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Abstract—As researchers analyze huge amounts of data that
are annotated by large biomedical ontologies, one of the major
challenges for data mining and machine learning is to leverage
both ontologies and data together in a systematic and scalable
way. In this paper, we address two interesting and related
problems for mining biomedical ontologies and data: i) how to
discover semantic associations with the help of formal ontologies;
ii) how to identify potential errors in the ontologies with the help
of data. By representing both ontologies and data using RDF
hypergraphs, and subsequently transforming the hypergraphs to
corresponding bipartite forms, we provide a generalized data
mining method that scales beyond what existing ontology-based
approaches can provide. We show the proposed method is indeed
capable of capturing semantic associations while seamlessly incor-
porate domain knowledge in ontologies by performing evaluations
on real-world electronic health dataset and NCBO ontologies. We
also show that our data mining methods can discover and suggest
corrections for misinformation in biomedical ontologies.

I. INTRODUCTION

Researchers around the world are linking more and more
data to ontologies that are formal specification of concepts
and relationships in various domains. Ontologies have been
extensively harnessed in an array of research fields, particularly
in biomedicine where knowledge evolves rapidly and has pro-
moted the creation and use of ontologies to advance scientific
progress. For example, over 300 ontologies have been loaded
into the National Center of Biomedical Ontology (NCBO)
BioPortal library at Stanford [1], specifying more than 5.6
million terms in the biomedical domain.

There are two major challenges facing researchers when
it comes to mining large sets of biomedical ontologies and
data. The first is to leverage both ontologies and data in a
systematic and scalable way. The second is to deal with errors
in both ontologies and data since neither of them is perfect
in reality. With the increasing amount of ontology-annotated
data, a new research direction emerges, which we call semantic
data mining, focusing on drawing insights from both domain
knowledge and data in a systematic way. It aims at bringing
domain knowledge seamlessly into the data mining process,
and helps improve the quality of patterns discovered in a noisy
environment. It also aims at improving ontologies by utilizing
empirical substantiation from data to either bolster a priori
ontological assertions, or detect potential errors therein.

Semantic data mining leverages links between entities
defined by ontologies—via annotations—to the mining algo-
rithms explicitly in a unified model. This requires traversing

links across the ontologies to infer implicit inter-connections
among the data. Graph techniques fit this research nicely
because both domain knowledge and semantically rich datasets
can be represented as graphs. For example, OWL [2] is the
standard ontology language built on RDF. Inheriting the graph
nature of RDF, any collection of OWL ontologies or RDF data
is an RDF Graph [3]. In fact, many semantically rich datasets
of interest today, such as DBpedia, are best described as a
linked collection, or a graph, of interrelated objects [4].

Hence, our semantic data mining approach is inspired by a
combination of graph representation [3], [5], [6], and mining
techniques [7], [8]. This paper extends our previous work that
implements a hypergraph-based approach to learn associations
from interlinked data (without ontologies) [9]. We adopt the
RDF hypergraph representation proposed by Hayes et al. [3]
to connect data and ontologies. Under such representation,
properties in RDF triples can be represented as first class
objects among all interrelated objects, enabling us to combine
both ontologies and data in a consistent manner.

The graph-centric root of our approach makes it possible
to leverage decades of work on graph mining. In the present
study, we use random walk with restart to derive similarity
between concepts and tackle the problem of discovering asso-
ciations on a large scale. Traditional association mining relies
on co-frequencies of items (concepts) within transactions [10].
We look one step further to find indirectly associated items.
This extension has far reaching applications in biomedicine.
For instance, consider a simple scenario illustrated by Swan-
son [11] years ago while studying Raynauld’s syndrome.
He noticed that Raynauld’s syndrome (Z) had been linked
with certain changes of blood in human body (Y ) in the
literature; and, separately, the consumption of dietary fish oil
(X) was also linked to similar blood changes. But fish oil
and Raynauld’s syndrome were never linked directly in any
previous publications. Swanson reasoned (correctly) that fish
oil could potentially be used to treat Raynauld’s syndrome,
i.e., X ∼ Z from X ∼ Y and Y ∼ Z. We term such indirect
connection between X and Z the semantic association.

