
Calculating Feature Weights in Naive Bayes with Kullback-Leibler Measure

Chang-Hwan Lee
Department of Information and Communications

DongGuk University
Seoul, Korea

Email: chlee@dgu.ac.kr

Fernando Gutierrez Dejing Dou
Department of Computer and Information Science

University of Oregon
Eugene, OR, USA

Email: fernando@cs.uoregon.edu dou@cs.uoregon.edu

Abstract—Naive Bayesian learning has been popular in
data mining applications. However, the performance of naive
Bayesian learning is sometimes poor due to the unrealistic
assumption that all features are equally important and inde-
pendent given the class value. Therefore, it is widely known that
the performance of naive Bayesian learning can be improved
by mitigating this assumption, and many enhancements to the
basic naive Bayesian learning have been proposed to resolve
this problem including feature selection and feature weighting.
In this paper, we propose a new method for calculating the
weights of features in naive Bayesian learning using Kullback-
Leibler measure. Empirical results are presented comparing
this new feature weighting method with some other methods
for a number of datasets.

Keywords-Classification; Naive Bayes; Feature Weighting;

I. INTRODUCTION

The naive Bayesian algorithm is one of the most common
classification algorithms, and many researchers have studied
the theoretical and empirical results of this approach. It
has been widely used in many data mining applications,
and performs surprisingly well on many applications [2].
However, due to the assumption that all features are equally
important in naive Bayesian learning, the predictions esti-
mated by naive Bayesian are sometimes poor. For example,
for the problem of predicting whether a patient has a
diabetes, his/her blood pressure is supposed to be much
more important than his/her height. Therefore, it is widely
known that the performance of naive Bayesian learning can
be improved by mitigating this assumption that features are
equally important given the class value [12].

Many enhancements to the basic naive Bayesian algo-
rithm have been proposed to resolve this problem. The first
approach is to combine feature subset selection with naive
Bayesian learning. It is to combine naive Bayesian with a
preprocessing step that eliminates redundant features from
the data. These methods usually adopt a heuristic search in
the space of feature subsets. Since the number of distinct
feature subsets grows exponentially, it is not reasonable to
do an exhaustive search to find optimal feature subsets.

The second approach is feature weighting method which
assigns a weight to each feature in naive Bayesian model.
Feature weighting methods are related to a feature subset
selection. While feature selection methods assign 0/1 values

as the weights of features, feature weighting is more flex-
ible than feature subset selection by assigning continuous
weights.

Even though there have been many feature weighting
methods, most of them have been applied in the domain
of nearest neighbor algorithms [15], and have significantly
improved the performance of nearest neighbor methods.

On the other hand, combining feature weighting with
naive Bayesian learning received relatively less attention,
and there have been only a few methods for combining
feature weighting with naive Bayesian learning [6] [7]. The
feature weighting methods in naive Bayesian are known to
be able to improve the performance of classification learning.

In this paper we propose a feature weighting method
for naive Bayesian learning using information theory. The
amount of information a certain feature gives to target
feature is defined as the importance of the feature, which is
measured by using Kullback-Leibler measure. The Kullback-
Leibler measure is modified and improved in a number of
ways, and the final form eventually serves as the weight
of feature. The performance of the proposed method is
compared with those of other methods.

The rest of this paper is structured as follows. In Sec-
tion II, we describe the basic concepts of weighted naive
Bayesian learning. Section III shows the related work on
feature weighting in naive Bayesian learning, and Section
IV discusses the mechanisms of the new feature weighting
method. Section V shows the experimental results of the pro-
posed method, and Section VI summarizes the contributions
made in this paper.

II. BACKGROUND

The naive Bayesian classifier is a straightforward and
widely used method for supervised learning. It is one of the
fastest learning algorithms, and can deal with any number
of features or classes. Despite of its simplicity in model,
naive Bayesian performs surprisingly well in a variety of
problems. Furthermore, naive Bayesian learning is robust
enough that small amount of noise does not perturb the
results.

