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Abstract. Correlation is an important statistical measure for estimat-
ing dependencies between numerical attributes in multivariate datasets.
Previous correlation discovery algorithms mostly dedicate to find piece-
wise correlations between the attributes. Other research efforts, such
as correlation preserving discretization, can find strongly correlated
intervals through a discretization process while preserving correlation.
However, discretization based methods suffer from some fundamental
problems, such as information loss and crisp boundary. In this paper,
we propose a novel method to discover strongly correlated intervals
from numerical datasets without using discretization. We propose a
hypergraph model to capture the underlying correlation structure in
multivariate numerical data and a corresponding algorithm to discover
strongly correlated intervals from the hypergraph model. Strongly corre-
lated intervals can be found even when the corresponding attributes are
less or not correlated. Experiment results from a health social network
dataset show the effectiveness of our algorithm.

1 Introduction

Correlation is a widely used statistic measure for mining dependencies in multi-
variate data sets. Its value typically reflexes the degree of covariance and contra-
variance relationships in numerical data. Previous data mining algorithms focus
on discovering attribute sets with high piecewise correlations between attributes.
Such correlation measure shows a high level picture of the dependency profile in
data, nevertheless, they can only reveal the correlations of numerical attributes
in the scope of full range. The numerical data themselves are often considered
as containing richer information than just the high level attribute-wise correla-
tions. For example, in the meteorology data, the rate of precipitation is more
positively (or negatively) correlated with humidity (or air pressure) especially
when the humidity is large enough (e.g., when humidity ≥ 80 %).

In this paper, we address the problem of discovering the intervals with strong
correlations from numerical data. The patterns discovered are in the form of
interval sets, for example, “Humidity [20%, 30% ], Precipitation[70%, 90% ],
Correlation 0.81”. The correlation of the intervals, in this example, 0.81, is
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calculated by the correlation of all data instances that fall inside of the ranges
of intervals. The strongly correlated intervals would provide us valuable insights
with more detail dependencies hidden in the data. For example, in the finan-
cial market data, the demands of stocks and bonds generally raise as the prices
fall. This market principle of the price and demand is the corner stone of a
stable financial market. However, such principle might not hold under certain
circumstances, such as a potential economic crisis. When the prices of stocks
fall below certain thresholds and a crash in the stock market is triggered, the
demand would fall along with the decline of the price for a certain price range.
In this example, the strong correlated intervals from historical transaction data
will provide investors with useful insights on when and how to avoid the risks in
the financial investment.

Discretization [6] is one of the intuitive ways to generate correlated intervals
on numerical attributes. Mehta et al. [9] proposed an unsupervised discretiza-
tion method which preserves the underlying correlation information during the
discretization process. It can serve as a preprocessing step for further data min-
ing applications such as classification and frequent itemset mining. While it can
discover strongly correlated intervals, there are some fundamental problems for
discretization. For example, the crisp boundary problem [5] forces the discretiza-
tion boundaries to make trade-offs between adjacent intervals on all attributes.
Information in data may lose during the discretization as well. With regard-
ing to the size of intervals, we usually face a dilemma to decide the quantity
of segmentations. More segmentations means less information loss during the
discretization process, while less segmentations will lead to large intervals that
strong correlations between small intervals cannot be discovered.

In this paper, we propose a novel method to discover the strongly correlated
intervals without suffering from the problems in the discretization based meth-
ods. We propose to model the numerical data with a hypergraph representation
and use the average commute time distances to capture the underlying correla-
tions. We propose a corresponding algorithm to discover the intervals with high
piecewise correlations. One strength of our algorithm is that the discovery of
intervals and their correlation optimization are achieved in a single step. Each
boundary of the intervals are optimized independently. Therefore, they would
not suffer from the crisp boundary problem or information loss problem.

