-
lance, and individual features (e.g., pixels) as tuples in DP,
PixelDP shows that randomizing the scoring function f(x) to
enforce DP on a small number of pixels in an image guar-
antees robustness of predictions against adversarial examples
that can change up to that number of pixels. To achieve the
goal, noise N (0, σ2

r) is injected into either input x or some
hidden layer of a deep neural network. That results in the
following (εr, δr)-PixelDP condition, with a budget εr and a
broken brobability δr of robustness, as follows:
Lemma 1 (εr, δr)-PixelDP [Lecuyer et al., 2018]. Given
a randomized scoring function f(x) satisfying (εr, δr)-
PixelDP w.r.t. a lp-norm metric, we have:
∀k,∀α ∈ lp(µ = 1) : Efk(x) ≤ eεrEfk(x+ α) + δr (3)

where Efk(x) is the expected value of fk(x).
The network is trained by applying typical optimizers, such

as SGD. At the prediction time, a certified robustness check
is implemented for each prediction. A generalized robustness
condition is proposed as follows:

∀α ∈ lp(µ = 1) : Êlbfk(x) > e2εr max
i:i 6=k

Êubfi(x)+(1+eεr )δr

(4)



where Êlb and Êub are the lower bound and upper bound of
the expected value Êf(x) = 1

N

∑
N f(x)N , derived from the

Monte Carlo estimation with an η-confidence, given N is the
number of invocations of f(x) with independent draws in the
noise σr. Passing the check for a given input x guarantees
that no perturbation exists up to lp(µ = 1)-norm that causes
the model to change its prediction result. In other words, the
classification model, based on Êf(x), i.e., arg maxk Êfk(x),
is consistent to attacks of lp(µ = 1)-norm on xwith probabil-
ity≥ η. Group privacy [Dwork et al., 2006] can be applied to
achieve the same robustness condition, given a particular size
of perturbation lp(µ). For a given σr, δr, and sensitivity ∆p,2

used at prediction time, PixelDP solves for the maximum µ
for which the robustness condition in Eq. 4 checks out:

µmax = max
µ∈R+

µ such that ∀α ∈ lp(µ) :

Êlbfk(x) > e2εr max
i:i 6=k

Êubfi(x) + (1 + eεr )δr

σr =
√

2 ln(1.25/δr)∆p,2µ/εr and εr ≤ 1 (5)

3 Heterogeneous Gaussian Mechanism
We now formally present our Heterogeneous Gaussian Mech-
anism (HGM) and the Secure-SGD algorithm. In Eq. 5, it is
clear that ε is restricted to be (0, 1], following the Gaussian
Mechanism (Theorem 1). That affects the robustness bound
in terms of flexibility, reliability, and utility. In fact, adver-
saries only need to guarantee that Êlbfk(x+α) is larger than
at most e2 maxi:i 6=k Êubfi(x+ α) + (1 + e)δ, i.e., εr = 1, in
order to assault the robustness condition: thus, softening the
robustness bound. In addition, the search space for the robust-
ness bound µmax is limited, given ε ∈ (0, 1]. These issues
increase the number of robustness violations, potentially de-
grading the utility and reliability of the robustness bound. In
real-world applications, such as healthcare, autonomous driv-
ing, object recognition, etc., a flexible value of εr is needed
to implement stronger and more practical robustness bounds.
This is also true for many other algorithms applying Gaussian
Mechanism [Dwork and Roth, 2014].

To relax this constraint, we introduce an Extended Gaus-
sian Mechanism as follows:
Theorem 2 Extended Gaussian Mechanism. Let A : Rd →
RK be an arbitrary K-dimensional function, and define its l2
sensitivity to be ∆A = maxD,D′‖A(D) − A(D′)‖2. An Ex-
tended Gaussian MechanismM with parameter σ adds noise
scaled toN (0, σ2) to each of theK components of the output.
The mechanism M is (ε, δ)-DP, with

ε > 0, σ ≥
√

2∆A

2ε
(
√
s+
√
s+ ε), and s = ln(

√
2

π

1

δ
)