In classification learning, a classifier assigns a class label
to a new instance. The naive Bayesian learning uses Bayes

!000111111 111111ttthhh IIIEEEEEEEEE IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn DDDaaatttaaa MMMiiinnniiinnnggg

!555555000-­-­-444777888666///!! $$$222666...000000 ©©© 222000!! IIIEEEEEEEEE

DDDOOOIII !000...!!000999///IIICCCDDDMMM...222000!!...222999

!!444666

theorem to calculate the most likely class label of the new
instance. Assume that a1, a2, · · · , an are feature values of a
new instance. Let C be the target feature which represents
the class value, and c represents the value that C can take. A
new instance d is classified to the class with the maximum
posterior probability. More precisely, the classification on d
is defined as follows

Vmap(d) = argmaxc P (c)P (a1, a2, · · · , an|c)

In naive Bayesian learning, since all features are considered
to be independent given the class value,

P (a1, a2, · · · , an|c) =
n∏

i=1

P (ai|c)

Therefore, the maximum posterior classification in naive
Bayes is given as

Vnb(d) = argmaxc P (c)
n∏

i=1

P (ai|c)

Since the assumption that all features are equally important
hardly holds true in real world application, there have been
some attempts to relax this assumption in naive Bayesian
learning. The first approach for relaxing this assumption
is to select feature subsets in data. In the literature, it
is known that the predictive accuracy of naive Bayes can
be improved by removing redundant or highly correlated
features. This makes sense as these features violate the
assumption that each feature is independent on each other.
Applying feature subset selection to naive Bayesian learning
can be formalized as follows.

Vfsnb(d, I(i)) = argmaxc P (c)
n∏

i=1

P (ai|c)I(i) (1)

where I(i) ∈ {0, 1}

The feature weighting in naive Bayesian approach is
another approach for relaxing the independence assumption.
Feature weighting assigns a continuous value weight to each
feature, and is thus a more flexible method than feature
selection. Therefore, feature selection can be regarded as a
special case of feature weighting where the weight value
is restricted to have only 0 or 1. The naive Bayesian
classification with feature weighting is now represented as
follows

Vfwnb(d,w(i)) = argmaxc P (c)
n∏

i=1

P (ai|c)w(i) (2)

where w(i) ∈ R+

In this formula, unlike traditional naive Bayesian approach,
each feature i has its own weight w(i). The w(i) can be
any positive number, representing the significance of feature
i. Since feature weighting is a generalization of feature
selection, it involves a much larger search space than feature
selection.

III. RELATED WORK

Feature weighting can be viewed as learning bias, and
many feature weighting methods have been applied mostly
to nearest neighbor algorithms [15]. While there have been
many research for assigning feature weights in the context
of nearest neighbor algorithms, very little work of weighting
features is done in naive Bayesian learning.

The methods for calculating feature weights can be
roughly divided into two categories: filter methods and wrap-
per methods [10]. These methods are distinguished based
on the interaction between the feature weighting and the
classification. In filter methods, the bias is pre-determined
in advance, and the method calculates incorporate bias as a
preprocessing step. Filters are data driven and weights are
assigned based on some property or heuristic measure of the
data.

In case of wrapper (feedback) method, the performance
feedback from the classification algorithm is incorporated
in determining feature weights. Wrappers are hypothesis
driven. They assign some values to weight vector, and com-
pare the performance of a learning algorithm with different
weight vector. In wrapper methods, the weights of features
are determined by how well the specific feature settings
perform in classification learning. The algorithms iteratively
adjust feature weights based on its performance.

An example of wrapper methods for subset selection in
naive Bayesian is Langley and Sage’s selective Bayesian
classifier [12]. They proposed an algorithm called selective
Bayesian classifier (SBC) which uses a forward and back-
ward greedy search method to find a feature subset from the
whole space of entire features. It uses the accuracy of naive
Bayesian on the training data to evaluate feature subsets, and
considers adding each unselected feature which can improve
the accuracy on each iteration. The method demonstrates
significant improvement over naive Bayes.

Another approach for extending naive Bayes is to select
a feature subset in which features are conditionally inde-
pendent. Kohavi [9] presents a model which combines a
decision tree with naive Bayes (NBTree). In an NBTree, a
local naive Bayes is deployed on each leaf of a traditional
decision tree, and an instance is classified using the local
naive Bayes on the leaf into which it falls. The NBTree
shows better performance than naive Bayes in accuracy.