The correlation measure we use in this paper is the Spearman’s rank corre-
lation coefficient [4]. The Spearman’s rank correlation coefficient is defined as:

ρ =
∑

i(xi − x̄)(yi − ȳ)
√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
,

in which x̄ and ȳ stand for the average order ranks of attribute x and y respec-
tively. Based on the Spearman’s correlation coefficient, we also propose the cor-
relation gain and normalized correlation to evaluate our approach from different
perspectives.

The correlation gain is defined as the ratio between the correlation of the
intervals and the correlation of the related attributes,
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ρgain =
ρ

ρatt
,

in which ρatt is the correlation between related attributes. High correlation gain
implies that even though the two attributes are less correlated in general, strong
correlations might still be found between intervals on the attributes. The inter-
vals with high correlation gain are valuable because it can reveal the strongly
correlated intervals that hide under the less correlated attributes.

The normalized correlation is an estimation of correlation which depends on
both the underlying correlation priori and the number of data instances avail-
able. Statistically, the estimation deviation has a negative relationship with the
number of instances [4]. For example, for a dataset with only 2 data instances the
correlation is always ±1 with infinite deviation, while for a dataset with infinite
number of instances, the estimation converges to the true correlation value with
0 deviation. In this paper we also introduce normalized correlation ρnorm [11] to
generate strongly correlated intervals. It is defined as

ρnorm = ρ
√

n,

in which ρ is the correlation estimation and n is the number of data instances
used for the estimation. The normalized correlation makes trade off between the
estimated value and the estimation accuracy. The intervals with too less data
instances will result in low ρnorm due to the large deviation and so does the
intervals with many data instances such as the full range intervals due to lower
correlation value. It also relieves the effort to pre-define a threshold for selecting
certain intervals as “strongly correlated.”

Our main contributions in this paper are:

– We propose a hypergraph random walk model to capture the underlying cor-
relation of the numerical data. This model can capture the correlation rela-
tionship at the interval level rather than at the attribute level using a measure
based on average commute time distance.

– We propose an algorithm to discover strongly correlated intervals based on the
hypergraph random walk model. We are able to discover strongly correlated
intervals with high accuracy without suffering from the information loss and
crisp boundary problem in the discretization based methods.

– We propose the normalized correlation to generate strongly correlated inter-
vals without a pre-defined threshold. We also propose the correlation gain to
find the highly correlated intervals even the corresponding attributes are less
correlated.

– We conduct experiments in a health social network dataset and the results
show the effectiveness of our algorithm.

The rest of this paper is organized as follows: we give a brief introduction of
related works in Sect. 2. We make a detailed description of our method in Sect. 3.
We report experiment results in Sect. 4. We conclude the paper in Sect. 5.
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2 Related Work

Previous research efforts have proposed various methods for the discovery of
correlated intervals. Discretization is the one of the most straight forward way
to generate intervals for various optimization goals. Kotsiantis and Kanellopou-
los [6] made a thorough survey of the discretization techniques. These discretiza-
tion methods target different optimization goals, such as minimizing the infor-
mation loss, maximizing the entropy etc. Mehta et al. [9] proposed a PCA based
unsupervised discretization method which can preserve the underlying correla-
tion structure during the discretization process. The discretization process serves
as an independent process which can be fed into many other data mining tasks
such as association mining and clustering.

Quantitative association mining is another technique related to discovering
strongly correlated intervals. The quantitative association mining is an extension
of the traditional association mining. It generates intervals on the numerical
data instead of the categorical data. Srikant and Agrawal [10] first proposed an
algorithm that deals with numerical attributes by discretizing numerical data
into categorical data. Fukuda et al. [12,13] proposed several methods that either
maximize the support with pre-defined confidence or maximize the confidence
with pre-defined support by merging up adjacent instance buckets. However,
the support and confidence measures were attested to be inadequate to discover
strongly correlated intervals due to the catch-22 problem [10] and the crisp
boundary problem [2] as well.

3 Discovering Strongly Correlated Intervals
with Hypergraphs

In this section, we present our hypergraph based method which can efficiently
discover strongly correlated intervals. We propose a hypergraph model to rep-
resent the correlation structure of numerical data. The correlation measure is
captured by the average commute time distance between vertices in the hyper-
graph model.

