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Abstract. Human Activity Recognition (HAR) has a growing research
interest due to the widespread presence of motion sensors on user’s per-
sonal devices. The performance of HAR system deployed on large-scale
is often significantly lower than reported due to the sensor-, device-,
and person-specific heterogeneities. In this work, we develop a new app-
roach for clustering such heterogeneous data, represented as a time series,
which incorporates different level of heterogeneities in the data within
the model. Our method is to represent the heterogeneities as a hierar-
chy where each level in the hierarchy overcomes a specific heterogeneity
(e.g., a sensor-specific heterogeneity). Experimental evaluation on Elec-
tromyography (EMG) sensor dataset with heterogeneities shows that our
method performs favourably compared to other time series clustering
approaches.

Keywords: Time series · Heterogeneous clustering · Bayesian semipara-
metrics · Human Activity Recognition

1 Introduction

The widespread availability of sensors in everyday lives enables us to capture
contextual information from underlying human behavior in real-time. This has
led to the significant research focus on Human Activity Recognition (HAR) using
sensor data [15]. Sensor data is used to determine the specific activity performed
by the user at that instant, using either statistical or machine-learning approach.
Despite a significant interest on HAR research, real-world performance variations
across different sensors have been overlooked [15].

A significant research problem based on use of sensor networks is development
of sensor-based automatic prosthetic limbs. The sensor network (usually an EMG
sensor network) is used for detecting the intention of the user of the prosthetic
limbs in order to provide a better control mechanism to the prosthetic limbs.
The sensor network provides data related to the neural intent of the user, which
is then interpreted by the prosthetic limb control mechanism to enable certain
degree of freedom to the limb motion. For example, the control system is able
to recognize whether the user is walking along a level ground or climbing up the
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stairs based on the neural impulse of the user (inferred from sensor data using
statistical and machine learning models), which then triggers an intent specific
freedom on the prosthetic limbs; e.g., automated rising of the prosthetic limb
when the user is climbing up the stairs. While significant progress has been made
in the development of prosthetic limbs with such control mechanisms [5], most
of the work focus on having a prosthetic limb trained to a specific user only.
There is a distinct lack of research in unsupervised learning of user intent from
such sensor data.

We focus on developing an unsupervised approach to recognize the user intent
based on the sensor data. We treat the sensor data as a time series which is
the most natural interpretation of such data. While time series clustering is
a significant research area with many different approaches proposed, most of
them are inapplicable to our current problem. Time series clustering usually
cluster the data obtained from same or similar data source, which is not true for
our case. Moreover, most of the approaches require the number of clusters (or
activity) in the data to be predetermined which is not always feasible in sensor
data. Another challenge lies in the interpretation of the sensor data itself. The
sensor data comprises of additive noises and have been found to be inefficient
in representing the user intent as raw data themselves [14]. Time and frequency
domain features are extracted from sensor data which are then used in machine-
learning models for intent interpretation.

In this work, we address the challenges of performing unsupervised learn-
ing approach on sensor datasets. We first introduce the heterogeneities in the
dataset as a hierarchy with each level in the hierarchy representing a specific
heterogeneity. Next, we perform clustering using Bayesian semiparametric app-
roach to mitigate the problem of pre-specifying the number of clusters in the
dataset. Our approach learns the number of clusters (or activities) present in
the dataset as a parameter of the model, which is capped by some large num-
ber that is considered to be an upper limit on the possible number of clusters.
Finally, we also develop a feature series clustering approach where we obtain
features from the sensor dataset, which is then used to cluster the input data.
For evaluation of our approach, we use an EMG sensor dataset collected while
the subject performs a walking motion into different terrains. Our dataset con-
sists of eight EMG sensors placed on different limb muscles of a single person
during the data collection phase. We find that having a hierarchy to eliminate
heterogeneity in the data helps in obtaining better clustering performance. Our
method outperforms other approaches which treat the sensor data as a time
series in unsupervised learning.