Hall [7] proposed a feature weighting algorithm using
decision tree. This method estimates the degree of feature
dependency by constructing unpruned decision trees and
looking at the depth at which features are tested in the
tree. A bagging procedure is used to stabilize the estimates.
Features that do not appear in the decision trees receive a
weight of zero. They show that using feature weights with
naive Bayes improves the quality of the model compared to
standard naive Bayes.

Similar approach is proposed in [14], where they proposed
a Selective Bayesian classifier that simply uses only those

!!444777

features that C4.5 would use in its decision tree when
learning a small example of a training set. They present ex-
perimental results that this method of feature selection leads
to improved performance of the Naive Bayesian Classifier,
especially in the domains where naive Bayes performs not
as well as C4.5.

Another approach is to extend the structure of naive
Bayes to represent dependencies among features. Friedman
and Goldszmidt [5] proposed an algorithm called Tree
Augmented Naive Bayes (TAN). They assumed that the
relationship among features is only tree structure, in which
the class node directly points to all feature nodes and each
feature has only one parent node from another feature. TAN
showed significant improvement in accuracy compared to
naive Bayes.

Gartner [6] employs feature weighting performed by
SVM. The algorithm looks for an optimal hyperplane that
separates two classes in given space, and the weights deter-
mining the hyperplane can be interpreted as feature weights
in the naive Bayes classifier. The weights are optimized
such that the danger of overfitting is reduced. It can solve
the binary classification problems and the feature weight
is based on conditional independence. They showed that
the method compares favorably to state-of-the-art machine
learning approaches.

IV. FEATURE WEIGHTING METHOD

Weighting features is a relaxation of the assumption that
each feature has the same importance with respect to the
target concept. Assigning a proper weight to each feature
is a process for estimating how much important the feature
has.

There have been a number of methods for feature weight-
ing in naive Bayesian learning. Among them, we will use
an information-theoretic filter method for assigning weights
to features. We choose the information theoretic method
because not only it is one of the most widely used methods
in feature weighting, but it has strong theoretical background
for deciding and calculating weight values.

In order to calculate the weight for each feature, we first
assume that when a certain feature value is observed, it gives
a certain amount of information to the target feature. In this
paper, the amount of information that a certain feature value
contains is defined as the discrepancy between prior and
posterior distributions of the target feature.

The critical part now is how to define or select a proper
measure which can correctly measure the amount of in-
formation. Information gain is a widely used method for
calculating the importance of features, including decision
tree algorithms. It is quite intuitive argument that a feature
with higher information gain deserves higher weight.

We note that CN2, a rule induction algorithm developed
by [1], minimizes H(C|A = a) in order to search for good
rules–this ignores any a priori belief pertaining to C, where

H represents the entropy value of C given the observation
A = a. It assigns the entropy of a posteriori distribution to
each inductive rule, and assumes that the rule with higher
value of H(C|A = a) is a stronger rule. However, because
it takes into consideration only posterior probabilities, this
is not sufficient for defining a general goodness measure for
weights.

Quinlan proposed a classification algorithm C4.5 [13],
which introduces the concept of information gain. The C4.5
uses the information theory that underpins the criterion
to construct the decision tree for classifying objects. It
calculates the difference between the entropy of a priori
distribution and that of a posteriori distribution of class, and
uses the value as the metric for deciding branching node.
The information gain used in C4.5 is defined as follows.

H(C)−H(C|A) =∑

a

P (a)
∑

c

P (c|a)logP (c|a)−
∑

c

P (c)logP (c)(3)

Equation (3) represents the discriminative power of a feature
and this can be regarded as the weight of a feature.

Since we need the discriminative power of a feature value,
we cannot directly use Equation (3) as the measure of
discriminative power of a feature value.

In this paper, let us define IG(C|a) as the instantaneous
information that the event A = a provides about C, i.e., the
information gain that we receive about C given that A = a
is observed. The IG(C|a) is the difference between a priori
and a posteriori entropies of C given the observation a, and
is defined as

IG(C|a) = H(C)−H(C|a)
=

∑

c

P (c|a)logP (c|a)−
∑

c

P (c)logP (c) (4)

While the information gain used in C4.5 is information
content of a specific feature, the information gain defined
in Equation (4) is that of a specific observed value.

