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Abstract— Human behavior prediction is critical to studying
how healthy behavior can spread through a social network.
In this work we present a novel user representation based
human behavior prediction model, the User Representation-based
Socialized Gaussian Process model (UrSGP). First, we present
the Deep Interaction Representation Learning (Deep Interaction)
model for learning latent representations of interaction social
networks in which each user is characterized by a set of
attributes. In particular, we consider social interaction factors
and user attribute factors to build a bimodal, fixed representation
of each user in the network. Our model aims to capture the
evolution of social interactions and user attributes and learn
the hidden correlations between them. We then use our latent
features for human behavior prediction via the UrSGP model. An
empirical experiment conducted on a real health social network
demonstrates that our model outperforms baseline approaches
for human behavior prediction.

I. INTRODUCTION

Research has identified physical inactivity as a leading risk

factor associated with a variety of cardiovascular diseases and

other chronic conditions such as obesity, diabetes, and joint

problems [1]. Online social networks have garnered interest

from the health informatics community because network users

can influence each other to promote healthy behavior.

Several studies on Internet-delivered interventions have re-

ported positive behavioral outcomes [2], [3]. Online social

networks can help people interact and participate in various

physical activities to promote physical activities with afford-

able cost. However, there has been a lack of quantitative study

on how social networks may encourage users to engage in

physical activity.

Human behavior prediction in online health social networks

aims to predict an individual’s behavior given their past

behavior where behavior, generally, includes personal behavior

history, social correlation, and social influence. Current state-

of-the-art human behavior prediction models do not directly

take into account information regarding social interaction be-

tween users and how this social interaction evolves over time.

The homophily principle states that people tend to interact

with those who share similar characteristics or attributes. Thus,

we expect a strong correlation between the evolution of user

attributes and the evolution of social interaction over time in

health social networks. In addition, the benefit of declaring

friend connections is marginal compared with actual interac-

tion [4]. Therefore, we should exploit interaction in order to

build accurate human behavior prediction models. To this end,

we incorporate into state-of-the-art human behavior prediction

models latent representations of network users that capture

both the evolution of social interaction and user attributes over

time.

Network representation learning has emerged as a popular

topic within the social and information network analysis. It

aims to learn low-dimensional latent representations of users

that implicitly capture the social semantics of the network.

Recent work in network representation learning includes the

DeepWalk algorithm [5] which learns social representations

of vertices of a graph by modeling short random-walks along

the graph topology. DeepWalk is the first application of

deep feature learning to network representation learning and

inspires our own representation learning method. However,

much of the work to date [5]–[9] on network representation

learning attempts to gain insight into social dynamics by only

considering the static friend connections within the network

and not the dynamic social interaction layer which explicitly

documents the transfer of information between users over time.

Ignoring the social interaction layer can result in a substantial

loss of information.

This work improves the current state-of-the-art in human

behavior prediction by incorporating latent social represen-

tations into the Socialized Gaussian Process model (SGP)

[10]. We call the new model the User Representation-based

Socialized Gaussian Process Model (UrSGP). We also improve

upon existing network representation learning methods by

learning directly from the dynamic interaction layer of social

networks instead of the static friend topology. Furthermore,

we apply a multimodal deep learning approach to learn fea-

tures that capture the correlation between user interaction and

user attributes. Empirical testing of our new human behavior

prediction model, conducted on a real health social network,

demonstrates the effectiveness of the learned features, showing

we are able to significantly improve prediction accuracy for

human behavior prediction.

Our contributions are as follows:

• We capture the evolving structure of social interaction in

networks over time by employing an interaction random

walk through the interaction layer of social networks.

• We construct our features by learning a fixed, bimodal

representation that relates the evolution of a user’s social

interaction to their attributes.