The paper is organized as follows. In Sect. 2, we review previous work on sen-
sor data usage for activity recognition followed by brief description of time series
clustering algorithms. We also introduce Hierarchical Normal Model, which is
our approach for eliminating heterogeneities in sensor data. We describe our app-
roach in Sect. 3 which includes description of our method and different parame-
ters within the approach. We present experimental results in Sect. 4 and conclude
in Sect. 5.
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2 Background and Related Work

2.1 Activity Recognition Using EMG Sensors

EMG (Electromyographic) sensors measure electrical current generated in skele-
tal muscles during its contraction representing neuromuscular activity. The con-
traction of skeletal muscle is initiated by impulses in the neuron to the muscle
and is usually under voluntary control, which are captured by surface EMG
sensors. Such signals are significant for detection of gait events of individual.

A gait is defined as someone’s manner of ambulation or locomotion, involving
the total body [2]. The two main phases of gait cycle are the stance phase and the
swing phase. A complete gait cycle comprises of - “Heel Strike” (HS), “Flat Foot”
(FF), “Mid Stance” (MS), “Heel Off” (HO), “Toe Off” (TO) and “Mid Swing”
(MS). Two phases of gait cycle have been found to be most effective in recognizing
locomotion mode. One is Heel Strike (also called initial contact), a short period
which begins the moment the foot touches the ground while the other is toe-off
(also called pre-swing phase), a period when the toe begins to take stance. Activity
recognition mechanism based on gait cycles involve extracting features from these
two phases before classification. Each gait is classified as belonging to a particular
activity; e.g., walking up the stairs or walking down the ramp.

Most of the work in EMG signal based terrain identification (also called loco-
motion mode identification or gait event detection) is based on using classifica-
tion algorithms, which depend on having labelled training data. The earlier work
for EMG signal analysis is based upon wavelet analysis [8] and auto-regressive
models [1]. It was demonstrated by [13] that there is a difference in EMG sig-
nal envelope among level-ground walking and descending and ascending a ramp,
with conclusion that EMG signals from hip-muscles could be used to classify the
locomotion modes. The more recent approaches are based on using the features
extracted from EMG signals for training a machine learning classification model.

The EMG signals by themselves are random signals with zero mean, but have
significance during stages where the muscle contraction is maximum [4]. The
features extracted from EMG signals are crucial for getting proper classification
accuracy during prediction. The features extracted during the 150 ms phase
before and after the “Heel Strike” and “Toe Off” is found to be most accurate
for terrain identification [5]. The time domain features which are significant for
gait event detection [3] are - Mean, Variance, Mean Trend, Variance Trend,
Windowed Mean Difference, Windowed Variance Difference and Auto-regressive
coefficients.

2.2 Time Series Clustering

Time series clustering is one of the most fundamental and complex task in data
mining research. Time series clustering algorithms are usually applied by either
converting the popular static clustering approaches to handle time series or by
modifying time series to make static clustering methods applicable [9].
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One of the most popular approach for static data clustering is k-means or
k-mediods, which generate spherical-shaped cluster with a distance measure
being considered for deciding cluster membership. Another popular approach
for clustering is hierarchical clustering which generate clusters in agglomerative
manner (assign each data as an individual cluster and proceed with merging
to generate ideal cluster) or divisive manner (partition the data based on some
metrics). This approach requires some cluster quality check metrics to determine
the best cluster partition. Density-based clustering approach grows a cluster as
long as the density of the “neighbourhood” exceeds some threshold value. Model-
based clustering approach assumes a model for each cluster and attempts to best
fit the data to the assumed model.

The most used approach for clustering time series data is based on computing
the similarity measure between different time series and then using the similarity
measure to obtain either a spherical cluster partition using k-means algorithm
or a non-spherical cluster partition using fuzzy k-means. Another approach is to
extract features from time series and then use those features to perform cluster-
ing, either by using a multinomial distribution (when the number of clusters is
known apriori) or a Dirichlet Process (when the number of clusters is not known
apriori). The detail survey and comparison of different time series approach can
be found on [11].

