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Abstract. Ontology matching is the process of automatically deter-
mining the semantic equivalences between the concepts of two ontolo-
gies. Most ontology matching algorithms are based on two types of
strategies: terminology-based strategies, which align concepts based on
their names or descriptions, and structure-based strategies, which exploit
concept hierarchies to find the alignment. In many domains, there is
additional information about the relationships of concepts represented
in various ways, such as Bayesian networks, decision trees, and associa-
tion rules. We propose to use the similarities between these relationships
to find more accurate alignments. We accomplish this by defining soft
constraints that prefer alignments where corresponding concepts have the
same local relationships encoded as knowledge rules. We use a probabilis-
tic framework to integrate this new knowledge-based strategy with stan-
dard terminology-based and structure-based strategies. Furthermore, our
method is particularly effective in identifying correspondences between
complex concepts. Our method achieves better F-score than the state-
of-the-art on three ontology matching domains.

1 Introduction

Ontology matching is the process of aligning two semantically related ontolo-
gies. Traditionally, this task is performed by human experts from the domain
of the ontologies. Since the task is tedious and error prone, especially in large
ontologies, there has been substantial work on developing automated or semi-
automated ontology matching systems [18]. While some automated matching
systems make use of data instances, in this paper we focus on the schema-level
ontology matching task, in which no data instance is used.

Previous automatic ontology matching systems mainly use two classes of
strategies. Terminology-based strategies discover corresponding concepts with
similar names or descriptions. Structure-based strategies discover correspond-
ing groups of concepts with similar hierarchies. In many cases, additional
information about the relationships among the concepts is available through
domain models, such as Bayesian networks, decision trees, and association rules.
A domain model can be represented as a collection of knowledge rules, each of
which denotes a semantic relationship among several concepts. These relation-
ships may be complex, uncertain, and rely on imprecise numeric values. In this
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paper, we introduce a new knowledge-based strategy which uses the structure of
these knowledge rules as (soft) constraints on the alignment.

As a motivating example, consider two ontologies in the basketball game
domain. One ontology has datatype properties height, weight, center, forward
and guard for players, while the other ontology has the corresponding datatype
properties h, w, and position. Terminology-based strategies may not identify
these correspondences. However, if we know that a large value of height implies
center is true in the first ontology, and the same relationship holds for h and
position = Center in the second ontology, then we tend to believe that height
maps to h and center maps to position = Center.

We use Markov logic networks (MLNs) [4] as a probabilistic language to
combine the knowledge-based strategy with other strategies, in a formalism sim-
ilar to that of [12]. In particular, we encode the knowledge-based strategy with
weighted formulas that increase the probability of alignments where correspond-
ing concepts have isomorphic relationships. We use an MLN inference engine to
find the most likely alignment. We name our method Knowledge-Aware Ontology
Matching (KAOM).

Our approach is also capable of identifying complex correspondences, an
extremely difficult task in ontology matching. A complex correspondence is
a correspondence between a simple concept and a complex concept (e.g.,
grad student maps to the union of PhD and Masters). This can be achieved by
constructing a set of complex concepts (e.g., unions of concepts) in each ontology,
subsequently generating candidate complex correspondences, and using multiple
strategies – including the knowledge-based strategy – to find the correct ones.

The contributions of this work are as follows:

– We show how to represent common types of domain models as knowledge
rules, and how to use these knowledge rules to obtain more accurate align-
ments. Our approach is especially effective in identifying the correspondences
of numerical or nominal datatype properties. By incorporating complex con-
cepts, our approach is also capable of discovering complex correspondences,
which is a very difficult scenario in the ontology matching task.

– We evaluate the effectiveness of KAOM in three domains with different types
of knowledge rules, and show that our approach not only outperforms the
state-of-the-art approaches for ontology matching in one-to-one matching, but
also discovers complex correspondences successfully.