3.1 Hypergraph and Average Commute Time Distance

Hypergraph is a generalization of regular graph that each edge is able to incident
with more than two vertices. It is usually represented by G = (V,E,W ), in which
V , E and W are the set of vertices, edges and weights assigned to corresponding
edges respectively. The incident matrix of a hypergraph G is defined by H in
which

H(v, e) =
{

1 if v ∈ e
0 if v /∈ e

(1)

Zhou et al. [14] generalized the random walk model on hypergraph and defined
the average commute time similarity Sct and the Laplacian similarity SL+ . The
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Fig. 1. Hypergraph representation of numerical data

average commute time similarity n(i, j) is defined by

n(i, j) = VG(l+ii + l+jj − 2l+ij), (2)

where l+ij is the ith and jth element of matrix L+, L is the hypergraph Laplacian:

L = Dv − HWD−1
e HT , (3)

and {.}+ stand for Moore-Penrose pseudoinverse. Dv and De denote the diagonal
matrix containing the degree of vertices and edges respectively. VG = tr(Dv) is
the volume of hypergraph. The average commute time distance is defined by the
inversion of normalized average commute time similarity [7]. As mentioned in [8]
the commute-time distance n(i, j) between two node i and j has the desirable
property of decreasing when the number of paths connecting the two nodes
increases. This intuitively satisfies the property of the effective resistance of the
equivalent electrical network [3].

3.2 Hypergraph Representation of Numerical Data

As illustrated in Fig. 1, it shows an example of numerical data with values sorted
in the ascending order on attributes. Let A = {att1, att2, ..., attM} be the set
of attributes, in which M is the number of attributes. The jth value of the ith
attribute atti is denoted as Dij . The boundary candidates ci1, ci2, ... , ci(N−1)

are the averages of each two adjacent values on the corresponding attribute
atti. The boundaries of intervals are defined on these boundary candidates. The
set of attributes, instances and intervals are denoted as Satt, Sinst and Sinter

respectively. Based on the sorted numerical data, we further build the data
representation with a hypergraph model. Each data value Dij corresponds to
a vertex in the hypergrah. Each pair of vertices with adjacent values, Dij and
Di(j+1), are connected through a hyperedge with a weight proportion to the
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Fig. 2. Relationship between correlation and average commute time distance

inversion of the distance between them. The vertices in the same data instance
with value Di1, Di2,..., DiM are connected by a hyperedge as well.

As shown in Fig. 2, the data instances below are strongly negative cor-
related and the data instances above are less strongly correlated. The non
direct random walk paths on strongly correlated data instances, for example,
D11 → D23 → D22 → D12, is shorter than the path on loosely correlated data
instances, for example, D15 → D26 → D24 → D16, because the corresponding
data values on the other correlated attributes are closer as well. In this case, the
average commute time distance between the strongly correlated vertices is rela-
tively shorter than the not strongly correlated vertices. For the reason above, the
average commute time distance from random walk model is capable of capturing
the correlation measures in our problem.

3.3 Algorithm Description

Based on the hypergraph model, we propose an algorithm for discovering
strongly correlated intervals in numerical data. The pseudo code of our cor-
related interval discovery algorithm is shown in Algorithm 1. The algorithm first
builds up the hypergraph model as described in Sect. 3.1. Adjacency matrix H
is built up for the hypergraph. In Function Interval Set Discovery, the Lapla-
cian matrix is computed from Eq. 3. The average commute time distance matrix
is generated with entry i, j according to Formula 2. The distance between the
adjacent data instances are the inversion of the average commute time similarity.
In Function Merge Interval, a bottom up mining process is applied simultane-
ously on all the attributes. For each attribute, an interval ik is initialized with
boundary [ci, ci+1] for node nk, i.e., exactly one node for each interval. A dis-
tance matrix Ci is maintained for each attribute, the distances between intervals
are initialized as the average commute time distance for the node corresponding
to this interval. In each iteration, for each attribute, the algorithm looks up the
minimum distance between the adjacent intervals ik and ik+1, then merges these
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Algorithm 1. Correlated Interval Discovery Algorithm
Function: Interval Set Discovery
Initialize: C = RM×M