2.3 Hierarchical Normal Model

Many different kinds of data, including observational data collected in human
and biological sciences, have a hierarchical structure. Sensor signals such as EMG
have a natural hierarchy where the measurement of each person is grouped under
an individual person and each type of sensor is grouped under that particular
sensor. This natural hierarchical tendency of data requires multi-level analysis,
which can be incorporated using Hierarchical Normal Models (HNM). HNMs
were first studied in the context of biological and human sciences where family,
race, geographical location introduces a natural hierarchy in the data [10].

A hierarchy of normal distribution is considered in hierarchical normal model.
The top-most level of hierarchy includes a prior for mean and variance of the
model (joint prior or distinct prior). A mean value is sampled from the prior,
which is then used to sample different means for Level 1 of hierarchy, with the
variance obtained from variance prior. For each sub-hierarchy in Level 2, the
mean is sampled from each parent sample separately. The variance at each level
can be either estimated from the data of that group and kept fixed or obtained
from Gibbs sampler step for variance.

An example representation of Hierarchical Normal Model (HNM) is given
in Fig. 1. In the figure, the hierarchy moves from left to right. On each level of
hierarchy, different components incorporate differences present in that level of
hierarchy. We start with a base distribution and add heterogeneities as we move
from left to right at each level. The existence of such hierarchies is the result
of differentiation in all kind of activities (e.g., different gait events for different
person and differing sensor metrics for different muscle activation).
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Fig. 1. A Hierarchical Normal Model (HNM).

3 Our Approach

In this section, we describe our model for clustering EMG sensor data. In our
approach, we address three key challenges in clustering sensor data:

• Sensor data, especially EMG sensor data, by itself cannot be used for classifi-
cation or clustering purposes, since it is a noisy time series with zero mean. We
need to filter out noise from the sensor data before it can be used for activity
recognition purposes.

• Heterogeneity is a key challenge and bottleneck for clustering EMG sensor
data. Person and Sensor based heterogeneity is a significant impediment to
clustering such sensor data.

• Usage of EMG sensor data for activity recognition is heavily dependent on
features extraction. We need to incorporate the features from EMG signals
for performing clustering, since they have been found to be more useful for
activity recognition. Our experimental results also show that using features
extracted from EMG sensor data gives much better clustering performance
than using raw signal from EMG sensor as input.

We aim to address the above mentioned challenges with our approach. We
explain our approach on three subsections each related to the above-mentioned
aspects of sensor data analysis. We also borrow some ideas from statistical analy-
sis of time series data and use them heavily in our approach.
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3.1 Sensor Data Representation

We represent the sensor data as a time series of T × 1 dimension, also called a
vector yi where i subscript is used to represent the ith time series in the sensor
dataset of size N .

We break-down a single EMG sensor data into three distinct latent variables.
We use the sampling model [12] to represent sensor data.

yi = Zαi + Xβi + θi + εi, i = 1, 2, ..., n (1)

where, εi is T × 1 dimensional random noise. The other three parameters given
in the Eq. 1 represent three different latent variables:

• αi is p × 1 dimensional vector representing the non-clustering components of
the sensor data. It is used to enhance the fit of the data to the cluster core
to which that data belongs to. For example, mean of the sensor data cannot
be significant aspect for clustering such data but can be represented by αi to
make the sensor data fit to its cluster better.

• βi is the d × 1 dimensional vector representing the clustering but non-
autoregressive components of the sensor data. It is used to cluster the sensor
data based on several components of time series including trends. d represents
the number of components of time series that are considered for clustering.
A polynomial trend would require the value of d to be 3.

• θi is the T ×1 dimensional vector representing the Auto Regressive AR(1) com-
ponents of the sensor data assuming stationarity in the time series. We do not
assume the sensor data to be stationary but only consider some components
represented by θi as an auto-regressive component.