The paper is organized as follows. In Sect. 2, we define ontology matching
and review previous work. In Sect. 3, we introduce the concept of “knowledge
rules” with a definition and examples. In Sect. 4, we present the knowledge-
based strategy. In Sect. 5, we show how to incorporate complex concepts in our
method. In Sect. 6, we formalize our method with Markov logic networks. We
present experimental results in Sect. 7 and conclude in Sect. 8.



96 S. Jiang et al.

2 Ontology Matching

We begin by formally defining ontology matching.

Definition 1 (Ontology Matching [5]). Given two ontologies O1 and O2, a
correspondence is a 3-tuple 〈e1, e2, r〉 where e1 and e2 are entities of the first and
second ontologies respectively, and r is a semantic relation such as equivalence
(≡) and subsumptions (� or �). An alignment is a set of correspondences.
Ontology matching is the task or process of identifying the correct semantic
alignment between the two ontologies. In most cases, ontology matching focuses
on equivalence relationships only.

Most existing schema-level ontology matching systems use two types of
strategies: terminology-based and structure-based. Terminology-based strategies
are based on terminological similarity, such as string-based or linguistic similar-
ity measures. Structure-based strategies are based on the assumption that two
matching ontologies should have similar local or global structures, where the
structure is represented by subsumption relationships of classes and properties,
and domains and ranges of properties. Advanced ontology matching systems
often combine the two types of strategies [1,10,11,14]. See [18] for a survey of
ontology matching systems and algorithms.

Recently, a probabilistic framework based on Markov logic was proposed to
combine multiple strategies [12]. In particular, it encodes multiple strategies and
heuristics into hard and soft constraints, and finds the best matching by min-
imizing the weighted number of violated constraints. The constraints include
string similarity, the cardinality constraints which enforce that each concept
matches at most one concept, the coherence constraints which prevent incon-
sistency induced by the matching, and the stability constraints which penalize
dissimilar local subsumption relationships.

Definition 2 (Complex Correspondences). A complex concept is a com-
position (e.g., unions, complements) of one or more simple concepts. In OWL1,
there are several constructors for creating complex classes and properties (see
the top part of Table 1 for an incomplete list of constructors). A complex cor-
respondence is an equivalence relation between a simple class or property and a
complex class or property in two ontologies [17].

Previous work has taken several different approaches to find complex cor-
respondences (i.e., complex matching). [2] constructs candidates for complex
correspondences using operators for primitive classes, such as string concate-
nation or arithmetic operations on numbers. [17] summarizes four patterns for
building up complex correspondences based on linguistic and structural features
given a candidate one-to-one alignment: Class by Attribute Type (CAT), Class
by Inverse Attribute Type (CIAT), Class by Attribute Value (CAV), and Prop-
erty Chain pattern (PC). Finally, when aligned or overlapping data is available,
inductive logic programming (ILP) techniques can be used as well [6,15].
1 http://www.w3.org/TR/owl2-primer/.

http://www.w3.org/TR/owl2-primer/


Ontology Matching with Knowledge Rules 97

Many ontology matching systems make use of data instances to some extent
(e.g., [2,3,6,15]). However, in this paper, we focus on the case where data are
not available or data sharing is not preferred because of communication cost or
privacy concerns.

3 Representation of Domain Knowledge

In the AI community, knowledge is typically represented in formal languages,
among which ontology-based languages are the most widely used forms. The
Web Ontology Language (OWL) is the W3C standard ontology language that
describes the classes and properties of objects in a specific domain. OWL and
many other ontology languages are based on variations of description logics.

In ontology languages such as OWL, knowledge is represented as logic axioms.
These axioms describe properties of classes or relations (e.g., a relation is func-
tional, symmetric, or antisymmetric, etc.), or a relationship of several entities
(e.g., the relation ‘grandfather’ is the composition of the two relations ‘father’
and ‘parent’).

The choice of using description logic as the foundation of the Semantic Web
ontology languages is largely due to the trade-off between expressivity and rea-
soning efficiency. In tasks such as ontology matching, reasoning does not need
to be instant, so we can afford to consider other forms of knowledge outside of
a specific ontology language or description logic.