Detailed proof of Theorem 2 is in Appendix A1. The Ex-
tended Gaussian Mechanism enables us to relax the con-
straint of ε. However, the noise scale σ is used to inject
Gaussian noise into each component. This may not be op-
timal, since different components usually have different im-
pacts to the model outcomes [Bach et al., 2015]. To address

1https://www.dropbox.com/s/mjkq4zqqh6ifqir/HGM Appendix.
pdf?dl=0

Figure 1: The magnitude of Gaussian noise, given the traditional
Gaussian Mechanism, Analytic Gaussian Mechanism, and our Het-
erogeneous Gaussian Mechanism.

this, we further propose a Heterogeneous Gaussian Mecha-
nism (HGM), in which the noise scale σ in Theorem 2 can
be arbitrarily redistributed. Different strategies can be ap-
plied to improve the model utility and to enrich the search
space for better robustness bounds. For instance, more noise
will be injected into less important components, or vice-
versa, or even randomly redistributed. In order to achieve our
goal, we introduce a noise redistribution vector Kr, where
r ∈ RK that satisfies 0 ≤ ri ≤ 1 (i ∈ [K]) and

∑K
i=1 ri =

1. We show that by injecting Gaussian noise N
(
0, σ2Kr

)
,

where ∆A = maxD,D′
√∑K

k=1
1

Krk

(
A(D)k −A(D′)k

)2
and ρ(D,D′) ≤ 1, we achieve (ε, δ)-DP.

Theorem 3 Heterogeneous Gaussian Mechanism. Let A :
Rd → RK be an arbitrary K-dimensional function, and de-
fine its l2 sensitivity to be ∆A = maxD,D′‖A(D)−A(D′)√

Kr
‖2 =

maxD,D′
√∑K

k=1
1

Krk

(
A(D)k −A(D′)k

)2
. A Heteroge-

neous Gaussian Mechanism M with parameter σ adds noise
scaled to N (0, σ2Kr) to each of the K components of the
output. The mechanism M is (ε, δ)-DP, with

ε > 0, σ ≥
√

2∆A

2ε
(
√
s+
√
s+ ε), and s = ln(

√
2

π

1

δ
)

where r ∈ RK s.t. 0 ≤ ri ≤ 1 (i ∈ [K]) and
∑K
i=1 ri = 1.

Detailed proof of Theorem 3 is in Appendix B1. It is clear
that the Extended Gaussian Mechanism is a special case of
the HGM, when ∀i ∈ [K] : ri = 1/K. Figure 1 illustrates
the magnitude of noise injected by the traditional Gaussian
Mechanism, the state-of-the-art Analytic Gaussian Mecha-
nism [Balle and Wang, 2018], and our Heterogeneous Gaus-
sian Mechanism as a function of ε, given the global sensitivity
∆A = 1, and δ = 1e − 5 (a very tight broken probability),
and ∀i ∈ [K] : ri = 1/K. The lower bound of the noise
scale in our HGM is just a little bit better than the traditional
Gaussian Mechanism when ε ≤ 1. However, our mecha-
nism does not have the constraint (0, 1] on the privacy bud-
get ε. The Analytic Gaussian Mechanism [Balle and Wang,
2018], which provides the state-of-the-art noise bound, has a
better noise scale than our mechanism. However, our noise
scale bound provides a distinctive ability to redistribute the
noise via the vector Kr, compared with the Analytic Gaus-
sian Mechanism. There could be numerous strategies to iden-

https://www.dropbox.com/s/mjkq4zqqh6ifqir/HGM_Appendix.pdf?dl=0
https://www.dropbox.com/s/mjkq4zqqh6ifqir/HGM_Appendix.pdf?dl=0


tify vector r. This is significant when addressing the trade-off
between model utility and privacy loss or robustness in real-
world applications. In our mechanism, “more noise” is in-
jected into “more vulnerable” components to improve the ro-
bustness. We will show how to compute vector r and identify
vulnerable components in our Secure-SGD algorithm. Exper-
imental results illustrate that, by redistributing the noise, our
HGM yields better robustness, compared with existing mech-
anisms.