Our approach does not require explicit specification of different aspects of sensor
data that are considered for clustering or not but they are learned during the
training phase automatically. The matrices Z and X are design matrices of
dimensions T × p and T × d respectively.

We provide Bayesian treatment to our approach. This is done by assuming
that sensor data and latent variables are generated by multivariate Normal dis-
tributions. We, then represent a single sensor data as a function of multivariate
Normal Distribution given below:

f(yi) ∝ NT (Zαi + Xβi + θi, σ2
εiI)

αi ∼ N(0, Σα)

βi ∼ N(βs,r,k, Σβ,s,r,k)

θi ∼ N(θs,r,k, Σθ,s,r,k)

(2)

where parameters with s, r, k as subscript represent the specific values obtained
after incorporating the heterogeneity into the non-heterogeneous clustering
parameters.

For simplicity, we assume covariance matrices to be diagonal matrices for
Multivariate Normal Distribution and each diagonal elements obtained as a
sample from Inverse-Gamma (IGa) prior. This completes the specification of
our approach to separate noisy components from sensor data.
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3.2 Incorporation of Heterogeneities in Sensor Data

We incorporate heterogeneities in EMG sensor data by using a Hierarchical
Normal Model (HNM) where each level of hierarchy represents a specific het-
erogeneity in the data. We use two level of hierarchy to represent two different
heterogeneities in EMG sensor datasets. The first level of hierarchy represents
Sensor Level differences since the differences in calibration of different sensors
and their positioning play a significant role in creating heterogeneity. The sec-
ond level of hierarchy is used to represent person specific heterogeneities since
for different person, a sensor with same calibrations and positioning will have
different readings based on differences between the persons’ biomechanics. We
also incorporate heterogeneities for each activity (or clusters) separately. This
is done to reduce the number of parameters since our approach enables us to
consider heterogeneity only for clustering parameters and allow non-clustering
parameters to fit independent of heterogeneity.

The top-most level of hierarchy for a specific cluster k is:

γroot ∼ N(0, Σβ) × N(0, Σθ) (3)

where γroot is considered product of two clustering parameters i.e. βroot × θroot.
The prior for covariance of β parameter is diagonal matrix with IGa prior while
for θ it is adapted from [12] to handle stationarity.

For the second level, which is the sensor specific heterogeneities incorporating
level, we have R branches where R is the total number of sensor types present
in the data. We sample a mean value from the parent which is root and use the
covariance matrix from that level attached to the specific component to sam-
ple the clustering components that incorporates sensor level of heterogeneities.
Specifically, for a sensor r data belonging to cluster k, we obtain the clustering
component as:

γr,k ∼ N(βr,k, Σβ,r,k) × N(θr,k, Σθ,r,k)

βr,k ∼ N(0, Σβ,k)

θr,k ∼ N(0, Σθ,k)

(4)

where Σβ,r,k and Σθ,r,k are covariances for β and θ parameters of cluster k, level
2 and branch r.

Similarly, for person specific heterogeneities incorporating level (which is
level 3), we consider S persons for each sensor branch r in the previous level
and obtain a person’s heterogeneity incorporating clustering parameters as:

γs,r,k ∼ N(βs,r,k, Σβ,s,r,k) × N(θs,r,k, Σθ,s,r,k)

βs,r,k ∼ N(βr,k, Σβ,r,k)

θs,r,k ∼ N(θr,k, Σθ,r,k)

(5)

Here, k represents the kth cluster from K clusters, r represents the rth sensor
from R sensors and s represents the sth person among S persons.

The block diagram of HNM for heterogeneities is given in Fig. 2 for more
clarity.
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Fig. 2. Block HNMs for heterogeneity. Each k cluster is represented by one such block
which incorporates two level of heterogeneities. For Sensor data, two level of hetero-
geneities represent sensor (r) and person (s) based heterogeneities.