• We improve upon existing baseline approaches for human

behavior prediction by incorporating our user representa-

tions into the Socialized Gaussian Process Model.
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The rest of the paper is organized as follows. Section 2 dis-

cusses related work. Section 3 provides important background

information needed for clarifying our problem definition and

contributions. In section 4, we present our Deep Interaction

model and our User Representation-based Socialized Gaussian

Process model. Section 5 presents our results for human

behavior prediction via interaction network representations.

II. RELATED WORK

Prediction of human social behavior has been studied re-

cently. In this work, we improve upon the social correlation

factor of the Socialized Gaussian Process model [10], de-

scribed in detail in Section 4.3, which is not designed to work

with user attributes. Phan et al. [11], [12] propose leveraging

Restricted Boltzmann Machines for human behavior prediction

by structuring the visible layer to incorporate users’ features

both historical and current at prediction time. However, they

are not able to include information regarding social interaction.

Representation learning is widely used in computer vision,

natural language processing, and knowledge representation

learning [13]. Some researchers have focused on network

representation learning (NRL) [5], [9], [14]–[16] but none con-

sider the most fundamental phenomenon of social networks,

the evolution of social interaction and user attributes over

time. The closest work to our paper is the recently proposed

DeepWalk model [5]. DeepWalk learns social representations

of vertices of graphs by modeling short random-walks. In

[16], the authors propose a Deep Graph Kernel (Deep GK)

method to learn similarities between structured objects, such as

graphs and strings. In [14], Cao et al. propose a model, named

GraRep, for learning graph representations for knowledge

management. The model captures k-step relational information

with different values of k amongst vertices from the graph

by manipulating different global transition matrices. Tang

et al. [15] present an efficient edge-sampling algorithm for

preserving first order and second order proximity in graph

embeddings. Ahmed et al. [17] introduce graph embedding

via matrix factorization by representing a graph as an affinity

matrix. This technique can only be applied to undirected

graphs. Another improvement of the DeepWalk model is the

text-associated DeepWalk (TADW) [9] model. The TADW

model incorporates text features of vertices into network

representations under the framework of matrix factorization.

The related works discussed thus far use only shallow

models. Wang et al. [18] proposed a deep framework for repre-

sentation learning called Structural Deep Network Embedding

in order to capture the very highly nonlinear, complex, and

sparse nature of the underlying structure of social networks.

Some work focuses on using latent representations or social

dimensions for collective behavior prediction. Tang et al.

[19] apply various edge clustering approaches for community

detection and convert the resulting edge partitions into a social

dimension representation. They consider behavior prediction

as a multi-label classification task but do not account for in-

formation outside of the network topology, ignoring historical

behavior, user attributes, and user interaction.

Our research differs from state-of-the-art models in sev-

eral aspects. We learn the similarities between users by: 1)

(a) Friend connections

(b) Received messages

Fig. 1. Static topology versus interaction layer

Considering the evolution of the social network over time; 2)

Capturing the evolution of social interactions; 3) Capturing

the change in user attributes; and 4) Learning the hidden

correlations between social interactions and user attributes.

We expect latent representations that capture both a user’s

interaction with the network and the correlations between

social interaction and attributes to provide a strong indication

of social correlation among two users which we leverage to

create our UrSGP model.

III. BACKGROUND AND PROBLEM DEFINITIONS

A. Social Interaction Networks
Social network is an umbrella term used to describe a set

of networks layered together to capture and facilitate social

interaction between users. Among these layers, the friend
topology or friend network can be defined by a set of edges

denoting friendship between users. Accompanying the friend

topology is the underlying interaction network which differs

from the friend topology by having edges defined by a set

of timestamps of interaction. In other words, given a graph

G =(V,E,A), where V is the set of users, E is the set of edges,

and A is the set of attributes of the network, the interaction

network can be defined as a set of edges written as [20]

E = {(ui,vi, ti)|(ui,vi) ∈V and ti ∈ R} (1)

This would suggest that the interaction network may change

over time whereas the friend topology is static as shown in

Figure 1. Interaction networks can be considered an implicit

encoding of the dynamics of social interaction between users

or groups of users in the network, and as a result, can provide

more insight into these dynamics than the friend topology.