4 Secure-SGD
In this section, we focus on applying our HGM in a crucial
and emergent application, which is enhancing the robustness
of differentially private deep neural networks. Given a deep
neural network f , DPSGD algorithm [Abadi et al., 2016] is
applied to learn (ε, δ)-DP parameters θ. Then, by injecting
Gaussian noise into the first hidden layer, we can leverage the
robustness concept of PixelDP [Lecuyer et al., 2018] (Eq. 5)
to derive a better robustness bound based on our HGM.

Algorithm 1 outlines the key steps in our Secure-SGD al-
gorithm. We first initiate the parameters θ and construct a
deep neural network f : Rd → RK (Lines 1-2). Then, a
robustness noise γ ← N (0, σ2

rKr) is drawn by applying
our HGM (Line 3), where σr is computed following Theo-
rem 3, K is the number of hidden neurons in h1, denoted
as K = |h1|, and ∆f is the sensitivity of the algorithm, de-
fined as the maximum change in the output (i.e., which is
h1(x) = WT

1 x) that can be generated by the perturbation in
the input x under the noise redistribution vector Kr.

∆f = max
x,x′:x 6=x′

‖h1(x)−h1(x′)√
Kr

‖2
‖x− x′‖∞

≤ ‖ W1√
Kr
‖∞,2 (6)

For l∞-norm attacks, we use the following bound ∆f =√
|h1|‖W1

Kr‖∞, where ‖W1

Kr‖∞ is the maximum 1-norm of
W1’s rows over the vectorKr. The vector r can be computed
as the forward derivative of h1(x) as follows:

r =
s∑

si∈s si
, where s =

1

n

∑
x∈D

∣∣∣∂L(θ, x)

∂h1(x)

∣∣∣β (7)

where β is a user-predefined inflation rate. It is clear that fea-
tures, which have higher forward derivative values, will be
more vulnerable to attacks by maximizing the loss function
L(θ, x). These features are assigned larger values in vector r,
resulting in more noise injected, and vice-versa. The compu-
tation of r can be considered as a prepossessing step using a
pre-trained model. It is important to note that the utilizing of
r does not risk any privacy leakage, since r is only applied to
derive provable robustness. It does not have any effect on the
DP-preserving procedure in our algorithm, as follows. First,
at each training step t ∈ T , our mechanism takes a random
sample Bt from the data D, with sampling probability m/n,
where m is a batch size (Line 5). For each tuple xi ∈ Bt,
the first hidden layer is perturbed by adding Gaussian noise
derived from our HGM (Line 6, Alg. 1):

h1(xi) = WT
1 xi + γ (8)

This ensures that the scoring function f(x) satis-
fies (εr, δr)-PixelDP (Lemma 3). Then, the gradient

Algorithm 1 Secure-SGD
Input: Database D, loss function L, parameters θ, batch size m,
learning rate ξt, gradient norm bound C, noise scale σ, privacy bud-
get ε, broken probability δ, robustness parameters: εr , δr , ∆f , at-
tack size µa, inflation rate β, vector r, size of the first hidden layer
K=|h1|, the number of invocationsN
1: Initialize θ0 randomly
2: Construct a deep neural network f with hidden layers
{h1, . . . , hO}, where hO is the last hidden layer

3: Draw Robustness Noise γ ← N (0, σ2
rKr)

4: for t ∈ [T ] do
5: Take a random batch Bt with the size m
6: Perturb ∀xi ∈ Bt : h1(xi)←WT

1 xi + γ
7: Compute Gradients
8: for i ∈ Bt do
9: gt(xi)← ∇θtL(θt,xi)

10: Clip Gradients
11: for i ∈ Bt do
12: gt(xi)← gt(xi)/max(1, ‖gt(xi)‖2

C
)

13: Add Noise
14: g̃t ← 1

m

(∑
i gt(xi) +N (0, σ2C2I)