For clustering, we use the Generalised Dirichlet Process (GDD) based prior
as explained in [6]. The selection of GDD based prior is for two main reasons -
(i) It enables us to learn number of clusters from the data itself. (ii) The posterior
of GDD is conjugate with multinomial sampling and thus we can easily run
Gibbs Sampling for cluster inference. The number of clusters that can sufficiently
represent the data is obtained by using Adequate Truncation Value method
explained in [6] during the first few iterations of Gibbs Sampling.

The prior characterization of our approach is now complete. The posterior for
every random variables introduced in our approach can be obtained analytically
based upon the likelihood function given as:

f(y) =
N∏

i=1

NT (Zαi + Xβi + θi, Σy) (6)

where, Σy = σ2
ε I and N is the total data count.

For the sake of clarity and brevity, we include posterior characterizations of
our approach in AppendixA.

3.3 Inference and Feature Clustering

Gibbs Sampling algorithm is used for posterior inference, with Metropolis within
Gibbs sampler being used for sampling ρ and σ2

θ . The Gibbs Sampler algorithm
used is same as given in [7] except for sampling from the hierarchical model and
Metropolis steps for θ parameters. The hierarchical model’s posterior sampling
is done in bottom-up approach. The hierarchy is sampled beginning from the
Sampling model until the top level is reached.

Features extraction from EMG sensor data is necessary to obtain better classi-
fication and clustering results. We extend our approach to multi-dimensional time
series to handle EMG sensor data where we extract features for every 50 ms win-
dow. Each features extracted creates a series of their own (also called a vector).
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We call such feature vector of EMG sensor data a feature series. We assume each
feature series is independent of one another in order to reduce the complexity of
the model. Then each feature is considered as an independent EMG sensor data
and the above model is applied to all the features.

The most significant aspect during handling such multiple features is to con-
sider how each feature series impacts the overall clustering aspect our approach.
We propose two approaches for such cases:

• The Generalized Dirichlet Distribution (GDD) is used for combining different
feature series. A single cluster label is selected for all the feature series. The
parameters of GDD are updated with each feature series likelihood w.r.t. the
data. Rest of the model is kept same as explained above.

• Different GDD is used for each feature series. The final cluster membership is
based on majority voting of cluster assignments in individual feature series.

We perform experiments to evaluate each approach and find out that using a
single GDD for combining different feature series works best for our dataset.

3.4 Cluster Selection

Each iteration of Gibbs Sampling produces a cluster assignment of data points,
which is then filtered to select one cluster assignment as the best fit. One way
of selecting a cluster membership used by [12] is Heterogeneity Measure (HM),
which can be calculated as:

HM(G1, .., Gm) =
m∑

k=1

2
nk − 1

∑

i<j∈Gk

T∑

t=1

(yit − yjt)2 (7)

where, m is the number of clusters, Gk is kth cluster, nk is the number of data
point belonging to cluster Gk, T is the length of time series representation of
sensor data and yit is the tth value in time series yi.

The larger the value of HM, the more heterogeneous a clustering is. It is
preferable to have a cluster with small HM and small m.

4 Experiments

Our dataset consists of 9 normal human subjects performing 5 different gait
events which are measured by eight different sensors placed in their bodies. In
this experiment, we attempt to cluster each sensor data into individual gait
events (level ground walking, stair ascent, stair descent, ramp ascent and ramp
descent). We consider a data point to be a sensor reading of a single gait cycle. We
conduct several experiments with different configuration of hyper parameters in
order to determine the best configuration for the dataset. The number of clusters
is determined initially using the Adequate Truncation Value during the initial
Gibbs Sampling phase but we found that using the same number of clusters as
in original dataset gives the best result. We found out 15 is sufficient number of
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clusters for this data. In order to eliminate the disproportions of data in different
classes, we use subsampling to get the equal number of input data for each class.