B. Attribute Vectors
We aim to take advantage of the growing richness of social

network data by incorporating a set of characteristic user
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attributes into our model, denoted as an attribute vector. Our

goal is to generate a set of features that capture both the

dynamic of user interaction in the network and the correlation

between interaction and user attributes. We use the term

attribute vector to generally denote any set of characteristic

features, both static and dynamic, that could describe a user

at a particular time. In our healthcare application domain,

an attribute vector may include biomarker measurements like

HDL and LDL cholesterol levels or biometric measures such

as height, weight, and body mass index (BMI) where all mea-

surements are taken at what can be considered the same time.

Given a network G = (V,E,A), the attributes of the network

are defined as A =
{
(vi,Ai

t)|vi ∈V} where the attribute vector

Ai
t = (ai

1,a
i
2, ...,a

i
M) and M is the dimension of the attribute

vector and ai
m is an attribute measured at time t corresponding

to user i.

C. Learning Representations of Words and Paragraphs

Representation learning and hierarchical feature extraction

have developed into a subfield of machine learning and data

mining due in part to the emergence and popularity of deep

learning over the past decade.

Recently, the language modeling community has taken

advantage of unsupervised feature learning techniques to gen-

erate semantic representations of words in a context. The

popular SkipGram and Continuous Bag-of-Words models [21]

accomplish this by training neural networks to maximize

the probability of words in a context given a word and the

probability of a word given its context, respectively. The key

to these models is the softmax layer on top of the final hidden

layer of the network which forces the network output to sum to

one, effectively creating a probability distribution over network

weights. Given and input word wI , we define the probability

of a word in the vocabulary wo given wI as:

P(wo|wI) =
exp(v′TwovwI )

∑
w∈W

exp(v′TwvwI )
(2)

where v′Two vwI is output of the node in the output layer

of the SkipGram network corresponding to word wo in the

vocabulary. The energy function of the SkipGram network

accordingly becomes:

E =− logP(wo,1, ...,wo,C|wI) (3)

where wo,C is the C-th word of the output context.

By maximizing the probability of output weights given

hidden weights, the network can learn a low dimensional

vector representation of each word in the vocabulary.

The Distributed Memory Model of Paragraph Vectors (PV-

DM) [22] is an extension of the SkipGram model. The PV-DM

is quite similar to the SkipGram model with one exception.

The model learns representations for paragraphs in documents

by concatenating word vectors with paragraph vectors to build

the hidden layer of the neural network.

The PV-DM model inspires the inclusion of user attribute

vectors with social interaction representations to build a unified

representation that captures the evolution of user attributes

with social interaction, as detailed in Section 4.2.

D. Problem Definitions

Learning Latent Social Interaction Representations. Let

G = (V,E,A) be an interaction network where V is the set of

users in the network, E is the set of all interactions between

users over all time such that ∀ei j ∈ E,ei j = {t1, ..., tn} where

tm is a time of interaction between users i and j, and A is

the set of attribute vectors of all users over all time. We aim

to learn a fixed representation, H, of the evolution of social

interaction and attribute vectors over time, where H ∈ R
|V |×d

and d is the dimension of the representation.

Human Behavior Prediction. Given the social network

G and individuals’ past behaviors until day t, X1..t =
(X1

1..t ,X
2
1..t , ...,X

N
1..t), where Xi

1..t = (xi
1,x

i
2, ...x

i
t) with xi

t ∈
(−1,0,1). Note, xi

t = 1 indicates user ui plays sports at day

t, xi
t = −1 indicates whether a user ui does not play sports

at day t, while xi
t = 0 indicates user ui’s record is missing

at day t. N is the number of users in the social network. The

socialized human behavior prediction problem is to predict the

individual’s behaviors at day t +1, i.e., Xt+1.