for i, j = 1 to M do
Ci,j = VG(l+ii + l+jj − 2l+ij)

end for
while mergeable do

for i, j = 1 to M do
Merge Interval

end for
end while

Function: Merge Interval
Initialize: D = C
while intervals generated do

k = min index(Dk, k+1, k ∈ 1, ..., M − 1)
ik = Merge(ik, ik+1)
for k = 1 to M-1 do

Di,k = Di,k + Di+1,k

Dk,i = Dk,1 + Dk,i+1

end for
end while

two intervals. The distance matrix is updated accordingly. In every few itera-
tions, for each generated interval, we scan the corresponding intervals on the rest
attributes. The normalized correlation is calculated for these pairs of intervals.
The intervals are used to update the final result, and only the top k correlated
interval sets with best normalized correlations are kept in set. If the correlation
metrics of certain intervals are above the user pre-defined threshold, such as the
IntervalA and IntervalB in Fig. 1, then the two intervals are combined into one
attribute/interval set {Satt, Sinter} and an interval set is generated. The mining
process continues to generate interval sets till intervals on all attributes merges
into full ranges.

4 Experimental Results

We evaluate our method on a real life health social network dataset. SMASH [1]
is the abbreviation of Semantic Mining of Activity, Social, and Health Data
Project. The dataset collected in this project include social connections and rela-
tions, physical activities, and biomarkers from 265 overweight or obese human
subjects. After preprocessing, the input data in our experiment contain the fol-
lowing attributes for the physical activities and biomarkers. The physical activ-
ity indicator Ratio No.Steps is the ratio of steps that a human subject walked
through in two consecutive periods of time. Three biomarkers HDL, LDL and
BMI are used for the health condition indicators. The HDL and LDL stand for
the high density lipoprotein and low density lipoprotein respectively. The rate of
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Table 1. Experiment results from the SMASH data

(a) Top Five Rules from Correlation Preserving Discretization
Attribute Set Correlation Correlation Gain Normalized Correlation

Ratio LDL[0.74, 0.85] Ratio No.Steps[0.32, 0.89] 0.62 13.70 1.68
Ratio BMI[0.93, 1.01] Ratio No.Steps[0.89, 1.21] 0.82 5.13 1.31
Ratio LDL[0.99, 1.09] Ratio BMI[0.93, 1.01] 0.81 2.86 0.73
Ratio BMI[1.01, 1.12] Ratio LDL[0.99, 1.09] 0.78 2.75 1.16
Ratio BMI[1.01, 1.12] Ratio LDL[1.09, 1.31] 0.64 2.25 1.34

(b) Top Five Rules from Hypergraph Based Method Ranked by Correlation Gain
Attribute Set Correlation Correlation Gain Normalized Correlation

Ratio HDL[0.97, 1.26] Ratio BMI[0.89, 1.00] 0.94 45.22 1.67
Ratio HDL[0.79, 0.91] Ratio No.Steps[0.78, 3.94] 0.57 28.15 2.51
Ratio LDL[1.00, 1.02] Ratio No.Steps[0.39, 3.82] 1.00 22.11 2.01
Ratio HDL[0.78, 1.25] Ratio No.Steps[0.27, 3.96] 0.37 18.41 3.85
Ratio LDL[0.88, 1.02] Ratio No.Steps[0.01, 3.82] 0.72 16.12 1.65

(c) Top Five Rules Ranked by Normalized Correlation
Attribute Set Correlation Correlation Gain Normalized Correlation