)
15: Descent
16: θt+1 ← θt − ξtg̃t

Output: (ε, δ)-DP parameters θT , robust model with (εr, δr)
budgets

17: Verified Testing: (an input x, attack size µa)
18: Compute robustness size µmax in Eq. 10 given x
19: if µmax ≥ µa then
20: Return isRobust(x) = True, label k, µmax
21: else
22: Return isRobust(x) = False, label k, µmax

gt(xi) = ∇θtL(θt, xi) is computed (Lines 7-9). The
gradients will be bounded by clipping each gradient in
l2 norm; i.e., the gradient vector gt(xi) is replaced by
gt(xi)/max(1, ‖gt(xi)‖2/C) for a predefined threshold C
(Lines 10-12). Uniformed normal distribution noise is added
into gradients of parameters θ (Line 14), as:

g̃t ←
1

m

(∑
i

gt(xi)

max(1, ‖gt(xi)
2‖

C )
+N (0, σ2C2I)

)
(9)

The descent of the parameters explicitly is as: θt+1 ← θt−
ξtg̃t, where ξt is a learning rate at the step t (Line 16). The
training process of our mechanism achieves both (ε, δ)-DP
to protect the training data and provable robustness with the
budgets (εr, δr). In the verified testing phase (Lines 17-22),
by applying HGM and PixelDP, we derive a novel robustness
bound µmax for a specific input x as follows:

µmax = max
µ∈R+

µ, such that ∀α ∈ lp(µ) :

Êlbfk(x) > e2εr max
i:i 6=k

Êubfi(x) + (1 + eεr )δr

σr =

√
2

2εr
(
√
s+
√
s+ εr)∆f × µ/εr and εr > 0 (10)

where Êlb and Êub are the lower and upper bounds of the
expected value Êf(x) = 1

N

∑
N f(x)N , derived from the

Monte Carlo estimation with an η-confidence, given N is the
number of invocations of f(x) with independent draws in the



(a) I-FGSM attacks (b) FGSM attacks (c) MIM attacks (d) MadryEtAl attacks
Figure 2: Certified accuracy on the CIFAR-10 dataset, given HGM PixelDP and PixelDP (i.e., no DP preservation).

(a) I-FGSM attacks (b) FGSM attacks (c) MIM attacks (d) MadryEtAl attacks
Figure 3: Certified accuracy on the MNIST dataset, given HGM PixelDP and PixelDP (i.e., no DP preservation).

(a) I-FGSM attacks (b) FGSM attacks (c) MIM attacks (d) MadryEtAl attacks
Figure 4: Conventional accuracy on the CIFAR-10 dataset, given Secure-SGD, DPSGD, and AdLM, i.e., l∞(µa = 0.2), εr = 8.

(a) I-FGSM attacks (b) FGSM attacks (c) MIM attacks (d) MadryEtAl attacks
Figure 5: Conventional accuracy on the MNIST dataset, given Secure-SGD and DPSGD, i.e., l∞(µa = 0.1), εr = 4.

noise γ ← N (0, σ2
rKr). Similar to [Lecuyer et al., 2018],

we use Hoeffding’s inequality [Hoeffding, 1963] to bound the
error in Êf(x). If the robustness size µmax is larger than a
given adversarial perturbation size µa, the model prediction
is considered consistent to that attack size. Given the relaxed
budget εr > 0 and the noise redistribution Kr, the search
space for the robustness size µmax is significantly enriched,
e.g., εr > 1, strengthening the robustness bound. Note that
vector r can also be randomly drawn in the estimation of the
expected value Êf(x). Both fully-connected and convolution
layers can be applied. Given a convolution layer, we need to

ensure that the computation of each feature map is (εr, δr)-
PixelDP, since each of them is independently computed by
reading a local region of input neurons. Therefore, the sensi-
tivity ∆f can be considered the upper-bound sensitivity given
any single feature map. Our algorithm is the first effort to
connect DP preservation in order to protect the original train-
ing data and provable robustness in deep learning.

5 Experimental Results
We have carried out extensive experiments on two bench-
mark datasets, MNIST and CIFAR-10. Our goal is to eval-
uate whether our HGM significantly improves the robustness



of both differentially private and non-private models under
strong adversarial attacks, and whether our Secure-SGD ap-
proach retains better model utility compared with baseline
mechanisms, under the same DP guarantees and protections.