However, although IG(C|a) is a well known formula
and uses a more improved measure than CN2, there is a
fundamental problem with using IG(C|a) as the measure of
value weight. The first problem is that IG(C|a) can be zero
even if P (c|a) #= P (c) for some c. For instance, consider
the case of an n-valued feature where a particular value of
C = c is particularly likely a priori (p(c) = 1 − ε), while
all other values in C are equally unlikely with probability
ε/n − 1. As for IG(C|a), it can not distinguish the per-
mutation of these probabilities, i.e., an observation which
predicts the relatively rare event C = c. Since it cannot
distinguish between particular events, IG(C|a) would yield
zero information for such events. The following example
illustrates this problem in detail.

Example 1 : Suppose the Gender feature has
values of m(male) and f(female), and the target

!!444888

feature C has the value of y and n. Suppose their
corresponding probabilities are given as {p(y) =
0.9, p(n) = 0.1, p(y|m) = 0.1, p(n|m) = 0.9}
If we calculate IG(C|m), it becomes

IG(C|m)

= (p(y|m)logp(y|m) + p(n|m)logp(n|m))−
(p(y)logp(y) + p(n)logp(n))

= (0.1 · log(0.1) + 0.9 · log(0.9))−
(0.9 · log(0.9) + 0.1 · log(0.1)) = 0

We see that the value of IG(C|m) becomes
zero even though the event male significantly
impacts on the probability distribution of class C.
!

Instead of information gain, in this paper, we employ
Kullback-Leibler measure. This measure has been widely
used in many learning domains since it originally was
proposed in [11]. The Kullback-Leibler measure (denoted
as KL) for a feature value a is defined as

KL(C|a) =
∑

c

P (c|a)log
(
P (c|a)
P (c)

)

KL(C|a) is the average mutual information between the
events c and a with the expectation taken with respect to
a posteriori probability distribution of C. The difference is
subtle, yet significant enough that the KL(C|a) is always
non-negative, while the IG(C|a) may be either negative or
positive.

The KL(C|a) appears in the information theoretic litera-
ture under various guises. For instance, it can be viewed as
a special case of the cross-entropy or the discrimination, a
measure which defines the information theoretic similarity
between two probability distributions. In this sense, the
KL(C|a) is a measure of how dissimilar our a priori and
a posteriori beliefs are about C–useful feature value imply
a high degree of dissimilarity. It can be interpreted as a
distance measure where distance corresponds to the amount
of divergence between a priori distribution and a posteriori
distribution. It becomes zero if and only if both a priori and
a posteriori distributions are identical.

Therefore, we employ the KL measure as a measure of
divergence, and the information content of a feature value
aij is calculated with the use of the KL measure.

KL(C|aij) =
∑

c

P (c|aij)log
(
P (c|aij)
P (c)

)
(5)

where aij means the j value of the i-th feature in training
data.

The weight of a feature can be defined as the weighted
average of the KL measures across the feature values.
Therefore, the weight of feature i, denoted as wavg(i), is

defined as

wavg(i) =
∑

j|i

#(aij)

N
· KL(C|aij)

=
∑

j|i

P (aij) · KL(C|aij) (6)

where #(aij) represents the number of instances that have
the value of aij and the N means the total number of training
instances. In this formula, P (aij) means the probability that
the feature i has the value of aij .

Above weight wavg(i) is biased towards feature with
many values, and therefore, the number of records associated
with each feature value is too small to make any reliable
learning. In order to remove this bias, we incorporate the
split information as a part of the feature weight. By using
similar split information measure used in decision trees such
as C4.5, the final form of the feature weight can be defined
as

wsplit(i) =
wavg(i)

split info

where

split info = −
∑

j|i

P (aij)logP (aij)

If a feature contains a lot of values, its split information will
also be large, which in turn reduces the value of wsplit(i).
Finally the feature weights are normalized in order to keep
their ranges realistic. The final form of the weight of feature
i, denoted as w(i), is defined as

w(i) =
1

Z
· wsplit(i) =

1

Z
· wavg(i)

split info
(7)

=

∑
j|i P (aij)KL(C|aij)
Z · split info

(8)

=

∑
j|i P (aij)

∑
c P (c|aij)log

(
P (c|aij)
P (c)

)

−Z ·
∑

j|i

P (aij)logP (aij)
(9)

where Z is a normalization constant

Z =
1

n

∑

i

w(i)

In this formula, n represents the number of features in
training data. In this paper, the normalized version of w(i)
(Equation (9)) is given so as to ensure that

∑
i w(i) = n.