Our work makes the following main contributions: First,
we employ a RDF hypergraph representation to capture in-
formation from both ontologies and data. Next, we transform
the hypergraph and weighted hyperedges into a bipartite form
for efficient processing. Then, we use the random walks
with restart over the bipartite graph to generate semantic
associations. Finally, the discovered semantic associations can
be used to detect potential errors in biomedical ontologies.

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.31

141

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.31

141



II. RELATED WORK

A. Ontologies and Data Mining

Using formal ontologies to annotate data has become
increasingly popular in biomedical domains. For instance, in
genetics, researchers curate literature to generate ontology-
annotated data for different species of model organisms by
linking specific proteins to various classes in the Gene Ontol-
ogy (GO [12]). At Stanford, the National Center for Biomed-
ical Ontology (NCBO) annotates large volumes of biomedical
text for search and mining [13] and has been used, for instance,
to profile disease research [14].

In general domains, Staab and Hotho [15] were one of
the earliest to utilize the idea of mapping terms in text to
classes in an ontology and they essentially use the ontology to
aggregate data and thus reduce feature dimensionality during
clustering. Adryan et al. [16] enable cluster visualization for
gene expression data by navigating various levels of the Gene
Ontology hierarchy. Wen et al. [17] take into consideration
the ontology hierarchy to offset biases toward overly-general
terms in text mining.

B. Graphs in Mining RDF and Ontologies

RDF data and OWL ontologies can be represented as
graphs for data mining. Lin et al. [18] treat the RDF triple
store as a data source during mining and develop Relational
Bayesian Classifiers (RBCs) that aggregate SPARQL queries.
Bicer et al. [19] define kernel machines over RDF data where
features are constructed by ILP-based dynamic propositional-
ization. In each case, RDF is merely a data model, paying little
attention to the use of domain-specific knowledge in related
ontologies. Recently, a promising graph-based approach to rep-
resent and mine ontologies and data together is Heterogeneous
Information Networks (HIN) developed by Sun et al. [20],
[21]. HIN leverages semantics of various types of nodes and
links in a network for the graph and network mining tasks. One
advantage of the proposed method to HIN is the convenience
of RDF bipartite graphs to which existing ontologies and their
annotated data can be easily transformed.

III. METHOD

A. Graph Representation for Biomedical Ontologies

The Web Ontology Language (OWL [2]) is the W3C’s stan-
dard for representing Semantic Web ontologies and has been
adopted by most biomedical ontology development efforts.
OWL ontologies can be used along with RDF data because
OWL uses the RDF syntax. RDF’s abstract triple syntax has
a graph nature. The RDF graph is defined as a set of triples
and can be viewed as a directed labeled graph (DG). One
disadvantage of DG is that it makes an artificial distinction
between resources and properties, which leads to incongruous
representations (e.g., properties are usually represented as arcs,
but in meta-statement about the properties themselves, the
properties have to be represented as nodes).

To overcome the inconsistency, Hayes et al. [3] proposed
to model RDF as a hypergraph. A hypergraph [22] is a
generalization of a simple graph where edges, called hyper-
edges, can connect more than two vertices. If each edge in
a hypergraph covers the same number of nodes, it is called

r-uniform hypergraph, r being the number of nodes on each
edge. Any RDF graph can be represented by a simple ordered
3-uniform hypergraph, in which an RDF triple corresponds to
a hyperedge, with incident nodes being the subject, predicate
and object from the triple. In this way, both ontology and data
statements are integrated in a consistent graph representation.