IV. FEATURE LEARNING AND BEHAVIOR PREDICTION

In this section, we present our Deep Interaction Represen-

tation Learning model to learn joint representations between

social interactions and user attributes. We then show how we

improve the Socialized Gaussian Process model by using our

latent representations to create the User Representation-based

Socialized Gaussian Process model.

A. Interaction Random Walk

Perozzi et al. [5] proposed choosing streams of short random

walks as a primitive for capturing graph topology structure. By

capturing graph structure as a stream of random walks, they

are able to apply new natural language modeling techniques

to learn fixed low dimensional representations of nodes in

a graph. We adopt this primitive but make key changes to

accommodate walking through a dynamic network. We define

the probability of transitioning from the current vertex u
to the next vertex v as a distribution over the difference

between the current time and the next timestamp along the

edge connecting the two vertices. More formally we define a

transition probability from vertex u to vertex v along edge k
at time t as:

Puv,t = 1− tkv− t
∑

i∈T
ti− t

(4)

where tkv is the next timestamp along edge k and T is the set of

the next timestamps of interaction along all edges connected

to u.

In order to choose the next step in the walk, we repeat

Bernoulli trials independently for each edge in the set defined

above and choose to travel along the edge with the highest

number of successful outcomes.
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Fig. 2. Deep Interaction Representation Learning Model

B. Deep Interaction Representation Learning

In this section, we present our Deep Interaction Representa-

tion Learning (Deep Interaction) model to learn joint represen-

tations between social interactions and user attributes. First we

present the model then detail how we capture social structure

through the dynamic interaction layer of a social network.

The objective of our model is to learn low dimensional fixed

representations of users from the dynamic of social interaction

within a network as well as users’ attributes. We capture the

social structure of a network by employing streams of random

walks along the interaction layer of the social network. Given

a random walk Rui = (ui−r, ...,ui+r) where r is the length of

the walk we define the context of Rui as {uO,1, ...,uO,C} where

C is w−1. Our aim is to apply language modeling techniques

to learn a representation of ui given its context, however we

make a few changes to the SkipGram model used by [5] to

incorporate user attributes. We follow work on multimodal

deep learning [23] in order to learn joint representations of user

interaction and user attributes which are used for prediction.

The input to our model (Figure 2) is a one-hot encoded

vector for selecting the appropriate user representation and

attribute vector from the hidden weights. The two represen-

tations are averaged/concatenated and joined once more via

an additional hidden layer to learn the joint representation

of interest. The final hidden layer is a softmax layer, and

in practice we use a hierarchical softmax layer to speed up

training time.

More formally, given matrices Wi and Wa as shown below,

where matrix Wa is the set of attributes for the network

and matrix Wi holds the user interaction representations. The

components of the augmented hidden layer are

hi = xTWi (5)

ha = xTWa (6)

Note that the attribute matrix Wa is |V |× k where |V | is the

number of users in the network and k is the dimension of the

historical attribute vector of each in the network. Historical

attribute vectors are formed by concatenating all attribute

vectors over all time for each user in G . Therefore, Wa can

be considered a historical record of all attributes of all users

over all time in the network. hi denotes the user interaction

component of the augmented hidden layer selected from the

|V | × b weight matrix Wi where b is the dimension of hi.
ha, of dimension k, denotes the user attribute component

of the augmented hidden layer. The shared hidden layer is

constructed as

hs = [hi|ha]
TWs (7)

where Ws is the |V | × d joint representation matrix which

holds our final user representations. The objective of the

Deep Interaction model is to minimize the following energy

function:

E =− log p(uO,1, ...,uO,C|ui) (8)

The output layer of our model is a mixture of C multinomial

distributions, one for each user in the context. We can consider

the output layer to be composed of C concatenated panels,

each a multinomial distribution over all N users in the network

as shown in Figure 2. We can then define the output of the

j-th node of the c-th panel as the following.