Definition 3 (Knowledge Rule). A knowledge rule is a sentence R(a, b, . . . ; θ)
in a formal language which consists of a relation R, a set of entities (i.e., classes,
attributes or relations) {a, b, . . .}, and (optionally) a set of parameters θ. A knowl-
edge rule carries logical or probabilistic semantics representing the relationship
among these entities. The specific semantics depend on R.

Many domain models and other types of knowledge can be represented as
sets of knowledge rules, each rule describing the relationship of a small number
of entities. The semantics of each relationship R can typically be expressed with
a formal language. Table 1 shows some examples of the symbols used in formal
languages such as description logic, along with their associated semantics.

We illustrate a few forms of knowledge rules with the following examples.
For each rule, we provide a description in English, a logical representation, and
an encoding as a knowledge rule with a particular semantic relationship, Ri. We
define a new relationship in each example, but, in a large domain model, most
relationships would be appear many times in different rules.

Example 1. The submission deadline precedes the camera ready deadline:

paperDueOn ≺ manuscriptDueOn

This is represented as R1(paperDueOn, manuscriptDueOn) with R1(a, b) : a ≺ b.
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Table 1. Syntax and semantics of DL symbols (top), DL axioms (middle), and other
knowledge rules used in the examples of the paper (bottom)

Syntax Semantics

� D
⊥ ∅
C � D CI ∩ DI

C � D CI ∪ DI

¬C D\CI

∀R.C {x ∈ D|∀y((x, y) ∈ RI → y ∈ CI)}
∃R.C {x ∈ D|∃y((x, y) ∈ RI ∧ y ∈ CI)}
R ◦ S {(x, y)|∃z((x, z) ∈ RI ∧ (z, y) ∈ SI)}
R− {(x, y)|(y, x) ∈ RI}
R � C {(x, y) ∈ RI |x ∈ CI}
R � C {(x, y) ∈ RI |y ∈ CI}
C � D CI ⊆ DI

C � ¬D CI ∩ DI = ∅
R ≺ S y < y′ for ∀(x, y) ∈ RI ∧ (x, y′) ∈ SI

C ⇒ D Pr(DI |CI) is close to 1

Example 2. A basketball player taller than 81 inches and heavier than 245
pounds is likely to be a center:

h > 81 ∧ w > 245 ⇒ pos = Center

This rule can be viewed as a branch of a decision tree or an association rule.
It can be represented as R2(h, w, pos=Center, [81, 245]), with R2(a, b, c, θ) : a >
θ1 ∧ b > θ2 ⇒ c.

Example 3. A smoker’s friend is likely to be a smoker as well:

Smokes(x) ∧ Friend(x, y) ⇒ Smokes(y)

Relational rules such as this one describe relationships of attributes across mul-
tiple tables, as opposed to propositional data mining rules that are restricted to
a single table. This rule can be represented as R3(Smoke, Friend) with R3(a, b) :
a(x) ∧ b(x, y) ⇒ a(y).

For the remainder of this paper, we will assume that the knowledge in both
domains is represented as knowledge rules, as described in this section.

4 Our New Knowledge-Based Strategy

We propose a new strategy for ontology matching that uses the similarity of
knowledge rules in the two ontologies. It is inspired by the structure-based strat-
egy in many ontology matching algorithms (e.g., [11,12]). It naturally extends
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the subsumption relationship of entities in structure-based strategies to other
types of relationships.

We use Markov logic to combine the knowledge-based strategy with other
strategies. In particular, each strategy is represented as a set of soft constraints,
each of which assigns a score to the alignments satisfying it, and the alignment
with the highest total score is chosen as the best alignment. We now describe the
soft constraints encoding the knowledge-based strategy. Our complete Markov
logic-based approach, including the soft constraints required for the other strate-
gies, will be described in Sect. 6.