Formally, a hypergraph HG = (V,E), is a pair in which V
is the vertex set and E is the hyperedge set where each e ∈ E
is a subset of V . A weighted hypergraph is a hypergraph that
has a positive number w(e) associated with each hyperedge;
called the weight of hyperedge. A weighted hypergraph can
be denoted by G = (V,E,W ). Furthermore, A hypergraph
HG = (V,E) can be transformed to a bipartite graph BG as
follows: let the node sets V and E be the two parts of BG.
Then (v1, e1) is connected with an edge if and only if vertex
v1 is contained in the hyperedge e1 of HG. In other words, the
incidence matrix of HG can be viewed as the node adjacency
(biadjacency) matrix of the bipartite graph. BG turns HG to a
simple form, where algorithms designed on simple graphs can
be readily applied. Therefore, we use RDF bipartite graphs as
the combined representation of domain knowledge and data.

B. Graph representation for Ontology-Annotated Data

There already exist methods for transforming data, such
as those in relation databases, into RDF [23]. An ontology-
annotation, as we see it, is a binary value representing whether
some ontological concept (or class) is associated with some
entity. Often, this means that some concept appears in some
document and thus the ontology serves to index the document
with related concepts [13]. Thus, we can think of ontology-
annotations as a table, with each row representing an entity
(e.g., a document), and each column is a class from some
ontology. Cells having a “1” denotes that the document men-
tions the term defined by the class. RDF can be seen as a
sparse matrix representation of this data. This idea can be
easily extended to nominal-valued tables as well, or with other
relationships besides mentions as we illustrate when discussing
unified bipartite graphs in the next section.

C. Unified Graph Representation for Biomedical Ontologies
and Data

Given the ontology-annotated data, a unified graph incor-
porating information from both the ontology and data can be
created, as demonstrated in the following example.

Figure 1 (A) shows a simple ontology with only subsump-
tion relationships defined for five entities (A–E) representing,
for example, concepts in the biomedical domain. Figure 1 (B)
is a binary-valued RDB table in the same domain A–E being
column headers (features). We use the same concept labels
in the ontology and the RDB table because we assume the
mapping between the ontology nodes and the table features are
pre-assigned manually or established by automatic annotation.
Figure 2 (B) shows the RDF statements derived from both the
ontology and the RDB table. Figure 2 (A) demonstrates the
unified RDF bipartite graph.

Formally, the RDF bipartite graph as a unified repre-
sentation for both data and ontologies is defined as G =
〈Vv ∪ Vs, E〉, where Vv denotes value nodes corresponding
to components of RDF statements (i.e., subject, predicate,
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A B

C D

E

A B C D E
A : 0 0 1 0 0
B : 0 0 1 0 0
C : 0 0 0 0 1
D : 0 0 0 0 1
E : 0 0 0 0 0

A B C D E
r1 : 1 1 0 0 0
r2 : 1 1 1 0 0
r3 : 0 1 1 0 0
r3 : 0 0 0 1 0

(A) (B) (C)

Fig. 1. Five concepts (A–E) are represented visually as a hierarchy (A) and also as a hypergraph using the binary feature matrix (B), where a “1” denotes
rdfs:subClassOf, which is similar to the ontology-annotated data (C), where “1” denotes mentions.

mentions

subClassOf

r1 r2 r3 r4

A B C D E

P P P P

S O S O S O S O

S S S S S S S S

O O O O O O O O

P P P P P P P P

s p o
s1: <A> <subClassOf> <C>
s2: <B> <subClassOf> <C>
s3: <C> <subClassOf> <E>
s4: <D> <subClassOf> <E>

s5: <r1> <mentions> <A>
s6: <r1> <mentions> <B>
s7: <r2> <mentions> <A>
s8: <r2> <mentions> <B>
s9: <r2> <mentions> <C>
s10: <r3> <mentions> <B>
s11: <r3> <mentions> <C>
s12: <r4> <mentions> <D>

(A) (B)

Fig. 2. The RDF bipartite graph representation (A) easily combines both the ontology-annotated data with the ontological relationships (B) based on the
information described in Figure 1.