Baseline Approaches. Our HGM and two approaches,
including HGM PixelDP and Secure-SGD, are evaluated
in comparison with state-of-the-art mechanisms in: (1) DP-
preserving algorithms in deep learning, i.e., DPSGD [Abadi
et al., 2016], AdLM [Phan et al., 2017]; in (2) Prov-
able robustness, i.e., PixelDP [Lecuyer et al., 2018]; and
(3) The Analytic Gaussian Mechanism (AGM) [Balle and
Wang, 2018]. To preserve DP, DPSGD injects random noise
into gradients of parameters, while AdLM is a Functional
Mechanism-based approach. PixelDP is one of the state-of-
the-art mechanisms providing provable robustness using DP
bounds. Our HGM PixelDP model simply is PixelDP with
the noise bound derived from our HGM. The baseline mod-
els share the same design in our experiment. We consider the
class of l∞-bounded adversaries. Four white-box attack algo-
rithms were used, including FGSM, I-FGSM, Momentum It-
erative Method (MIM) [Dong et al., 2017], and MadryEtAl
[Madry et al., 2018], to draft adversarial examples l∞(µa).

MNIST: We used two convolution layers (32 and 64 fea-
tures). Each hidden neuron connects with a 5x5 unit patch. A
fully-connected layer has 256 units. The batch sizem was set
to 128, ξ = 1.5, ψ = 2, Tµ = 10, and β = 1. CIFAR-10: We
used three convolution layers (128, 128, and 256 features).
Each hidden neuron connects with a 3x3 unit patch in the
first layer, and a 5x5 unit patch in other layers. One fully-
connected layer has 256 neurons. The batch size m was set
to 128, ξ = 1.5, ψ = 10, Tµ = 3, and β = 1. Note that ε
is used to indicate the DP budget used to protect the training
data; meanwhile, εr is the budget for robustness. The imple-
mentation of our mechanism is available in TensorFlow2. We
apply two accuracy metrics as follows:

conventional accuracy =

∑|test|
i=1 isCorrect(xi)

|test|

certified accuracy =

∑|test|
i=1 isCorrect(xi) & isRobust(xi)

|test|

where |test| is the number of test cases, isCorrect(·) returns
1 if the model makes a correct prediction (otherwise, returns
0), and isRobust(·) returns 1 if the robustness size is larger
than a given attack bound µa (otherwise, returns 0).

HGM PixelDP. Figures 2 and 3 illustrate the certified ac-
curacy under attacks of each model as a function of the ad-
versarial perturbation µa. Our HGM PixelDP notably out-
performs the PixelDP model in most of the cases given the
CIFAR-10 dataset. We register an improvement of 8.63%
on average when εr = 8 compared with the PixelDP,
i.e., p < 8.14e − 7 (2 tail t-test). This clearly shows
the effectiveness of our HGM in enhancing the robustness
against adversarial examples. Regarding the MNIST data,
our HGM PixelDP model achieves better certified accuracies
when µ ≤ 0.3 compared with the PixelDP model. On aver-
age, our HGM PixelDP (εr = 4) improves 4.17% in terms
of certified accuracy given µa ≤ 0.3, compared with the Pix-
elDP, p < 5.89e−3 (2 tail t-test). Given very strong adversar-

2https://github.com/haiphanNJIT/SecureSGD

ial perturbation µa > 0.3, smaller εr usually yields better re-
sults, offering the flexibility in choosing appropriate DP bud-
get εr for robustness given different attack magnitudes. These
experimental results clearly show crucial benefits of relaxing
the constraints of the privacy budget and of the heterogeneous
noise distribution in our HGM.

Secure-SGD. The application of our HGM in DP-
preserving deep neural networks, i.e., Secure-SGD, further
strengthens our observations. Figures 4 and 5 illustrate the
certified accuracy under attacks of each model as a function of
the privacy budget ε used to protect the training data. By in-
corporating HGM into DPSGD, our Secure-SGD remarkably
increases the robustness of differentially private deep neural
networks. In fact, our Secure-SGD with HGM outmatches
DGSGP, AdLM, and the application of AGM in our Secure-
SGD algorithm in most of the cases. Note that the application
of AGM in our Secure-SGD does not redistribute the noise in
deriving the provable robustness. In CIFAR-10 dataset, our
Secure-SGD (εr = 8) correspondingly acquires a 2.7% gain
(p < 1.22e − 6, 2 tail t-test), a 3.8% gain (p < 2.16e − 6,
2 tail t-test), and a 17.75% gain (p < 2.05e − 10, 2 tail t-
test) in terms of conventional accuracy, compared with AGM
in Secure-SGD, DPSGD, and AdLM algorithms. We regis-
ter the same phenomenon in the MNIST dataset. On average,
our Secure-GSD (εr = 4) correspondingly outperforms the
AGM in Secure-SGD and DPSGD with an improvement of
2.9% (p < 8.79e − 7, 2 tail t-test) and an improvement of
10.74% (p < 8.54e− 14, 2 tail t-test).