Algorithm 1 shows the algorithm for naive Bayesian classi-
fication using the proposed feature weighting method.

Finally, when we calculate feature weights, we need
an approximation method to avoid the problem that the
denominator of equations (i.e., P (c)) being zero. We use
Laplace smoothing for calculating probability values, and the

!!444999

Algorithm 1: Feature Weight
Input: aij : the j-th value in i-th feature, N : total

number of records, C : the target feature, d : test
data, Z : normalization constant

read training data
for each feature i do

calculate
KL(C|aij) =

∑

c

P (c|aij)log
(
P (c|aij)
P (c)

)

calculate wavg(i) =
∑

j|i

#(aij)

N
· KL(C|aij)

calculate w(i) =
wavg(i)

−Z ·
∑

j|i

P (aij)logP (aij)

end
for each test data d do

class value of
d = argmaxc∈CP (c)

∏

aij∈d

P (aij |c)w(i)

end

Laplace smoothing methods used in this paper are defined
as

P (aij |c) =
#(aij ∧ c) + 1

#(ckl) + |ai|
, P (c) =

#(c) + 1

N + L
and

P (c|aij) =
#(aij ∧ c) + 1

#(aij) + L

where L means the number of class values.

V. EXPERIMENTAL EVALUATION

In this section, we describe how we conducted the exper-
iments for measuring the performance of feature weighting
method, and then present the empirical results.

We selected 25 datasets from the UCI repository [4].
For the case of numeric features, the maximum number of
feature values is not known in advance, or becomes infinite
number. In addition, the number of data corresponding
to each feature value might be very few, which causes
overfitting problem. In light of these, assigning a weight to
each numeric feature is not a plausible approach. Therefore,
the continuous features in datasets are discretized using the
method described in [3]. We omit characteristics of the
datasets due to lack of space.

To evaluate the performance, we used 10-fold cross
validation method. Each dataset is shuffled randomly and
then divided into 10 subsets with the same number of
instances. The feature weighting method is implemented in
two forms: 1) normal feature weighting method (FWNB), 2)
feature weighting method without split information (FWNB-
NS). The FWNB method is the feature weighting method

described in this paper, and the FWNB-NS method means
the FWNB method without split information. These feature
weighting methods are compared with other classification
methods including regular naive Bayesian, TAN [5], NBTree
[9], and decision tree [13]. We used Weka [8] software to
run these programs.

Table I shows the accuracies and standard deviations of
each method. The ♣ symbol means the top accuracy, and
the ∗ means the second accuracy. The bottom rows show the
numbers of the 1st and 2nd places for the specific method.

As we can see in Table I, the feature weighting method
without split information(FWNB-NS) presents the best per-
formance. It showed the highest accuracy on 6 cases out
of 25 datasets, and the second highest accuracies in 5 cases.
Altogether, FWNB-NS shows top-2 performance on 11 cases
out of 25 datasets. The performance of FWNB is quite
competitive as well. It showed top-2 performance on 10
cases out of 25 datasets. Altogether, it can be seen that
the overall performance of both FWNB and FWNB-NS
is superior to other classification methods including naive
Bayesian learning. These results indicate that the proposed
feature weighting method could improve the performance of
the classification task of naive Bayesian.

In terms of pairwise accuracy comparison between FWNB
and FWNB-NS, while both methods show similar perfor-
mance on 7 cases out of 25 datasets, FWNB-NS showed
slightly better performance than FWNB. FWNB-NS out-
performs FWNB on 12 cases and FWNB method showed
better results on 6 cases. Therefore, it seems that the use of
split information(split info) sometimes overcompensates
the branching effect of features.