Fig. 3. A detailed anatomy of the biadjacency matrix for the RDF bipartite
graph in Figure 2 (A).

or object), and Vs denotes statement nodes corresponding to
RDF statements. More specifically, statement nodes can be
further divided according to whether they are from data or
ontology, i.e., Vs = Vd ∪ Vo; Value nodes can be divided
according to whether they represent rows (records) or columns
(attributes) in data, i.e., Vd = Vr ∪ Va. The graph G can be
represented in a biadjacency matrix M, where M(i, j) is non-
zero if there is an edge between 〈Vvi

, Vsj 〉. For an unweighted
graph, the value can be 0/1, and for a weighted graph, any

non-negative value. Weights assigned to different paths in
the graph are used to distinguish various semantic types or
relationships (properties) from the ontology and data, such as
class subsumption, “part of”, and other general or domain-
specific relationships.

For example, Figure 3 shows the biadjacency matrices Md

and Mo for the RDF bipartite graph shown in Figure 2(A). Md

and Mo correspond to the data and ontology part of the RDF
bipartite graph respectively. We can see that rows of Md and
Mo correspond to value nodes, (Vv), which can be further
divided into row nodes Vr and attribute nodes Va. On the
other hand, columns of Md are nodes that correspond to RDF
statements about data (Vd), and columns of Mo correspond
to the ontology (Vo). The union of Vd and Vo constitutes
the whole set of statement nodes Vs (all circle nodes in
Figure 2(A), i.e., s1–s12 in Figure 2(B)).

From the above example we notice that the biadjacency
matrix M can be split into vertical stripes by statement nodes
Vs. To obtain the biadjacency matrix M of the unified RDF
bipartite graph in Figure 3(A), we can simply concatenate
Md and Mo horizontally: M = [Md Mo]. This gives us a
way to construct the matrix modularly from its independent
components. In general, if there are k different semantic rela-
tionships in ontologies, Mo can be divided into more vertical
stripes {Moi , i = 1 . . . k}, where Moi may represent, for
example, the “part of” lattice. Each Moi can be distinguished
from others by different weights assigned to it. In short, M is
the horizontal concatenation of all weighted vertical stripes as
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shown in the first equality of Equation 1. The internal block
structure of the concatenated biadjacency matrix M is shown
in the second equality of Equation 1.

M =
[
wdMd wo1Mo1 wo2Mo2 . . .

]
=

ds os1 os2 . . .[ ]
r Mdr 0 0 . . .
a Mda O1 O2 . . .

(1)

D. Mining Unified RDF Bipartite Graphs

In this section, we present our method for discovering se-
mantic associations based on the unified RDF bipartite graph of
both the ontology and data. Similar to the relevance score [24],
we believe that two items have a strong semantic association
if they are related to many similar objects. We denote the
similarity score between entities e1 and e2 by s(e1, e2), where
s(e1, e2) ∈ [0, 1] and s(e1, e2) = 1 if e1 = e2. Now the
problem of ranking semantic associations in the unified graph
can be described as follows.

Given an attribute node a in the unified graph G = Gd∪Go

and a ∈ Gd∩Go we want to compute a similarity score s(a, b)
for all nodes b( �= a) ∈ Gd ∩Go. We choose to apply random
walks with restart (RWR) from the given node a, and use the
steady-state probability of each other node at convergence as
the similarity measure [25]. In other words, the similarity score
of node b is defined as the probability of visiting b via a random
walk which starts from a and goes back to a with a probability
c. The RWR score on the unified RDF bipartite graph is
efficient to compute since the graph is skewed (generally there
are more statement nodes than value nodes on large graphs).
In the following, we describe how to algorithmically calculate
the RWR-based similarity on the RDF bipartite graph.