The dimension of design matrices ZT×p and XT×d is an important design
decision. We use p = 1 since we found that the value of p doesn’t play a significant
role for our dataset. For X, we set d = 7 with first three columns representing
the polynomial trend of degree 3, with remaining four columns being used as a
latent trait indicator for four gait phases (Before Heel Strike, After Heel Strike,
Before Toe Off, After Toe Off). We also set the inverse gamma prior fixed to [2, 1]
throughout the experiment. The results presented is based on the heterogeneity
score of sampled cluster membership, with the lowest score being selected as best
clustering assignment. The best cluster membership obtained from the sampler
based on Heterogeneity Measure is then used to obtain a confusion matrix. The
confusion matrix is used to compute the accuracy of the clustering approach
with labelled examples. The Heterogeneity Measure for every result obtained is
between 0.5 and 1.95, with random impact on the accuracy of the clustering. For
all the experiments, we run Gibbs sampler upto 5000 iterations, with 3000 as
burn-in phase and collect a sample every 200 iterations after the burn-in phase.

First we conduct experiments to determine the different aspects of the model.
The results are presented in Fig. 3. The first result in Fig. 3 shows that EMG
data by itself is not meaningful for classifying or clustering purposes.

We obtain best result with configurations given as second bar in Fig. 3 where
we specify the number of clusters same as the number of labels. The comparison
between third bar and fifth bar of Fig. 3 along with fourth and sixth bar of Fig. 3
illustrate that majority voting for feature series performs slightly worse than
a single cluster membership for entire feature series approach. Also, the use of

Fig. 3. Results obtained for different configuration of Model
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hierarchy helps in obtaining the better performance compared to the non-usage
of hierarchy as evident from third and fifth bar comparison.

Next, we compare the performance of our approach with other popular time
series clustering algorithms. The result is presented in Table 1. It is evident that
our approach outperforms other approaches for time series clustering in case
of our dataset which consists of heterogeneity. For k-means based clustering
experiment, we use TSclust package [11]. We refer the reader to [11] for more
information about different distance metrices.

Table 1. Performance measure of different time series clustering approaches

Method Accuracy (%)

Bayesian Nonparametrics Time Series Clustering (BNPTSclust)1 [12] 26.0

Rest of the algorithms are k-means clustering algorithms implemented in [11]

Autocorrelation based Dissimilarity (ACF) 26.0

Periodogram-based distances (PER) 25.3

Normalized Compression Distance (NCD) 23.3

Euclidean Distance (EUCL) 36.0

Compression-based dissimilarity measure (CDM) 24.7

Dynamic Time Warping (DTW) measure 31.3

Discrete Wavelet Transform (DWT) 30.7

Correlation Based Dissimilarity (COR) 29.3

Partial Autocorrelation based Dissimilarity (PACF) 28.0

Complexity Invariant Distance (CID) 30.7

Permutation Distribution Clustering (PDC)2 18.7

Our Approach3 39.1
1 This approach is based on Bayesian non parametrics where the number of clusters is

inferred from the data itself. This approach favours a single cluster most of the time.
2 Used default configuration provided in TSclust package for clustering.
3 The best accuracy is obtained when not considering Majority Voting, while specifying

the number of clusters to be only 5.

5 Conclusion and Future Work

We study the feasibility of clustering approach for Human Activity Recognition
using sensor dataset. Our approach introduces hierarchy-based heterogeneity for
clustering time series where the number of clusters is not known in advance.
Experimental result shows that introducing hierarchy helps in clustering sensor-
based time series more accurately. Though the accuracy of our approach for EMG
sensor data is low, comparison with other time series clustering approaches show
that our method performs better than other approaches. The current method
expresses the time series as a linear model only, future work will involve extension
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to non-linear models to handle more complex time series, along with using more
datasets for further experiments.
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Appendix A Posterior Characterization