For each relation Rk that appears in both domains, we introduce a set of soft
constraints so that the alignments that preserve these relationships are preferred
to those that do not:

+wk Rk(a, b) ∧ ¬Rk(a′, b′) ⇒a 
≡ a′ ∨ b 
≡ b′

+w′
k Rk(a, b) ∧ Rk(a′, b′) ⇒a ≡ a′ ∧ b ≡ b′

∀a, b ∈ O1, a
′, b′ ∈ O2

These formulas assume Rk is a binary relation, but they trivially generalize to
any arity, e.g., Rk(a, b, c, d, e, . . .). Note that separate constraints are created
for each possible tuple of constants from the respective domains. The numbers
preceding the constraints (wk and w′

k) are the weights. A larger weight represents
a stronger constraint, since alignments are ranked based on the total weights of
the constraints they satisfy. A missing weight means the constraint is a hard
constraint which must be satisfied.

Example 4. A reviewer of a paper cannot be the paper’s author. In the cmt2

ontology we have R4(writePaper, readPaper) and in the confOf ontology we have
R4(write, reviews) where R4(a, b) : a � ¬b is the disjoint relationship of prop-
erties. Applying the constraint formulas defined above, we increase the score of
all alignments containing the two correct correspondences: writePaper ≡ writes

and readPaper ≡ reviews.

Rules involving continuous numerical attributes often include parameters
(e.g., thresholds in Example 2) that do not match between different ontologies.
In order to apply the knowledge-based strategy to numerical attributes, we make
the assumption that corresponding numerical attributes roughly have a positive
linear transformation. This assumption is often true in real applications, for
instance, when an imperial measure of height matches to a metric measure of
height. We propose two methods to handle numerical attributes.

The first method is to compute a distance measure (e.g., Kullback-Leibler
divergence) between the distributions of the corresponding attributes in a can-
didate alignment. Although the two distributions describe different attributes,
the distance can be computed by assuming a linear transformation between the
2 Throughout the paper, we will use ontologies in the conference domain

(cmt, confOf, conference, edas, ekaw) and the NBA domain (nba − os, yahoo) in our
examples. The characteristics of these ontologies will be further described in Sect. 7.
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two attributes. The coefficients of the mapping relation can be roughly esti-
mated using the ranges of attribute values appearing in the knowledge rules (see
Example 5 below).

Specifically, if the distance between rules R(a, b, . . . , θ) and R(a’, b’, . . . , θ′)
is d, then we add the constraint:

a ≡ a′ ∧ b ≡ b′ ∧ c ≡ c′

with a weight of max(d0 − d, 0) for a given threshold d0.

Example 5. In the nba − os ontology, we have conditional rules converted from
a decision tree, such as

h > 81 ∧ w > 245 ⇒ Center

Similarly, in the nbayahoo ontology, we have

h’ > 2.06 ∧ w’ > 112.5 ⇒ Center’

Here the knowledge rules represent the conditional distributions of multiple enti-
ties. We define the distance between the two conditional distributions as

d(h, w, Center; h’, w’, Center’) =Ep(h,w)d(p(Center|h, w)||p(Center’|h’, w’))

where E(·) is expectation and d(p||p′) is a distance measure. Because Center and
Center′ are binary attributes, we simply use |p−p′| as the distance measure. For
numerical attributes, we can use the difference of two distribution histograms
as the distance measure. We assume the attribute correspondences (h and h’, w
and w’) are linear mappings, and the linear relation can be roughly estimated
(e.g., by simply matching the minimum and maximum numbers in these rules).
When computing the expectation over h and w, we apply the linear mapping to
generate corresponding values of h′ and w′, e.g., h′ = 0.025h, w′ = 0.45w. The
distribution of the conditional attributes p(h, w) can be roughly estimated as
independent and uniform over the ranges of the attributes.