Given a (n×m) biadjacency matrix M in Equation 1 for
G, we can construct the adjacency matrix A as follows: A =[

0 M
MT 0

]
. The probability of a random walker taking a

particular edge 〈a, b〉 from a node a while traversing the graph
is proportional to the edge weight over the total weight of all
outgoing edges from a, i.e., P(a, b) = A(a, b)/Σm+n

i=1 A(a, i).
Therefore, the Markov transition matrix P of G is constructed
as: P = normc(A), where normc(A) normalizes A such
that every column sum up to 1.

Given the transition matrix P, we can calculate the simi-
larity scores using the following steps. First, we transform the
input attribute node a into a (k+n)× 1 query vector qa with
1 in the a-th row and 0 otherwise. Second, we to compute a
(k + n) × 1 steady-state probability vector ua over G. Last
we extract only the steady-state probabilities of row nodes in
M (corresponding to value nodes in the RDF bipartite graph)
as the output similarity score vector. Notice that ua can be
computed by an iterated method from the following equation.

Let c be the probability of restarting random-walk from the
node a. Then the steady-state probability vector ua satisfies

ua = (1− c)PAua + cqa . (2)

The iterative update of ua can be performed as shown in
Algorithm 1. The while loop is modified from Equation 2 to
avoid materializing A and P for scalability.

Algorithm 1 Calculate Semantic Association

Input: query attribute a, bipartite matrix M , restarting prob-
ability c, tolerant threshold ε

Output: similarity vector ua(1 : k)
qa ⇐ 0
qa(a) = 1 (set a-th element of qa to 1)
while |Δua| > ε do

ua = (1− c)

[
normc(M)ua(k + 1 : k + n);

normc(MT )ua(1 : k)

]
+ cqa

end while
return ua(1 : k)

IV. EXPERIMENT

In this section, we evaluate the proposed method for dis-
covering semantic associations and detecting errors in biomed-
ical ontologies on an electronic health records dataset. We first
describe the dataset and then present the evaluation results.

A. Dataset

In this evaluation, we analyze the electronic health records
of real patients. The clinical note data are from Stanford
Hospital’s Clinical Data Warehouse (STRIDE). These records
archive over 17-years worth of data comprising of 1.6 mil-
lion patients, 15 million encounters, 25 million coded ICD9
diagnoses, and a combination of pathology, radiology, and
transcription reports totaling over 9 million clinical notes
(i.e., unstructured text). We obtained the set of drugs and
diseases for each patient’s clinical note by using a new tool,
the Annotator Workflow, developed at the National Center for
Biomedical Ontology (NCBO), which annotates clinical text
from electronic health record systems and extracts disease and
drug mentions from the electronic health records. For this
study, we specifically configured the workflow to use a subset
of the NCBO ontology library that are most relevant to clinical
domains. The resulting set of ontologies contains 1 million
subsumption (“is a”) statements.

From this set of 1.6 million patients with annotated records,
we vectorize texts and turned them into a bag-of-word repre-
sentation, from which an RDF bipartite graph is constructed,
including 148 million RDF statements for the data.

To highlight the capability of our method for incorpo-
rating multiple types of relationships, we also explore the
“may treat” relationship between drugs and diseases de-
fined in the NDFRT ontology, for example, Thiabendazole
“may treat” Larva Migrans. In the experiment, we extracted
43,780 “may treat” statements from the ontology. Since we
are interested in learning the interaction between drugs and
diseases, “may treat” is naturally a better indicator relationship
to include while mining semantic associations than the sub-
sumption relationship. Our results below illustrate this point.

To summarize, in terms of the size of the electronic
health dataset, the derived unified bipartite graph contains
148,690,056 statements from data, 1,048,604 statements from
the is a ontology subgraph, and 43,780 statements from the
may treat ontology subgraph.
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B. Results

1) Discovering Semantic Associations: We first apply our
method to study the drug-drug association by combining the
subsumption hierarchy in the ontology graph with the data
graph. Table I demonstrates semantic associations for the term
rofecoxib given different configurations of the unified graphs.
Rofecoxib is the active ingredient of the drug Vioxx, which
was recalled in 2005 because it was causing an increased risk
of heart attacks. Vioxx is one of several COX-2 inhibitor non-
steroidal anti-inflammatory drugs.