yc, j = p(uc, j = uO,C|ui) =
exp(gc, j)

|V |
∑

j′=1

exp(gc, j′)

(9)

where

gc, j = hs
TWs′ (10)

and W ′
s is the weight matrix from the shared hidden layer to the

output layer. gc, j′ corresponds to the pre-normalized output of

the j′-th node on the c-th panel of the output layer calculated

in a similar fashion as gc, j. Note that Equation 6 is exactly the

softmax function where the denominator serves to normalize

the output of the j-th node of the c-th panel in order to create

a multinomial probability distribution.

The energy function accordingly becomes:

E =− log∏ exp(gc, j)
|V |
∑

j′=1

exp(gc, j′)

(11)

To train our model, stochastic gradient descent and back-

propagation are used minimize the energy function given in

Eq. 11. The joint representations are learned in two steps. First

the interaction representations are pre-trained independently

via the SkipGram model. Once the interaction representations

are learned, they are used as input to the next layer of the

model which learns the joint representations by stochastic

gradient descent where the gradient is obtained via backprop-

agation. As in Le et al. [22], all other parameters, i.e. the

interaction representations and softmax parameters, are fixed.

In other words, user attributes and interaction representations
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are the input to joint layer where the inference objective is as

defined in Eq. 8.

As shown in Figure 2, the model has two hidden layers

and a softmax output layer. In practice we use a hierarchical

softmax layer which determines overall depth of the neural

network since it is implemented as a binary tree with |V | leaf

nodes.

C. Latent Features for Behavior Prediction

To improve the Social Gaussian Process (SGP) model [10],

which is known as an efficient human behavior prediction

model, we focus on improving the social correlation and

implicit social influence parameters. Shen et al. [10] propose

defining social correlation as inversely proportional to the

square distance between the historical behaviors of two users.

Instead of only using statuses of users in estimating the social

correlations among users, we incorporate user representations

into the social correlation function in the SGP model as

follows:

Ωi j,t =
1

T
exp

[
− ∑

m=t−T ...t
(Xi

m−X j
m)

2
]

+
(

1− cosine(hs,i,hs,j)
)

(12)

where hs,i and hs,j are the shared hidden features hs, also

called user representations of user i and user j, constructed

from the shared hidden layer in Eq. 7. T is the number of

timestamps in the training set. Ωi j,t is the social correlation

between user i and user j at timestamp t. We follow [21] in

choosing cosine similarity as a distance metric for measuring

similarity between two user representations. By using latent

social representations in the social correlation parameter, we

are able to leverage the social interaction and user information

encoded in the social network to strengthen our notion of

correlation between two users and their behaviors, which we

show by comparing against relevant baselines. The model

is called the User Representation-based Socialized Gaussian
Process (UrSGP) model.

V. EXPERIMENTS

Human Physical Activity Dataset. The dataset was col-

lected via a collaboration among several health laboratories

and universities to help people maintain active lifestyles and

lose weight. The dataset is collected from 254 users, including

personal information, a social network, and their daily physical

activities over ten months.

The initial physical activity data, collected from each user

via special electronic equipment for each user, records infor-

mation such as the number of walking and running steps.

Since some users’ daily records are missing, we show the

basic analysis on the distribution of physical activity record

numbers in Figure 3. In the Figure 3, there are 14 users with

their daily physical activity record number smaller than 10, and

8 users with their record number larger than 10 but smaller

than 20. Thus, to clean the data, we filtered the users whose

daily physical activity record number is smaller than 80. In

addition, we only consider users who contribute to the social

Fig. 3. Distribution of the record number and user number in the health
social network.

communication (i.e., users must send (resp., receive) messages

to (resp., from) other users). We only consider users who

interact with others in the network (i.e., users must send (resp.,

receive) messages to (resp., from) other users). We have 123

users with 2,766 inbox messages for our experiments. Figure

4 illustrates the distributions of friend connections and the

number of received messages in the health social network,

showing they clearly follow the Power law distribution.