Privacy Preserving and Provable Robustness. We also
discover an original, interesting, and crucial trade-off be-
tween DP preserving to protect the training data and the prov-
able robustness (Figures 4 and 5). Given our Secure-SGD
model, there is a huge improvement in terms of conventional
accuracy when the privacy budget ε increases from 0.2 to 2 in
MNIST dataset (i.e., 29.67% on average), and from 2 to 10
in CIFAR-10 dataset (i.e., 18.17% on average). This opens
a long-term research avenue to achieve better provable ro-
bustness under strong privacy guarantees, since with strong
privacy guarantees (i.e., small values of ε), the conventional
accuracies of all models are still modest.

6 Conclusion
In this paper, we presented a Heterogeneous Gaussian Mech-
anism (HGM) to relax the privacy budget constraint, i.e., from
(0, 1] to (0,∞), and its heterogeneous noise bound. An orig-
inal application of our HGM in DP-preserving mechanism
with provable robustness was designed to enhance the ro-
bustness of DP deep neural networks, by introducing a novel
Secure-SGD algorithm with a better robustness bound. Our
model shows promising results and opens a long-term avenue
to address the trade-off between DP preservation and prov-
able robustness. In future work, we will learn how to identify
and incorporate more practical Gaussian noise distributions
to further improve the model accuracies under model attacks.
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A Proof of Theorem 2

Figure 6: The transformation of the hypotenuse of z + v

Proof 1 The privacy loss of the Extended Gaussian Mecha-
nism incurred by observing an output o is defined as:

L(o;M, D,D′) = ln
Pr[M
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D,A, σ

)
= o]

Pr[M
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(11)

Given v = A(D)−A(D′), we have that
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where z = {zi = oi −A(D)i}i∈[1,K].
Since o−A(D) ∼ N

(
0, σ2∆2

A

)
, then z ∼ N

(
0, σ2∆2

A)
)
.

Now we will use the fact that the distribution of a spheri-
cally symmetric normal is independent of the orthogonal ba-
sis, from which its constituent normals are drawn. Then, we
work in a basis that is aligned with v.

Let b1, . . . ,bK be a basis that satisfies ‖bi‖ = 1 (i ∈
[1,K]) and bi · bi′ = 0 (i, i′ ∈ [1,K], i 6= i′). Fix such a
basis b1, . . . ,bK , we draw z by first drawing signed lengths
λi ∼ N

(
0, σ2∆2

A

)
(i ∈ [1,K]). Then, let z′i = λibi and

z =
∑K
i=1 z

′
i. Without loss of generality, let us assume that

b1 is parallel to v. Consider that the triangle with base v+z′1
and the edge

∑K
i=2 z

′
i is orthogonal to v. The hypotenuse of

this triangle is z + v (Figure 6). Then we have

‖z + v‖2 = ‖v + z′1‖2 +

K∑
i=2

‖z′i‖2, ‖z‖2 =

K∑
i=1

‖z′i‖2

Since v is parallel to z′1, we have ‖v + z′1‖2 = (‖v‖+ λ1)2.
Then we have
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By bounding the privacy loss by ε (ε > 0), we have
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Let λmax = ∆A

2 (2σ2ε − 1). To ensure the privacy loss is
bounded by ε with probability at least 1− δ, we require

Pr(|λ1| ≤ λmax) ≥ 1− δ (12)

Recall that λ1 ∼ N (0, σ2∆2
A), we have that

Pr(|λ1| ≤ λmax) = 1− 2Pr(λ1 > λmax) (13)