Table I shows that, with only the ontology graph, the algo-
rithm successfully picks up almost all other active ingredients
of the COX-2 inhibitor class of drugs (valdecoxib, celecoxib,
etc.). Drugs of the COX inhibitor (the parent of COX-2) class
also appear in the top results (meloxicam, nabumetone, etc.).
These are indeed semantic associations since the top items
are related to rofecoxib indirectly through parent classes. It is
worth noticing that, not only is rofecoxib a subclass of COX-
2 inhibitor drugs, it is also a descendent of a much broader
parent called “Drug Products by Generic Ingredient Combina-
tions,” whose subclasses are organized by descendants’ initial
alphabets. In other words, rofecoxib is also a direct child of
a class that contains all drug ingredients starting with the
letter R. The fact that our algorithm selects the neighboring
class of rofecoxib in the COX-2/COX family instead in the
R-initialed family demonstrates its capability of discovering
interesting and meaningful semantic associations. An ontology
inference engine that is able to derive sibling classes would
hardly achieve the same meaningful ranking.

Without any preprocessing or prior knowledge about how
the clinical notes are prescribed, the results with data graph
alone do not show a strong pattern because of the frequent
appearance of general terms. However, the noteworthy inclu-
sion of “reflux” and “infantile” may be due to the causal
relationships between rofecoxib and acid reflux and infantile
gastroenteritis respectively, which have been discussed in the
literature. On the other hand, adding the is a graph to the
data graph can be also seen as a mean for denoising and
enhancement of the data. In the results with both data and
is a graphs, valdecoxib and celecoxib are promoted to the top
results. This suggests that the evidences from both data and
ontology conforms with previous studies in which celecoxib,
valdecoxib are shown to be, similar to rofecoxib, also associ-
ated with increased risk of cardiovascular pathologies.

w/ data only w/ is a only w/ both data and is a
reflux valdecoxib reflux

medical history meloxicam obstruction
history of previous events celecoxib injury

diagnosis parecoxib valdecoxib
pharmaceutical preparations etoricoxib medical history

blood and lymphatic disorders deracoxib foreign body sensation
disease lumiracoxib history of previous events

infantile neuroaxonal dystrophy firocoxib adverse effects
today nabumetone celecoxib

hypersensitivity macrolides actual hypothermia

TABLE I. RESULTS OF ITEMS RANKED BY THE STRENGTH OF

SEMANTIC ASSOCIATION WITH THE TERM “ROFECOXIB.”

To verify the drug-disease association and study the effect
of different semantic relationships, we carry out the following
experiment. Table II illustrates rankings of three associations
(one per row) under different settings (data alone, data plus

is a, and data plus may treat, respectively). The first element
in the association is the query item, which are all active ingre-
dients of some prescription drugs, and the ranking shown in the
table is for the second item, which are diseases. E.g., arthritis
is ranked as the 527th semantic association to rofecoxib based
on the similarity from the data graph alone. All these item
pairs are known gold standard drug-disease relationships.

data only w/ is a w/ may treat
〈rofecoxib, deg. polyart.〉 527 632 13
〈valdecoxib, deg. polyart.〉 613 695 17
〈troglitazone, diabetes〉 478 514 11

TABLE II. RANKINGS OF THREE SEMANTIC ASSOCIATIONS UNDER

DIFFERENT SETTINGS.