• αi: The posterior for αi is:

f(αi|rest) ∝ NP (μa, Σa)

Σa = (Σ−1
α + ZT Σ−1

y Z)−1

μa = ΣaZT Σ−1
y (yi − Xβi − θi)

f(σ2
αj

|rest) = IGa(cα
0 +

n

2
, cα

1 +
1

2

n∑

i=1

α2
ij), j = 1, .., p

(8)

• βi: The posterior for βi (or βs,r,k) is:

f(βi|rest) ∝ ND(μb, Σb)

Σb = (Σ−1
β,s,r,k + XT Σ−1

y X)−1

μb = Σb[X
T Σ−1

y (yi − Zαi − θi) + Σβ,s,r,kβs,r,k]

f(σ2
βs,r,k,i

|rest) = IGa(c
βs,r,k,i

0 +
m

2
, c

βs,r,k,i

1 +
1

2

m∑

j=1

β2
s,r,k,i)

i = 1, .., p

(9)

where m is the number of data points belonging to that cluster.
• θi: The posterior for θi (or θs,r,k) is:

f(θi|rest) ∝ NT (μc, Σc)

Σc = (Σ−1
θ,s,r,k + Σ−1

y )−1

μc = Σc[Σ
−1
y (yi − Zαi − Xβi) + Σθ,s,r,kθs,r,k]

f(σ2
θs,r,k,i

|rest) = IGa(c
θs,r,k,i

0 +
m

2
, c

θs,r,k,i

1 +
1

2

m∑

j=1

θ2
s,r,k,i)

i = 1, .., T

(10)

where m is the number of data points belonging to that cluster.
• σ2

εi : The posterior for σ2
εi is:

f(σ2
εi |rest) ∝ IGa(cε

0 +
T

2
, cε

1 +
1

2
M

′
i Mi)

Mi = (yi − Zαi − Xβi − θi)
(11)
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• Level k posterior : The posterior for any level of hierarchy except for top-most
level consists of following updates:

f(βk|rest) ∝ ND(μg, Σg)

Σg = (Σ−1
β,r,k + Σ−1

β,k)−1

μg = Σg(Σβ,kβk + Σ−1
β,r,kβr,k)

f(σ2
βk,i

|rest) = IGa(c
βk,i

0

R

2
, c

βk,i

1

S∑

j=1

β2
k,i)

f(θk|rest) ∝ ND(μh, Σh)

Σh = (Σ−1
θ,r,k + Σ−1

θ,k)−1

μh = Σh(Σθ,kθk + Σ−1
θ,r,kθr,k)

f(σ2
θk,i

|rest) = IGa(c
θk,i

0

R

2
, c

θk,i

1

R∑

j=1

β2
k,i)

(12)

• Top level posterior : The posterior at top-most level is:

f(β|rest) ∝ ND(μe, Σe)

Σe = (Σ−1
β,k + Σ−1

β )−1

μe = Σe(Σ
−1
β,kβk)

f(σ2
βi

|rest) = IGa(cβi
0

K

2
, cβi

1

K∑

j=1

β2
i )

f(θ|rest) ∝ ND(μf , Σf )

Σf = (Σ−1
θ,k + Σ−1

θ )−1

μf = Σf (Σ−1
θ,kθk)

f(σ2
θ |rest) = IGa(

KT

2
,
1

2

K∑

j=1

θ
′
jQ

−1θj)

f(ρ|rest) ∝ |Q|−K/2 exp
−1

2σ2
θ

K∑

j=1

θ
′
jQ

−1θj

√
1 + ρ2

1 − ρ2

(13)

where Qij = ρ|i−j| for i, j = 1, .., T .
• Posterior for GDD and p: The posterior for GDD is conjugate with multinomial

sampling. The probability p is updated based on the fit of the data with respect
to the individual clusters lowest level mean using the likelihood function. The
complete detail for GDD posterior characterization can be found in [6].

This completes the posterior characterization of our approach.
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