To validate our Deep Interaction model, we leverage the

Socialized Gaussian Process model [10] by using the user

representations learned to improve the social correlation mod-

eling. Our UrSGP model is used for human behavior prediction

on a real health social network. We first elaborate on the

experiment configurations, evaluation metrics, and baseline

approaches. Then, we introduce the experimental results.

Dataset and Experiment Configurations. In total, we have

30 features taken into account (Table III). All the features are

weekly summarized. We use random walks of length five with

ten walks per node to generate the ”corpus” from which we

train the model in Figure 2. The dimension of the joint repre-

sentation learned is 100. The weights are randomly initialized

from a zero-mean Gaussian with a standard deviation of 0.01

with learning rates set to 10−3.

Evaluation metric. To verify the effectiveness of our

novel, state-of-the-art human behavior prediction model, we

predict the individual’s future activities according to their past

behaviors and social network information. In the experiment,

we select two weeks as the unit for prediction, i.e., leveraging

the previous 10 weeks’ daily records to predict the 11th and

12th weeks’ behaviors of users. We use the metric accuracy
to measure the prediction quality between week t and t +1.

accuracy =
∑i=1..N ∑d∈{t,t+1} I((Xi

d �= 0) = X̃ i
d)

∑i=1..N ∑d∈{t,t+1} I(Xi
d �= 0)

(13)

where Xi
d is the true user activity at day d for ui, and X̃ i

d
denotes the predicted value. (Xi

d �= 0) indicates the physical

activity record is not missing. I is the indication function,

where I(X) = 1 when X is true, otherwise I(X) = 0. N is

the number of users.
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(a) (b) (c)

Fig. 4. The distributions of friend connections (a), inbox messages (b), and active users (c) in the health social network dataset.

TABLE I

PREDICTION ACCURACY COMPARISON WITH DIFFERENT MODELS(T7-T38)

Weeks LAR PGP SLAR BPS RF SGP SRF UrSGP
T7-T8 0.56122 0.62448 0.55918 0.53877 0.68571 0.71836 0.73244 0.75306

T9-T10 0.60404 0.63872 0.62716 0.5881 0.63873 0.64595 0.69717 0.69075
T11-T12 0.64591 0.64177 0.62102 0.5988 0.70393 0.67731 0.70731 0.70539
T13-T14 0.67729 0.71812 0.69023 0.6344 0.71833 0.74402 0.74808 0.76494
T15-T16 0.69497 0.71923 0.71490 0.6603 0.71833 0.74870 0.74982 0.76603
T17-T18 0.72879 0.74734 0.7526 0.70053 0.74812 0.75088 0.74988 0.76855
T19-T20 0.73877 0.73518 0.7441 0.6921 0.73454 0.76211 0.75896 0.78007
T21-T22 0.72760 0.74680 0.7239 0.7029 0.74755 0.75411 0.75666 0.77240
T23-T24 0.72310 0.73526 0.71562 0.6604 0.73727 0.74555 0.75535 0.76427
T25-T26 0.71372 0.71567 0.70001 0.6679 0.71691 0.73417 0.72741 0.75365
T27-T28 0.72745 0.76089 0.7173 0.693 0.74983 0.77001 0.75322 0.79027
T29-T30 0.72866 0.71553 0.73304 0.6969 0.76973 0.74288 0.74002 0.76477
T31-T32 0.78965 0.79083 0.7755 0.7403 0.72259 0.80846 0.74575 0.83196
T33-T34 0.74007 0.75416 0.7387 0.7055 0.76347 0.76056 0.76382 0.78617
T35-T36 0.71059 0.73913 0.7105 0.6752 0.73051 0.74048 0.73894 0.76766
T37-T38 0.74616 0.76490 0.7427 0.712 0.74383 0.76320 0.75723 0.79727