The second method for handling continuous attributes is to discretize them,
reducing the continuous attribute problem to the discrete problem described
earlier. For example, suppose each continuous attribute x is replaced with
a discrete attribute xd, indicating the quartile of x rather than its original
value. Then we have R5(hd, wd, Center) and R5(h’d, w’d, Center’) with relation
R5(a, b, c) : a = 4 ∧ b = 4 ⇒ c, and the discrete value of 4 indicates that both a
and b are in the top quartile. Other discretization methods are also possible, as
long as the discretization is done the same way in both domains.

Our method does not rely on the forms of knowledge rules, nor does it rely
on the algorithms used to learn these rules. As long as similar techniques or tools
are used on both sides of ontologies, we would always be able to find interesting
knowledge-based similarities between the two ontologies.
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5 Finding Complex Correspondences

Our approach can also find complex correspondences, which contain complex
concepts in either or both of the ontologies. We add the complex concepts into
consideration and treat them the same way as simple concepts, and then we
jointly solve all the simple and complex correspondences by considering ter-
minology, structure, and knowledge-based strategies in a single probabilistic
formulation.

First, because complex concepts are recursively defined and potentially infi-
nite, we need to select a finite subset of complex concepts and use them to gen-
erate the candidate correspondences. We will only include the complex concepts
occurring in the ontology axioms or in the knowledge rules.

Second, we need to define a string similarity measure for each type of com-
plex correspondence. For example, [17] requires two conditions for a Class by
Attribute Type (CAT) matching pattern O1 : a ≡ O2 : ∃p.b (e.g., a =
Accepted Paper, p = hasDecision, b = Acceptance): a and b are terminolog-
ically similar, and the domain of p (Paper in the example) is a superclass of
a. We can therefore define the string similarity of a and ∃p.b to be the string
similarity of a and b which coincides with the first condition, and the second
condition is encoded in the structure stability constraints. The string similarity
measure of many other types of correspondences can be defined similarly based
on the heuristic method in [17]. If there does not exist a straight-forward way to
define the string similarity for a certain type of complex correspondences, we can
simply set it to 0 and rely on other strategies to identify such correspondences.

Lastly, we need constraints for the correspondence of two complex concepts.
The corresponding component concepts and same constructor always implies
the corresponding complex concepts, while in the other direction, it is a soft
constraint.

consk(a, b) ≡ consk(a′, b′) ⇐ a ≡ a′ ∧ b ≡ b′

+wc
k consk(a, b) ≡ consk(a′, b′) ⇒ a ≡ a′ ∧ b ≡ b′

where consk are different constructors for complex concepts, e.g., union, ∃p.b.
Some complex correspondences are almost impossible to be identified with

traditional strategies. With the knowledge-based strategy, it becomes possible.

Example 6. A reviewer of a paper cannot be the paper’s author. In the cmt
ontology we have

writePaper � ¬readPaper

and in the conference ontology we have

contributes � Reviewed contribution � ¬(contributes ◦ reviews)

We first build two complex concepts contributes � Reviewed contribution and
contributes ◦ reviews. With R4(a, b) = a � ¬b (disjoint properties), the score
function would favor the correspondences



102 S. Jiang et al.

writePaper ≡ contributes � Reviewed contribution

readPaper ≡ contributes ◦ reviews

6 Knowledge Aware Ontology Matching

In this section, we present our approach, Knowledge Aware Ontology Matching
(KAOM). KAOM uses Markov logic networks (MLNs) to solve the ontology
matching task. The MLN formulation is similar to [12] but incorporates the
knowledge-based matching strategy and treatment of complex correspondences.

An MLN [4] is a set of weighted formulas in first-order logic. Given a set
of constants for individuals in a domain, an MLN induces a probability dis-
tribution over Herbrand interpretations or “possible worlds”. In the ontology
matching problem, we represent a correspondence in first-order logic using a
binary relation, match(a1, a2), which is true if concept a1 from the first ontol-
ogy is semantically equivalent to concept a2 from the second ontology (e.g.,
match(writePaper, writes) means writePaper ≡ writes). Each possible world
therefore corresponds to an alignment of the two ontologies. We want to find
the most probable possible world, which is the configuration that maximizes the
sum of weights of satisfied formulas.