VI. CONCLUSIONS

In this paper, a new feature weighting method is pro-
posed for naive Bayesian learning. An information-theoretic
method for calculating weight of each feature has been
developed using Kullback-Leibler measure.

In order to compare the performance of the proposed
feature weighting method, the method is tested using a num-
ber of datasets. We present two implementations, one uses
split information, while the other does not. These methods
are compared with other traditional classification methods.
Comprehensive experiments validate the effectiveness of
the proposed weighting method. As a result, this work
suggests that the performance of naive Bayesian learning
can be improved even further by using the proposed feature
weighting approach.

ACKNOWLEDGMENTS

The first author was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) (Grant number: 2009-0079025 and 2011- 0023296),
and part of this work was conducted when the first author
was visiting at the University of Oregon.

!!555000

Table I
ACCURACIES OF THE METHODS

dataset FWNB FWNB-NS NB TAN NBTree J48
abalone ∗ 26.1 ± 1.7 ♣ 26.2 ± 1.5 26.1 ± 1.9 25.8 ± 2.0 26.1 ± 1.9 24.7 ± 1.6
balance 71.6 ± 4.4 ♣ 72.4 ± 7.4 ∗ 72.3 ± 3.8 71.0 ± 4.1 70.8 ± 3.9 69.3 ± 3.8
crx ♣ 86.3 ± 2.7 ♣ 86.3 ± 3.8 85.4 ± 4.1 85.8 ± 3.7 85.3 ± 3.9 85.1 ± 3.7
cmc 51.5 ± 5.3 52.5 ± 3.6 52.1 ± 3.8 ♣ 54.6 ± 3.8 52.3 ± 4.0 ∗ 53.8 ± 3.7
dermatology ♣ 98.5 ± 2.7 97.4 ± 3.1 ∗ 97.9 ± 2.2 97.3 ± 2.7 97.0 ± 2.9 94.0 ± 3.3
diabetes ∗ 78.0 ± 3.6 ∗ 78.0 ± 4.1 77.9 ± 5.2 ♣ 78.6 ± 4.2 77.2 ± 4.7 77.3 ± 4.9
echocardiogram 91.9 ± 8.5 91.9 ± 8.5 90.0 ± 14.0 88.8 ± 13.4 ∗ 94.1 ± 10.3 ♣ 96.4 ± 7.1
haberman ∗ 74.1 ± 8.0 ♣ 74.2 ± 8.5 71.6 ± 3.9 71.6 ± 3.9 71.6 ± 3.9 71.2 ± 3.6
hayes-roth 78.6 ± 10.9 ∗ 80.3 ± 8.1 77.0 ± 11.6 64.9 ± 10.5 ♣ 82.1 ± 8.7 70.0 ± 9.4
ionosphere 89.1 ± 5.4 89.1 ± 4.6 89.1 ± 5.4 ♣ 92.7 ± 4.1 ∗ 92.5 ± 4.7 89.4 ± 5.1
iris 94.0 ± 7.3 93.9 ± 7.9 ♣ 94.6 ± 5.2 ∗ 94.2 ± 5.6 ∗ 94.2 ± 5.2 93.8 ± 4.8
kr-vs-kp 89.6 ± 1.4 90.8 ± 0.9 87.8 ± 1.7 92.3 ± 1.5 ∗ 97.8 ± 2.0 ♣ 99.4 ± 0.3
lung cancer ∗ 71.6 ± 35.1 70.0 ± 33.1 60.0 ± 29.6 61.1 ± 30.2 60.5 ± 29.8 ♣ 78.1 ± 22.5
lymphography 78.9 ± 9.6 80.4 ± 11.0 ∗ 84.5 ± 9.8 ♣ 86.8 ± 8.8 81.4 ± 10.2 76.5 ± 10.1
monk-1 39.7 ± 5.7 ∗ 41.3 ± 5.1 39.1 ± 6.2 33.7 ± 4.5 37.5 ± 7.1 ♣ 44.8 ± 8.0
postoperative ♣ 70.9 ± 13.0 61.2 ± 17.1 66.5 ± 20.8 66.5 ± 10.9 65.1 ± 11.1 ∗ 69.6 ± 6.1
promoters ♣ 93.3 ± 7.8 ♣ 93.3 ± 6.5 90.5 ± 8.8 81.3 ± 11.1 87.0 ± 12.8 79.0 ± 12.6
spambase 91.2 ± 1.1 91.0 ± 1.4 90.2 ± 1.2 ∗ 93.1 ± 1.1 ♣ 93.4 ± 1.1 92.9 ± 1.1
spect ∗ 73.7 ± 18.1 ♣ 78.7 ± 17.7 ∗ 73.7 ± 20.7 72.5 ± 15.1 67.6 ± 14.6 69.6 ± 14.6
splice 94.1 ± 0.5 94.4 ± 1.3 ∗ 95.2 ± 1.3 95.0 ± 1.1 ♣ 95.4 ± 1.1 94.1 ± 1.2
tae 48.3 ± 19.0 50.9 ± 13.1 ∗ 51.8 ± 12.9 49.5 ± 12.5 ♣ 53.2 ± 11.8 50.6 ± 11.5
tic-tac-toe 69.9 ± 2.6 69.9 ± 6.5 70.2 ± 6.1 75.8 ± 3.5 ∗ 84.1 ± 3.4 ♣ 85.5 ± 3.2
vehicle 62.1 ± 5.7 60.9 ± 7.3 61.9 ± 5.5 ♣ 73.3 ± 3.5 70.6 ± 3.5 ∗ 70.7 ± 3.8
wine ∗ 97.1 ± 2.9 ∗ 97.1 ± 4.7 ♣ 97.7 ± 2.9 95.8 ± 4.2 96.1 ± 5.0 90.3 ± 7.2
zoo 93.0 ± 9.4 ∗ 96.0 ± 5.1 91.0 ± 12.8 ♣ 96.6 ± 5.5 94.4 ± 6.5 92.6 ± 7.3
1st 4 6 2 6 4 5
2nd 6 5 6 2 5 3
Sum 10 11 8 8 9 8