Then, we have
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We can ensure this inequality (Eq. 15) by setting:

σ ≥ 1 +
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2ε
(Condition 1). (16)

Let s = ln(
√

2
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We can ensure the above inequality by choosing:
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Based on the proof above, now we know that to ensure the
privacy loss |L(o;M, D,D′)| bounded by ε with probability
at least 1− δ, we require:
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Since δ usually is a very small number, i.e., (1e-5 � 0.48),
without loss of generality, we can assume that Condition 2
always implies Condition 1 in practice. To ensure the pri-
vacy loss bounded by ε with probability at least 1 − δ, only
Condition 2 needs to be satisfied:
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In this proof, the noise N (0, σ2∆2
A) is injected into the

model. If we set σ ≥
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B Proof of Theorem 3
Proof 2 The privacy loss of the Heterogeneous Gaussian
Mechanism incurred by observing an output o is defined as:
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Then we have
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t

σ∆A
e

t2

2σ2∆2
A ≥

√
2

π

1

δ
⇔ 2σ2ε− 1

2σ
e

1
2

(
2σ2ε−1

2σ

)2

≥
√

2

π

1

δ

⇔ ln
2σ2ε− 1

2σ
+

1

2

(2σ2ε− 1

2σ

)2 ≥ ln(

√
2

π

1

δ
)

We will ensure the above inequality by requiring: (1)
ln 2σ2ε−1

2σ ≥ 0 , and (2) 1
2

(
2σ2ε−1

2σ

)2 ≥ ln(
√

2
π

1
δ ).

ln
2σ2ε− 1

2σ
≥ 0⇔ 2σ2ε− 1

2σ
≥ 1

⇔ 2σ2ε− 2σ − 1 ≥ 0

(26)

We can ensure this inequality (Eq. 26) by setting:

σ ≥ 1 +
√

1 + 2ε

2ε
(Condition 1). (27)

Let s = ln(
√

2
π

1
δ ). If s < 0, the second requirement will

always be satisfied, and we only need to choose σ satisfy-
ing the Condition 1. When s ≥ 0, since we already ensure
2σ2ε−1

2σ ≥ 1, we have that

1

2

(2σ2ε− 1

2σ

)2 ≥ s⇔ 2σ2ε− 1

2σ
≥
√

2s

⇔ 2σ2ε− 2σ
√

2s− 1 ≥ 0

(28)

We can ensure the above inequality by choosing:

σ ≥
√

2

2ε
(
√
s+
√
s+ ε) (Condition 2) (29)

Based on the proof above, now we know that to ensure the
privacy loss |L(o;M, D,D′)| bounded by ε with probability
at least 1− δ, we require:

σ ≥ 1 +
√

1 + 2ε

2ε
(Condition 1);

σ ≥
√

2

2ε
(
√
s+
√
s+ ε) (Condition 2)

(30)

To compare Condition 2 and Condition 1, we have that
√

2

2ε
(
√
s+
√
s+ ε) >

1 +
√

1 + 2ε

2ε

⇔
√

2s+
√

2s+ 2ε > 1 +
√

1 + 2ε

⇔
√

2s > 1⇔ s >
1

2
⇔ ln(

√
2

π

1

δ
) >

1

2

⇔ δ <

√
2

π
e−

1
2 ≈ 0.48.

(31)

Since δ usually is a very small number, i.e., (1e-5 � 0.48),
without loss of generality, we can assume that Condition 2
always implies Condition 1 in practice. To ensure the pri-
vacy loss bounded by ε with probability at least 1 − δ, only
Condition 2 needs to be satisfied:

Pr[M
(
D,A, r, σ

)
= o] ≤ eεPr[M

(
D′, A, r, σ

)
= o] + δ

with σ ≥
√

2

2ε
(
√
s+
√
s+ ε), and ε > 0 (32)

In this proof, the noise N (0, σ2∆2
AKr) is injected into the

model. If we set σ ≥
√

2∆A

2ε (
√
s +
√
s+ ε), then the noise

becomes N (0, σ2Kr). Consequently, Theorem 3 does hold.
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