We define three components of the MLN of the ontology matching problem:
constants, evidence and formulas. The logical constants are the entities in both
ontologies, including the simple named ones and the complex ones. The evidence
includes the complete set of OWL-supported relationships (e.g., subsumptions
and disjointness) among all concepts in each ontology, and rules represented as
first-order atomic predicates as described in the Sect. 3. We use an OWL reasoner
to create the complete set of OWL axioms.

For the formulas, we begin with a set of formulas adapted from [12]:

1. A-priori similarity is the string similarity between all pairs of concepts:

sa,a′ match(a, a′)

where sa,a′ is the string similarity between a and a′, which also serves as
the weight of the formula. We use the Levenshtein measure [9] for simple
correspondences. This atomic formula increases the probability of matching
pairs of concepts with similar strings, all other things being equal.

2. Cardinality constraints enforce one-to-one simple (or complex) correspon-
dences:

match(a, a′) ∧ match(a, a′′) ⇒ a′ = a′′

3. Coherence constraints enforce consistency of subclass relationships:

match(a, a′) ∧ match(b, b′) ∧ a � b ⇒ a′ � ¬b′

4. Stability constraints enforce consistency of the subclass relationships between
the two ontologies. They can be viewed as a special case of the knowledge-
based constraints we introduce below.
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Knowledge-Based Constraints. We now describe how we incorporate knowledge-
based constraints into the MLN formulation through new formulas relating
knowledge rules to matchings. The stability constraints in [12] consider three sub-
class relationships, including a is a subclass of b (subclass), and a is a subclass
or superclass of the domain or range of a property b (domainsub, rangesub). We
extend the relationships (knowledge rule patterns) to sub-property, disjoint prop-
erties, and user-defined relations such as ordering of dates, and non-deterministic
relationships such as correlation and anti-correlation:

−wk Rk(a, b, ...) ∧ ¬Rk(a′, b′, ...) ⇒ match(a, a′) ∧ match(b, b′) ∧ ..., k = 1, ..., m
(1)

where m is the number of knowledge rule patterns. User-defined relations include
those derived from decision trees, association rules, expert systems, and other
knowledge sources outside the ontology.

Besides the stability constraints, we introduce a new group of similarity con-
straints that encourage knowledge rules with the same pattern to have corre-
sponding concepts.

+w′
k Rk(a, b, ...) ∧ Rk(a′, b′, ...) ⇒ match(a, a′) ∧ match(b, b′) ∧ ..., k = 1, ..., m

(2)

For numerical rules, we instead use MLN formulas:

d0 − d match(a, a′) ∧ match(b, b′) ∧ ..., k = 1, ...,m (3)

where d is a distance measure of the two rules Rk(a, b, ...) and R′
k(a

′, b′, ...) and
d0 is a threshold determining whether the rules are similar or not.

To handle complex correspondences, we add complex concepts that occur in
knowledge rules as constants of the MLN, and add knowledge rules that contain
these new complex concepts. We define the string similarity and enforce type
constraints between simple and complex concepts, as described in Sect. 5. For
complex to complex correspondences, the string similarity measure is zero, but
we have constraints

match(a, a′) ∧ match(b, b′) ∧ ... ⇒match(c, c′)
wc

k match(a, a′) ∧ match(b, b′) ∧ ... ⇐match(c, c′)

where c = consk(a, b, ...), c′ = consk(a′, b′, ...) for each constructor consk.

7 Experiments

We test our KAOM approach on three domains: NBA, census, and conference.
The sizes of the ontologies of these domains are listed in Table 2. These domains
contain very different forms of ontologies and knowledge rules, so we can examine
the generality and robustness of our approach.