REFERENCES

[1] Peter Clark and Robin Boswell. Rule induction with cn2:
some recent improvements. In EWSL-91: Proceedings of the
European working session on learning on Machine learning,
pages 151–163, 1991.

[2] Pedro Domingos and Michael Pazzani. On the optimality of
the simple bayesian classifier under zero-one loss. Machine
Learning, 29(2-3), 1997.

[3] Usama M. Fayyad and Keki B. Irani. Multi-interval dis-
cretization of continuous-valued attributes for classification
learning. In International Joint Conference on Artificial
Intelligence, pages 1022–1029, 1993.

[4] A. Frank and A. Asuncion. UCI machine learning repository,
2010.

[5] Nir Friedman, Dan Geiger, Moises Goldszmidt, G. Provan,
P. Langley, and P. Smyth. Bayesian network classifiers. In
Machine Learning, pages 131–163, 1997.

[6] Thomas Gärtner and Peter A. Flach. Wbcsvm: Weighted
bayesian classification based on support vector machines.
In ICML ’01: Proceedings of the Eighteenth International
Conference on Machine Learning, 2001.

[7] Mark Hall. A decision tree-based attribute weighting filter
for naive bayes. Knowledge-Based Systems, 20(2), 2007.

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The weka
data mining software. An Update; SIGKDD Explorations,
11(1), 2009.

[9] Ron Kohavi. Scaling up the accuracy of naive-bayes clas-
sifiers: A decision-tree hybrid. In Second International
Conference on Knoledge Discovery and Data Mining, 1996.

[10] Ron Kohavi and George H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[11] S. Kullback and R. A. Leibler. On information and suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79–86,
1951.

[12] Pat Langley and Stephanie Sage. Induction of selective
bayesian classifiers. In in Proceedings of the Tenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 399–406,
1994.

[13] J. Ross Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[14] C. A. Ratanamahatana and D. Gunopulos. Feature selection
for the naive bayesian classifier using decision trees. Applied
Artificial Intelligence, 17(5-6):475–487, 2003.

[15] Dietrich Wettschereck, David W. Aha, and Takao Mohri. A
review and empirical evaluation of feature weighting methods
for a class of lazy learning algorithms. Artificial Intelligence
Review, 11:273–314, 1997.

!!555!