TABLE II

PAIRED T-TEST(2-TAIL) RESULTS

SGP SRF RF PGP SLAR LAR BPS

UrSGP 0.009 0.009 0.006 1.36e−3 2.77e−4 2.02e−4 5.89e−8

Competitive Prediction Models. We compare the UrSGP

model with the conventional methods reported in [10]. The

competitive methods are divided into two categories: person-

alized behavior prediction methods and socialized behavior

prediction methods. Personalized methods only leverage an

individual’s past behavior records for future behavior pre-

dictions. Socialized methods use both an individual’s past

behavior records and his or her friends’ past behaviors for

predictions. Specifically, the five models reported in [10] are

Socialized Gaussian Process (SGP) model, Socialized Logisti-

cal Autoregression (SLAR) model, Socialized Random Forest

(SRF) model, Random Forest (RF) model [24], Personalized

Gaussian Process (PGP) model, Logistical Autoregression

(LAR) model, and Behavior Pattern Search (BPS) model. Note

that the Socialized Random Forest (SRF) model incorporates

not only the personalized historical behaviors but also the

user’s social network information. When creating random

forest trees, it combines the user’s physical behavior and his

or her friends’ physical behaviors at each time period as a set

of different features. Then the model picks whichever one has

the best information gain, and splits the tree.

Experimental Results. We report the performance of dif-

TABLE III

PERSONAL CHARACTERISTICS.

Behaviors
#joining competitions #exercising days

#goals set #goals achieved

∑(distances) avg(speeds)

Encouragement Fitness
Followup Games

Competition Personal
Social Study protocol Technique

Communications Progress report Meetups
(the number of Social network Goal
inbox messages) Wellness meter Feedback

Heckling Explanation
Invitation Notice

Technical fitness Physical

Biomarkers Wellness Score BMI
Wellness Score slope BMI slope

ferent human behavior models for predicting an individual’s

future behaviors. The individual’s behavior records are divided

according to the time series, e.g., T 1−T 8 indicates the records

from the first week to the eighth week. Therefore, we can

evaluate the models at different time periods. As shown in the
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Table I, we compare accuracy across the eight human behavior

prediction models.

Table I shows the User Representation-based Socialized

Gaussian Process model (UrSGP) outperforms the other base-

line methods and the SGP model. The proposed UrSGP model

achieves further improvement based on SGP by incorporating

the user presentations learned from our social interaction net-

work into the dynamic social correlation information. In terms

of accuracy, the UrSGP method improves the performance

in average as high as 2.34%, 2.43%, 3.92%, 4.55%, 7.38%,

7.76% and 16.09% in contrast to SRF, SGP, RF, PGP, SLAR,

LAR and BPS respectively.

Finally, to validate the statistical significance of our exper-

iments, we perform the paired t-test (2-tail) over the accuracy

of the experimental results. As shown in Table II, all the t-test

results are less than 0.01, which means the improvements of

UrSGP over other methods are statistically significant.

VI. CONCLUSION

In this paper, we proposed a new human behavior prediction

model, the User Representation-based Socialized Gaussian

Process model, which utilizes latent social interaction rep-

resentations to capture social correlation among users in a

social network. We also present a novel Deep Interaction

Representation Learning (Deep Interaction) model to learn

the social network representation given the evolution of so-

cial interactions and user attributes. An empirical experiment

conducted on a real health social network demonstrates that

our user representations can be used to significantly improve

the accuracy of human behavior prediction. However, as the

size of a social network grows and the sparsity of interaction

increases, our method cannot generate enough walks to cover

the entire network. In future works, we explore ways to

solve this problem in order to scale our method to large

networks. We will conduct more experiments using our feature

learning method on other social network analysis tasks, such as

community detection, link recommendation, and graph kernel

learning in order to improve our understanding of health

and social behaviors and their propagation in online social

networks.
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