We use Pellet [19] for logical inference of the ontological axioms and The-
Beast3 [16] and Rockit4 [13] for Markov logic inference. We ran all experiments
3 http://code.google.com/p/thebeast/.
4 https://code.google.com/p/rockit/. We use RockIt for the census domain because

TheBeast is not able to handle the large number of rules in that domain.

http://code.google.com/p/thebeast/
https://code.google.com/p/rockit/
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Table 2. Number of classes, object properties, data properties and nominal values of
each ontology used in the experiments.

Domain Ontology # classes # object props # data props # values

NBA nba-os 3 3 20 3

yahoo 4 4 21 7

Census adult 1 0 15 101

income 1 0 12 97

OntoFarm cmt 36 50 10 0

confOf 38 13 25 0

conference 60 46 18 6

edas 103 30 20 0

ekaw 78 33 0 0

on a machine with 24 Intel Xeon E5-2640 cores @2500 MHz and 8GB mem-
ory. We compare our system (KAOM) with three others: KAOM without the
knowledge-based strategy (MLOM), CODI [7] (a new version of [12], which is
essentially a different implementation of MLOM), and logmap2 [8], a top per-
forming system in OAEI 20145.

We manually specify the weights of the Markov logic formlas in KAOM and
MLOM. The weights of stability constraints for subclass relationships are set
with values same as the ones used in [12], i.e., the weight for subclass is −0.5,
and those for sub-domain and range are −0.25. In KAOM, we also set the weights
for different types of similarity rules based on our assessment of their relative
importance and kept these weights fixed during the experiments.

7.1 NBA

The NBA domain is a simple setting that we use to demonstrate the effective-
ness of our approach. We collected data from the NBA official website and the
Yahoo NBA website. For each ontology, we used the WinMine toolkit6 to learn
a decision tree for each attribute using the other attributes as inputs.

For each pair of conditional distributions based on decision tree with up to
three attributes, we calculate their similarity based on the distance measure
described in Example 5. We use the Markov logic formula (3) with the thresh-
old d0 = 0.2. To make the task more challenging, we did not use any name
similarity measures. Our method successfully identified the correspondence of
all the numerical and nominal attributes, including height, weight and positions
(center, forward and guard) of players. In contrast, without a name similarity
measure, no other method can solve the matching problem at all.
5 http://oaei.ontologymatching.org/2014/.
6 http://research.microsoft.com/en-us/um/people/dmax/WinMine/Tooldoc.htm.

http://oaei.ontologymatching.org/2014/
http://research.microsoft.com/en-us/um/people/dmax/WinMine/Tooldoc.htm
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7.2 Census

We consider two census datasets and their ontologies from UC Irvine data repos-
itory7. Both datasets represent census data but are sampled and post-processed
differently. These two census ontologies are flat with a single concept but many
datatype properties and nominal values. For this domain, we use association
rules as the knowledge. We first discretize each numerical attribute into five
intervals, and then generate association rules for each ontology using the Apriori
algorithm with a minimum confidence of 0.9 and minimum support of 0.001. For
example, one generated rule is:

age=’(-inf-25.5]’ education=’11th’ hours-per-week=’(-inf-35.5]’

==> adjusted-gross-income=’<=50K’ conf:(1)

This is represented as

R6(aged, 11th, hours-per-weekd, adjusted-gross-incomed)

where xd refers to the discretized value of x, split into one fifth percentile inter-
vals, and R6(a, b, c, d) : a = 1 ∧ b ∧ c = 1 ⇒ d = 1. For scalability reasons, we
consider up to three concepts in a knowledge rule, i.e., association rules with
up to three attributes. We set the weight of knowledge similarity constraints for
the association rules to 0.25.