Ratio LDL[0.70,1.00] Ratio HDL[0.86,1.00] 0.55 2.01 5.75
Ratio LDL[1.00,1.18] Ratio HDL[1.00,1.14] 0.53 1.93 4.99
Ratio LDL[0.69,0.93] Ratio BMI[0.97,0.99] 0.63 21.01 4.14
Ratio LDL[0.92,1.05] Ratio No.Steps[1.17,2.31] 0.56 10.68 3.87
Ratio HDL[1.02,1.08] Ratio No.Steps[1.20,1.91] 0.79 194.41 3.71

HDL usually relates with decreasing rate of heart related disease and the reverse
case for LDL. The BMI stands for body mass index which is a common indicator
of the obesity level.

In Table 1 we list our experiment results from the SMASH dataset. The
interval sets in Table 1(a) and 1(b) are results from the correlation preserving
discretization [9] and our hypergraph based method respectively. Comparing the
results in the two tables, our algorithm not only returns intervals with higher
correlations, but also higher correlation gains. Note that the interval set discov-
ered by our algorithm has the ability to overlap with each other. For example,
the second and third interval sets in Table 1(b) “Ratio HDL[0.79, 0.91 ], Ratio
No.Steps[0.78, 3.94 ]” and “Ratio LDL[1.00, 1.02 ], Ratio No.Steps [0.39, 3.82 ],”
the intervals on Ratio No.Steps has a large overlapping between 0.78 and 3.82.
On the contrary, the interval set found by correlation preserving discretization
clearly suffers from the crisp boundary problem. Note the boundaries of intervals
on attribute Ratio BMI in the last four interval sets in Table 1(a) only have
two choices, Ratio BMI [0.93, 1.01 ] and Ratio BMI [1.01, 1.12 ]. The decision of
the boundaries on each attribute has to take into consideration of the correla-
tions with all other attributes. The trade-off in the discretization methods makes
them hard to make an optimization for every interval set discovered in the data.
Therefore, intervals found by the correlation preserving discretization method
are suboptimal.

Strongly correlated intervals provide us interesting information with regard-
ing to relationships between the health condition of cardiovascular system and
obesity. As we mentioned before, as a good health indicator, HDL is usually
expected to have a strong correlation with other health condition factors such
as BMI. However, the correlation between the two attributes, HDL and BMI,
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will be mostly ignored because the correlation is not large enough to raise any
attention. The interval sets discovered by our algorithm show that, when Ratio
BMI changes under the moderate range, say close to 1.00, the correlations are
much larger than in the rest conditions. It indicates that with regarding to the
weight variations, no matter increasing or losing weight, the first few pounds
might be ones that affect the health condition most. On the other hand, it also
indicates that drastic exercises with a rapid weight losing rate will be likely, on
the contrary, result in a deterioration of cardiovascular health condition.

Table 1(c) shows the results when we use normalized correlation as the cor-
relation measure. Note that the last interval set in Table 1(c) which has fairly
high correlation gain does not show up in Table 1(a) and 1(b). This interval set
is not discovered in the first two experiments because the sizes of intervals are
not above the user defined threshold. The normalized correlation renders us the
potential to find the intervals that is below the user defined threshold. This indi-
cates the fact that even the situation is rare, HDL and Ration No.Steps has a
positive correlation when the amount of exercise increases drastically. Although
generally exercises do not make drastic changes on HDL, in the situation when
the subject changes the amount of exercises drastically, such as at the beginning
of weight reducing program, it will result in a greater change of HDL.

5 Conclusions

We present a novel algorithm for discovering strongly correlated intervals from
numerical data. Previous research either dedicates to discover the correlated
attribute sets from the full ranges of data or uses discretization methods to trans-
form the numerical data before the pattern discovery. These methods, however,
suffer from the information loss or crisp boundary problems. The method we
proposed in this paper can discover strongly correlated intervals from the less
correlated attributes. These discovered intervals are not only strongly correlated
but also have independently optimized boundaries with regarding to the corre-
lation measures. Experiment results in a health social network dataset show the
effectiveness of our method.
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