We observe that the ranking based on data graph alone
is fairly high already, considering there are approximately 1
million concepts of interest. However, the result based on the
combination of data and is a graph is worse. It is because
the subsumption hierarchies for drugs and diseases are largely
separate structures. Therefore the “is a” relationships can only
boost the association within the hierarchies, but obfuscate the
cross-hierarchy associations that we aim to find. On the other
hand, however, the association between these pairs can be
exactly captured by the NDFRT “may treat” relationship (e.g.,
NDFRT explicitly defines that rofecoxib “may treat” arthritis).
When the may treat graph is incorporated into the mining
process, the ranking for the association is greatly boosted.

2) Detecting Misinformation in Ontologies: Conversely,
we are also interested in learning whether the data graph can
help discover misinformation in ontologies. Figure 4 (left)
shows a subgraph of the NDFRT “may treat” relationship.
According to the ontology, rofecoxib can treat two diseases,
namely, dysmenorrhea and degenerative polyarthritis. There
are also 116 and 200 other drugs known to treat dysmen-
orrhea and degenerative polyarthritis respectively. To simu-
late an imperfect ontology, we alter the ground truth graph
by introducing some deliberate misinformation, as shown in
Figure 4 (right). Specifically, we assert that rofecoxib may
treat hypertensive disease, which in fact can be treated by the
most number of drugs (619 in total) according to the NDFRT
ontology. Then we add an imaginary drug to treat degenerative
polyarthritis, dysmenorrhea, and hypertensive disease. In this
way, the original immediate connections between rofecoxib
and degenerative polyarthritis and dysmenorrhea are broken.

Fig. 4. The left part of the figure shows the ground-truth may treat
relationships between the drug rofecoxib and two diseases. The right part
shows the same subgraph with deliberate falsehoods.

Table III shows the result of ranks of associations between
rofecoxib and degenerative polyarthritis and dysmenorrhea
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noisy may treat noisy may treat w/ data

〈rofecoxib, deg. polyart.〉 555 263
〈rofecoxib, dysmenorrhea〉 246 1703

TABLE III. RANKINGS OF ASSOCIATIONS ON THE NOISY may treat
GRAPH (FIGURE 4 RIGHT) DERIVED WITH AND WITHOUT DATA.

respectively. The ranks of the associations drastically drop on
the noisy graph. This is mainly due to the presence of a large
node, hypertensive disease, in the middle of the connections.
However, with the incorporation of the may treat graph,
we notice that the rank involving degenerative polyarthritis
increases, while the other involving dysmenorrhea drops even
further, which implies the data graph endorses more strongly
the former association. Indeed, although rofecoxib is known
to treat both degenerative polyarthritis and dysmenorrhea,
the former is a much more popular usage. A search on the
PubMed database1 for “rofecoxib and polyarthritis” returns
518 results, while “rofecoxib and dysmenorrhea” only returns
29. This result shows that the data graph can help correct
misinformation in ontologies to some extent, and can also give
a clue on how prior beliefs fit with reality.

V. CONCLUSION AND FUTURE WORK

We propose to mine biomedical ontologies and data using a
unified RDF hypergraph representation. We use random walks
with restart on the unified graph to discover semantic associ-
ations that cannot be found by only co-frequencies. We allow
users to customize the weight of each semantic component,
providing flexibility to express how strongly the role of the
ontology plays over the data, or vice-versa. Our evaluations
show that the method discovers semantic associations and that
it scales to size of both data and ontologies. Moreover, we also
show that our methods can discover and suggest corrections
for misinformation in biomedical ontologies.

In the following we discuss some future research directions.
First, the scalability of semantic data mining algorithms is of
critical importantance. While the size of practical problem is
bound to increase, the graph-centric root of our method makes
it possible to leverage decades of work on graph mining.
A possible direction is to develop parallelizable algorithms.
Second, the appropriate ratio for the edge weights is not
only dependent on a variety of factors. We plan to explore
automatic ways to determine optimal hyperedge weights going
forward. Third, to enable the RDF bipartite to incorporate more
complicated semantics, we will study the possible approach
that models some domain constraints by explicitly describing
the desired or acceptable walk (traversal sequence) in the RDF
hypergraph.
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