In the Markov logic formulation in [12], only the correspondences with apri-
ori similarity measure larger than a threshold τ are added as evidence. In the
experiments, we set τ with different values from 0.50 to 0.90. When τ is large,
we deliberately discard the string similarity information for some correspon-
dences. MLOM for this task is an extension of [12] by adding correspondences of
nominal values and their dependencies with the related attributes. The results
are shown in Fig. 1. We can see that KAOM always gets better recall and F1,
with only a slight degradation in precision. This means our approach fully lever-
ages the knowledge rule information and thus does not rely too much on the
names of the concepts to determine the matching. For example, when τ is 0.70,
KAOM finds 6 out of 8 correspondences of values of adult : workclass and
income : class of worker, while MLOM finds none. The other two systems were
not designed for nominal value correspondences. CODI only finds 7 and logmap2
only finds 3 attribute correspondences, while KAOM and MLOM find all the 12
attribute correspondences.

7.3 OntoFarm

In order to show how our system can use manually created expert knowledge
bases, we use OntoFarm, a standard ontology matching benchmark for an aca-
demic conference domain as the third domain in our experiments. As part of
OAEI, it has been widely used in the evaluation of ontology matching systems.
7 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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Fig. 1. Precision, recall and F1 on the
census domain as a function of the string
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OntoFarm domain with only the one-to-
one correspondences.

The process of manually knowledge rule creation is time consuming, so we only
used 5 of the OntoFarm ontologies (cmt, conference, confOf, edas, ekaw). Using
their knowledge of computer science conferences and the structure of just one
ontology, two individuals listed a number of rules (e.g., Example 1). We then
translated these rules into each of the five ontologies. Thus, the same knowledge
was added to each of the ontologies, but its representation depended on the spe-
cific ontology. For some ontologies, some of the rules were not representable with
the concepts in them and thus had to be omitted. This manually constructed
knowledge base was developed before running any experiments and kept fixed
throughout our experiments. Among the 5 ontologies, we have 10 pairs of match-
ing tasks in total. We set τ to 0.70, and the weight for the knowledge similarity
constraints to 1.0.

We first compare the four methods to the reference one-to-one alignment
from the benchmark (Fig. 2). KAOM achieves similar precision and F1, and
better recall than other systems. It was able to identify correspondences in
which the concept names are very different, for instance, cmt : readPaper ≡
confOf : reviews. Note that the similarity constraints work in concert with other
constraints. For instance, in Example 4, since disjointness is a symmetric knowl-
edge rule, domain and range constraints could be helpful to identify whether
cmt : writePaper should match to confOf : writes or confOf : reviews.

To evaluate our approach on complex correspondences, we extended the ref-
erence alignment with hand-labeled complex correspondences (Fig. 3). MLOM
does not perform well in this task because the complex correspondences require
a good similarity measure to become candidates (such as the linguistic features
in [17]). KAOM, however, uses the structure of the rules to find many complex
correspondences without relying on complex similarity measures. For this task
we also tried learning the weights of the formulas8 (KAOM-learn). For each of
the 10 pairs of ontologies, we used the rest 9 pairs as training data. KAOM-learn
performs slightly better than KAOM.
8 We used MIRA implemented in TheBeast for weight learning.
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With the hand-picked or automatically learned weights, KAOM produces a
single most-likely alignment. However, we can further tune KAOM to produce
alignments with higher recall or higher precision. We accomplish this by adding
the MLN formula match(a, a′) with weight w. When w is positive, alignments
with more matches are more likely, and when w is negative, alignments with
fewer matches are more likely (all other things being equal). We adjusted this
weight to produce the precision-recall curve shown in Fig. 4. KAOM dominates
CODI and provides much higher recall values than logmap2, although logmap2’s
best precision remains slightly above KAOM’s.

8 Conclusion

We proposed a new ontology matching algorithm KAOM. The key component
of KAOM is the knowledge-based strategy, which is based on the intuition that
ontologies about the same domain should contain similar knowledge rules, in
spite of the different terminologies they use. KAOM is also capable of discov-
ering complex correspondences, by treating complex concepts the same way as
simple ones. We encode the knowledge-based strategy and other strategies in
Markov logic and find the best alignment with its inference tools. Experiments on
the datasets and ontologies from three different domains show that our method
effectively uses knowledge rules of different forms to outperform several state-
of-the-art ontology matching methods.
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